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1Mitsubishi Electric Research Laboratories, 201 Broadway, Cambridge, MA 02139, USA
2Harvard University, Cambridge, MA 02138, USA

(Dated: July 27, 2019)

Grover’s algorithm is one of the most famous algorithms which explicitly demonstrates how the
quantum nature can be utilized to accelerate the searching process. In this work, Grover’s quantum
search problem is mapped to a time-optimal control problem. Resorting to Pontryagin’s Minimum
Principle we find that the time-optimal solution has the bang-singular-bang structure. This structure
can be derived naturally, without integrating the differential equations, using the geometric control
technique where Hamiltonians in the Schrödinger’s equation are represented as vector fields. In
view of optimal control, Grover’s algorithm uses the bang-bang protocol to approximate the optimal
protocol with a minimized number of bang-to-bang switchings to reduce the query complexity. Our
work provides a concrete example how Pontryagin’s Minimum Principle is connected to quantum
computation, and offers insight into how a quantum algorithm can be designed.

PACS numbers:

I. INTRODUCTION

Quantum computation deliberately uses the quantum-mechanical phenomena, such as superposition and entan-
glement, to reduce the computation time or the number of queries to accomplish certain tasks [1, 2]. Well known
quantum algorithms include Shor’s algorithm for factoring [3] and Grover’s algorithm for searching an unstructured
database or an unordered list [4, 5]. While the standard paradigm for quantum computation involves a discrete
sequence of unitary logic gates [3–9] there exists another paradigm, pioneered by Farhi and Gutmann [10], where the
quantum register evolves under some designed Hamiltonian which can vary continuously in time [10–13]. The con-
cept of “continuous-time” quantum computation explicitly allows established physics principles such as the adiabatic
theorem [14–16] and the Trotter-Suzuki decomposition [17, 18] to guide how quantum algorithms can be designed.
The adiabatic theorem is, for example, the foundation of the quantum annealing technique [11, 19–22] and the fast,
non-adiabatic evolution is found to be helpful for other problems [23, 24]. More recently, there are quantum algorithms
based on the variational principle, notably the Variational Quantum Eigensolver (VQE) [25–27] and the Quantum
Approximate Optimization Algorithm (QAOA) [28–30]. They are more fault-tolerant than quantum algorithms of
the standard paradigm and are promising for Noisy Intermediate-Scale Quantum (NISQ) technology [31].

Generally, when applying quantum algorithms to solve a classical NP (non-deterministic polynomial-time) problem,
we are given a quantum “problem Hamiltonian” (oracle) whose ground state is the solution of the original classical
problem [21, 32–34]. Designing a quantum algorithm is equivalent to find a “driving Hamiltonian” and an initial
state, both easily implemented, that can steer the initial state to the target state (e.g., ground state of the problem
Hamiltonian) within the shortest time. From this point of view, time-optimal control [35–37] appears to be funda-
mentally connected to quantum computation as both address (i) if the target state can be reached and (ii) how to
reach the target state in the shortest time. Recently, Pontryagin’s Minimum Principle (PMP) [38] has been applied
to quantum state preparation [39] and non-adiabatic quantum computation [40]. Due to the linearity of Schrödinger’s
equation, time-optimal control generally has the bang-bang form, i.e., the control takes its extreme values. Indeed,
Ref. [39] shows that the bang-bang protocol takes the minimum time to drive a two-qubit product state to the fully
entangled state; Ref. [40] establishes the connection between the bang-bang protocol and the QAOA algorithm by
solving spin-glass problems; Ref. [41] demonstrates that pulses of bang-bang type take the minimum time to cancel
the second-order noise. In this paper, we formulate Grover’s problem as a time-optimal control problem and apply
PMP to solve it. By recasting the problem involving only observable dynamical variables, we are able to show that
the time-optimal control is of bang-singular-bang type without explicitly solving the necessary optimality conditions
derived from PMP. In the language of control theory, Grover’s algorithm can be regarded as a protocol that approx-
imates the optimal control by the bang-bang control with a minimum number of switchings. Our analysis directly
applies to the system effectively involving a single qubit [39, 42, 43], and may provide insight into the problems of
higher dimensions [44, 45].

∗ clin@merl.com



2

The rest of the paper is organized as follows. In Section II we formulate the problem and state the necessary
conditions for a time-optimal solution derived from PMP. In Section III we show that the bang-singular-bang structure
satisfies the necessary conditions and compares this solution to other protocols including the pure singular control
and the pure bang-bang control which turns out to be Grover’s algorithm. Advantages of numerically applying PMP
to problems of higher dimensions are discussed. In Section IV we re-formulate the problem in terms of geometric
control, and show that the time-optimal bang-singular-bang control can be naturally derived in this formalism. The
relation to quantum state preparation are pointed out. Section V is the conclusion. In the Appendix, a few detailed
steps regarding the geometric control technique are provided.

II. PROBLEM STATEMENT AND PONTRYAGIN’S MINIMUM PRINCIPLE

In this section we formulate Grover’s problem in terms of two Hamiltonians and summarize the relevant results
from PMP. Because both quantum mechanics and PMP use the term “Hamiltonian”, we shall use “Hamiltonian”
(symbol H) in the quantum-mechanical sense, i.e., it is a matrix that governs the dynamics of the wave function; use
“c-Hamiltonian” (symbol H) to represent the control-Hamiltonian, a scalar function defined in control theory.

A. Problem statement

Following Ref. [10, 13], Grover’s problem can be formulated using Hamiltonians. Given the “problem Hamiltonian”
Hw = |w〉〈w| and the “driving Hamiltonian” Hs = |s〉〈s| where 〈s|w〉 ≡ x < 1 (x and |s〉 are assumed to be real for
now, and |s〉 for Grover’s problem is given in Eq. (4)), we want to find the time-optimal protocol u(t) that brings the
initial state |ψi〉 = |s〉 to the target state |ψtarget〉 = |w〉 for the system evolved under a time-dependent Hamiltonian

H(t;u) =
1

2
(Hw +Hs) + u(t)

1

2
(Hw −Hs)

≡ H0 + u(t)Hd, with |u(t)| ≤ 1.
(1)

The control u(t) of the problem is assumed to be bounded by |u| ≤ 1 [46]. In this paper, the terms “control”,
“protocol”, and “algorithm” are used interchangeably; a given control/protocol/algorithm corresponds to a specific
u(t). Because all non-target states are degenerate in energy, we can express both Hamiltonians using two orthogonal

states |w〉, |w̄〉 = [|s〉 − x|w〉] /
√

1− x2. The initial state is given by |ψi〉 = |s〉 = x|w〉+
√

1− x2|w̄〉. In terms of Pauli
matrices defined as

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
,

the Hamiltonians in Eq. (1) are

Hw =
1

2
(e+ σz), (2a)

Hs =
1

2
e+

1

2

[
(2x
√

1− x2)σx + (2x2 − 1)σz

]
(2b)

H0 =
1

2
e+

x

2

[√
1− x2σx + xσz

]
, (2c)

Hd = −x
2

√
1− x2σx +

1

2
(1− x2)σz, (2d)

|ψi〉 =

[
x√

1− x2

]
, |ψtarget〉 =

[
1
0

]
. (2e)

Note that the target state is allowed to have an arbitrary phase. For later discussions, we further define

HX = H0 −Hd = Hs,

HY = H0 +Hd = Hw,
(3)

i.e., HX corresponds to u = −1 whereas HY to u = +1. The initial state is chosen to be

|s〉 =

N∑
k=1

|k〉, (4)
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with N the dimension of search space (Hilbert space) spanned by {|k〉}. As Hamiltonians given in Eqs. (2) are just

2 × 2 matrices, the problem dimension N is encoded in the overlap x = 1/
√
N . Throughout this paper, x (different

from xxx) exclusively represents the overlap between the initial and the target state 〈s|w〉. The two-dimensional wave
function will be referred to as a “qubit” state.

B. Time-optimal control problem and Pontryagin’s Minimum Principle

The necessary conditions for a time-optimal solution derived from PMP are discussed in this subsection. We focus
on the control-affine control system, where the dynamics of its “state variables” xxx are described by

ẋxx = f(xxx) + u(t)g(xxx), xxx ∈ Rn, u ∈ R (5)

To differentiate from “quantum state”, xxx will be referred to as “dynamical variables”; f and g are smooth vector fields
which are functions of xxx. Control-affine system is directly related to the Schrödinger’s equation. In the language of
differential geometry, xxx defines a manifold; f and g belong to the tangent space of that manifold. We assume the
admissible range of u is bounded by |u| ≤ 1. Time-optimal control problem is defined as follows: given Eq. (5), find
the optimal control u(t) to minimize the cost function

J = λ0

∫ tf

0

dt+ C(xxx(tf )), (6)

where tf is the final time, λ0 is a positive constant, and C(xxx(tf )) is a terminal cost function depending only on the
values of the dynamical variables at tf . To make sense of a “time-optimal” solution, λ0 has to be positive. We only
consider the time-invariant problem where f , g, and C do not depend explicitly on time t.

Following PMP [35], a control-Hamiltonian is defined as

H̄c(t) = λ0 + 〈λλλ(t), f(xxx)〉+ u(t)〈λλλ(t),g(xxx)〉
≡ λ0 + 〈λλλ(t), f(xxx)〉+ u(t)Φ(t)

≡ λ0 +Hc(t).
(7)

λλλ is referred to as a set of “costate” variables (or the conjugate momentum), which has the same dimension of xxx. 〈·, ·〉
is the inner product introduced for two real-valued vectors. A switching function Φ(t) is defined as

Φ(t) = 〈λλλ(t),g(xxx)〉, (8)

which plays the most important role in determining the structure of optimal control.
Given an optimal solution (xxx∗,λλλ∗;u∗) to the time-optimal control problem, it has to satisfy the following necessary

conditions:

ẋxx∗(t) = + (∇λλλHc) , xxx∗(0) is given. (9a)

λ̇λλ
∗
(t) = − (∇xxxHc)T , λλλ∗(tf ) = ∇xxxC|xxx∗(tf ) (9b)

H̄c = λ0 +Hc = const. (9c)

u∗(t) =


+1 if Φ(t) < 0

−1 if Φ(t) > 0

undetermined if Φ(t) = 0

. (9d)

Let us elaborate on these necessary conditions. Eq. (9a) is identical to the dynamics defined in Eq. (5). Eq. (9b)
defines the dynamics of costate variables, whose boundary condition is fixed at the final time tf . Eq. (9c) holds for
the time-invariant problem. If the final time tf is not fixed (i.e., tf is allowed to vary to minimize C), then H̄c = 0.
Because λ0 is a positive constant, we conclude that Hc(t) has to be a negative constant for a time-optimal solution.
In the following analysis, we shall focus on Hc (instead of H̄c), and the condition (9c) is replaced by

Hc = const. ≤ 0. (10)

Eq. (9d) means that the optimal control takes the extreme values (±1 in this case) when the switching function is
nonzero. This structure is referred to as “bang-bang” protocol. If Φ(t) = 0 over a finite interval of time, then u is
undetermined from Eq. (9d) and more analysis is needed. When Φ = 0, the time-optimal control u∗ may not take its
extreme values and is referred to as a singular control. The behavior of Φ = 0 will be analyzed in Section IV B to
establish the structure of time-optimal solution.
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C. Application to the Schrödinger’s equation

In Grover’s problem, the dynamics of the wave function obey the Schrödinger’s equation

i
d

dt
|Ψ(t)〉 = [H0 + u(t)Hd] |Ψ(t)〉,

with |Ψ(t)〉 =

[
Ψ0

Ψ1

]
=

[
Ψ0,R + iΨ0,I

Ψ1,R + iΨ1,I

]
.

(11)

The initial and final states are given in Eq. (2e). To make the final state as close to [1, 0]T as possible, the terminal
cost function can be chosen as

C(Ψ(tf )) = −1

2
|Ψ0(tf )|2. (12)

As explicitly shown in Eq. (11), |Ψ〉 contains four real variables. As a result costate variables Π0,R, Π0,I , Π1,R, Π1,I

are needed. It is convenient to express the four costate variables as a two-dimensional complex vector

|Π(t)〉 =

[
Π0,R + iΠ0,I

Π1,R + iΠ1,I

]
. (13)

Using the property that H0 and Hd are real-valued, we can express the c-Hamiltonian and switching function as

HQ,c = Im〈Π(t)| [H0 + u(t)Hd] |Ψ(t)〉,
ΦQ(t) = Im〈Π(t)|Hd|Ψ(t)〉.

(14)

Applying Eq. (9b), one can derive that the dynamics of |Π(t)〉 are governed by the same Schrödinger’s equation, with
the boundary condition given at tf [39, 40]:

i
d

dt
|Π(t)〉 = [H0 + u(t)Hd] |Π(t)〉,

with |Π(tf )〉 = −
[
Ψ0(tf )

0

]
.

(15)

The condition (9d) still holds, with the switching function computed using Eq. (14). The subscript ‘Q’ in Eqs. (14)
indicates ‘quantum’ and will be dropped from now on.

Eqs. (11) and (12) allow us to do the bruteforce optimization to determine the optimal u(t). Eqs. (14) and (15)
allow us to check if a control u(t) satisfies the necessary conditions. One may expect that the optimal control is mostly
of bang-bang type, as Φ(t) = 0 can only occupy a negligible region in the manifold. In Section III we numerically
show that the optimal protocol actually has the bang-singular-bang structure.

III. OPTIMAL PROTOCOL

In this section we show that the time-optimal control has the bang-singular-bang structure. In particular, we
numerically check that a solution bearing this structure satisfies all necessary conditions imposed by PMP, and
explicitly show that the time-optimal solution does take a shorter time to reach the target state when compared to
other known protocols.

A. Two existing protocols

We begin the discussion by introducing two existing protocols which will be compared to the optimal protocol
described shortly. The first one is provided by Farhi and Gutmann [10]. By choosing u(t) = 0 in Eq. (1), the wave
function is

|Ψ(t)〉 = e−i
1
2 (Hs+Hw)t|s〉

= e−i
t
2

[
x cos xt2 − i sin xt

2√
1− x2 cos xt2

]
≡
[
Ψ0(t)
Ψ1(t)

]
.

(16)
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As |Ψ0(t)|2 = x2 cos2 xt2 +sin2 xt
2 , we find that for total computation time tf = π

x , |Ψ0(tf )|2 = 1. This protocol will be
referred as the “singular” control as u does not take either of its extreme values. The second protocol is the celebrated
Grover’s algorithm [5], where the initial state |s〉 is evolved by alternating Uw = 2|w〉〈w| − I and Us = I − 2|s〉〈s|
about N = π

4x times, i.e.,

|ψf 〉 = (UsUw)N |s〉. (17)

In terms of Eq. (1), Uw is achieved by e−iπHw and Us by e−iπHs up to an irrelevant sign. The total computation

time for Grover’s algorithm is therefore (π + π)N ∼ π2

2x . Grover’s algorithm and the singular protocol have the same

asymptotic x−1 behavior, but the latter has a smaller prefactor. The annealing algorithm proposed by Roland and
Cerf [13] is slower but more robust, as it applies the adiabatic theorem concerning the (instant) gap between the
ground and the first excited state, but does not explicitly use the structure that all non-target states are degenerate.
The annealing algorithm will not be discussed here. However, we note that the optimal u(t) obtained using PMP is
non-adiabatic, and the procedure does not know if there is a gap at any instant of time, which is essential for the
adiabatic quantum computing.

B. Optimal control and analytical analysis

  

(a) computation time (b) difference

Number of qubits Number of qubits

tim
e 

(π
)

tim
e 

(π
)

FIG. 1: (Color Online) (a) The total computation time for the optimal control, the singular control, and Grover’s algorithm

in logarithmic scale. For n number of qubits, the overlap x = 2−n/2. For the smaller system, the optimal control has a
noticeable speedup. When the system becomes large, these two methods are almost equivalent. Grover’s algorithm has the
same asymptotic behavior with a larger prefactor. (b) the difference of computation time between the optimal and the singular
control in linear scale. The optimal control takes less time; the difference approaches 0.436 π at large n.

We claim that the time-optimal control has the bang-singular-bang structure which will be proved using geometric
control in Section IV. In particular, the order is u = +1 (bang), u = 0 (singular), and u = −1 (bang). The time
periods for the initial and the final bang control are identical because the problem is unchanged if we swap the initial
and target states. Let us first investigate the consequences of applying this protocol.

Assume that the time intervals of two bang controls are both t1, and that of the singular control is t2. The wave
function at tf = 2t1 + t2 is given by

|Ψ(t1; t2)〉 = e−it1Hse−i
t2
2 (Hs+Hw)e−it1Hw |s〉 ≡

[
Ψ0(t1, t2)
Ψ1(t1, t2)

]
(18)

A straightforward calculation gives (neglecting the phase factor)

Ψ1(t1, t2) =
√

1− x2
[
cos

xt2
2

(1− 4x2 sin2 t1
2

)− 2x sin
xt2
2

sin t1

]
. (19)

Note that maximizing |Ψ0(t1, t2)|2 is equivalent to minimizing |Ψ1(t1, t2)|2. If the target state can be exactly reached,
Ψ1(t1, t2) = 0 which allows us to represent t2 as a function of t1:

tan
xt2
2

=
1− 4x2 sin2 t1

2

2x sin t1
=

1− 2x2 + 2x2 cos t1
2x sin t1

. (20)
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As a result the total computation time can be written as a function of t1:

tf (t1) = 2t1 + t2(t1). (21)

A time-optimal solution requires
dtf
dt1

= 2 + dt2
dt1

= 0, from which we get dt2
dt1

= −2. To get the optimal t1, we take d
dt1

on both sides of Eq. (20):

sec2(
xt2
2

) · x
2
· dt2

dt1
=

1

cos2(xt22 )
· x

2
· dt2

dt1

⇒
[
4x2(x2 − 1)

]
cos2(t1) +

[
−2(2x2 − 1)2

]
cos(t1) + (2x2 − 1)2 = 0

(22)

Eq. (22) gives the optimal t1. Solving Eq. (22) gives cos(t1) = −1+2x2

2x2 or −1+2x2

2(−1+x2) . We take the positive solution

which corresponds to a smaller t1. The time-optimal solution (t∗1, t
∗
2) is therefore

cos(t∗1) =
−1 + 2x2

2(−1 + x2)
, tan(

x t∗2
2

) =
1− 4x2 sin2 t

∗
1

2

2x sin t∗1
. (23)

Taking x = 1
2 , we have cos(t∗1) = 1

3 and thus t∗1 ≈ 0.392π; t∗2 ≈ 0.784π; t∗f = 2t∗1 + t∗2 ≈ 1.5673π. For x = 1√
32

,

t∗1 ≈ 0.339π and t∗f ≈ 5.221π. These values are consistent with our numerical simulations.

When x is small, we get cos t∗1 ≈ 1
2 −

x2

2 from which we identify t∗1 = π
3 + δ. Matching the lowest non-vanishing

order in x, we have

cos(t∗1) = cos(
π

3
+ δ) ≈ 1

2
− δ · sin π

3
=

1

2
− x2

2

⇒δ =
1√
3
, t∗1 =

π

3
+
x2√

3
.

(24)

To get the small-x expansion of t∗2, we use sin θ = 2 tan(θ/2)
1+tan2(θ/2) to write the second equation in Eq. (23) as

sin(xt∗2) = 2
(1− 4x2 sin2 t

∗
1

2 ) · (2x sin t∗1)

(1− 4x2 sin2 t∗1
2 )2 + (2x sin t∗1)2

≈ 4x sin t∗1 = 2x
√

3. (25)

We expand xt∗2 ≈ π + δ to get

sin(xt∗2) = sin(π + δ) ≈ −δ = 2x
√

3⇒ δ = −2x
√

3

⇒t∗2 =
π + δ

x
=
π

x
− 2
√

3.
(26)

The total time in the small x limit is

2t∗1 + t∗2 =
π

x
+

2π

3
− 2
√

3 ≈ π

x
− 0.436π. (27)

Note π/x is the total time needed in the singular protocol [10]. Fig. 1(a) shows the total computation time for optimal
bang-singular-bang control [by evaluating Eqs. (23)], the singular control and Grover’s algorithm. For n number of
qubits, the overlap x = 2−n/2. Their asymptotic behaviors are the same; the acceleration is only noticeable when
the system is small. The time difference between the singular and the optimal control, given in Fig. 1 (b), is indeed
consistent with Eq. (27).

C. Example of x = 1/2

More details for the x = 1/2 case are provided. In particular, we are interested in the behavior for a fixed total
time tf where the total cost function defined in Eq. (6) only has the terminal cost function. The case we will consider
is tf = 1.3π < t∗f (x = 1/2) ∼ 1.57π, i.e., it is a representative example where the computation time is too short to
reach the target state. The optimal bang-singular-bang protocol is

uopt(t; t1) =


1 for 0 < t < t1
0. for t1 < t < tf − t1
−1 for tf − t1 < t < tf

. (28)
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(a) multiple bang-bang (b) bang-singular-bang

FIG. 2: (Color Online) The multiple bang-bang control (a) and the optimal control (b) for x = 1
2

with the total computation
time tf = 1.3π, which is not long enough to reach the target state. In (a), the c-Hamiltonian (dashed curve) is not a constant
over the time interval, and the switching function (dotted curve) and the control (solid curve) have the same sign, violating
the necessary conditions derived from PMP. For the optimal bang-singular-bang control, all necessary conditions are satisfied.

For a given tf , control (28) only has one parameter t1 which will be determined by numerically minimizing the cost
function. We also consider the multiple bang-bang protocol

um(t; t1, N) =


1 for 0 < t < t1
−1/1 alternate N times for t1 < t < tf − t1
−1 for tf − t1 < t < tf

. (29)

Between t1 < t < tf−t1, the control u is alternating between -1 and 1 exactly N times, and each lasts (tf−2t1)/(2N).
For a given tf and N , t1 of control (29) will also be determined by numerically minimizing the cost function.

Fig. 2(a) shows the switching function Φ and the c-Hamiltonian Hc [defined in Eq. (14)] using the multiple bang-
bang control (29) with N = 2 (totally 5 switchings). The numerical optimization gives t1 = 0.4446π. We see that for
t between about 0.3π and 0.9π, the control u(t) and the switching function Φ(t) have the same sign which violates
the necessary condition (9d). Also, the c-Hamiltonian Hc is not a constant over [0, tf ] which violates the necessary
condition (10). Fig. 2(b) shows the switching function and the c-Hamiltonian using the optimal bang-singular-bang
control (28). The numerical optimization gives t1 = 0.3918π. We see that all necessary conditions are satisfied, i.e.,
the control u(t) and the switching function Φ(t) either have opposite signs or are both zero and the c-Hamiltonian
Hc is a constant over the entire [0, tf ].

D. Summary and discussion on problems of higher dimensions

In this section, we have combined the analytical analysis and numerical optimization to show that the control
of bang-singular-bang type satisfy all necessary conditions for a time-optimal solution. The numerical optimization
involves repeating the following three steps: (i) assuming a control u(t); (ii) evolving the wave function from |Ψ(t =
0)〉 = |s〉 to |Ψ(t = tf )〉 (by integrating a differential equation, a two-dimensional Schrödinger equation here); (iii)
evaluating the cost function. To check the necessary conditions, we need to (iv) compute the conjugate momentum
|Π(t)〉 backwards in time from tf . If u(t) contains many parameters, satisfying the necessary conditions during the
entire computation time is practically impossible. Knowing the structure of the control is of great numerical value –
it not only significantly decreases the optimization time by reducing the dimension of search domain but also finds
a better solution (i.e., smaller cost function). In Section IV we show that the structure of optimal control can be
determined even without integration for this problem.

For problems of higher dimensions, the structure of optimal control by itself can easily become prohibitively difficult
to determine. Although the analytical analysis may not be possible, PMP can still be a valuable numerical tool.
Specifically, by solving the Schrödinger equation two times for a given u(t) – one for the wave function |Ψ(t)〉 [step
(ii)] and one for the conjugate momentum |Π(t)〉 [step (iv)], we are able to compute the switching function that reflects
the gradient of the cost function with respect to the given u(t). This is known as the “adjoint state method” [35].
The gradient obtained using adjoint state method is exact (up to a numerical error), time efficient, and can be used
in an iterative optimization algorithm to update u(t).
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IV. GEOMETRIC CONTROL

The Schrödinger equation in Eq. (11) involves four (dependent) real variables, and directly applying PMP to a
dynamical system of four variables is not immediately informative. In this section, we reduce the number of variables
to two, and apply geometric control to derive the structure of the time-optimal solution. Grover’s algorithm will also
be analyzed within this framework.

A. Dimension reduction and Bloch sphere representation

In view of control theory, a two-dimensional wave function has four (real-valued) dynamical variables. However,
because the norm of the wave function is conserved and a global phase is not observable, only two dynamical variables
are relevant. These two variables can be parametrized using two angles (θ, φ) by expressing a general qubit state as

|Ψ(θ, φ, φ0)〉 = eiφ0

[
cos θ2

sin θ
2e
iφ

]
→ |Ψ(θ, φ)〉 =

[
cos θ2

sin θ
2e
iφ

]
(30)

with θ ∈ [0, π] and φ ∈ [0, 2π]. Neglecting the global phase φ0, a given qubit state corresponds to a point on a unit
sphere S2:

(sin θ cosφ, sin θ sinφ, cos θ)⇔ |Ψ(θ, φ)〉 =

[
cos θ2

sin θ
2e
iφ

]
(31)

This is the “Bloch sphere” representation. In this convention, the first component cos θ2 is always real and positive.
To investigate the dynamics in (θ, φ) manifold, we first need to translate the Hamiltonians in the Schrödinger

equation to the corresponding vector fields. Since any 2× 2 Hermitian matrix is a linear combination of three Pauli
matrices and the identity matrix, we need to determine the vector fields corresponding to these matrices:

σz → Vz = 2∂φ

σx → Vx = −2 sinφ∂θ − 2 cosφ cot θ ∂φ

σy → Vy = 2 cosφ∂θ − 2 sinφ cot θ ∂φ.

(32)

{∂θ, ∂φ} form a complete basis on the tangent space of (θ, φ) manifold. Note that the following commutation relations
hold:

[Vz, Vx] = −2Vy, [Vy, Vz] = −2Vx, [Vx, Vy] = −2Vz, (33)

and the identity matrix that generates a global phase to the qubit wave function in the Schrödinger equation has no
action on the dynamical variables (θ, φ). The details of Eqs. (32) are provided in the Appendix. Using Eqs. (32), the
vector fields in Eqs. (2) are

HY = Hw → Y =
1

2
Vz = ∂φ (34a)

HX = Hs → X = −2x
√

1− x2 sinφ∂θ +
[
(2x2 − 1)− 2x

√
1− x2 cosφ cot θ

]
∂φ (34b)

H0 =
1

2
(Hw +Hs)→ f = −x

√
1− x2 sinφ∂θ +

[
x2 − (x

√
1− x2) cosφ cot θ

]
∂φ (34c)

Hd =
1

2
(Hw −Hs)→ g = x

√
1− x2 sinφ∂θ +

[
(1− x2) + x

√
1− x2 cosφ cot θ

]
∂φ (34d)

The control problem formulated in the Schrödinger equation [Eq. (11)] can now be recast in (θ, φ):

d

dt

[
θ
φ

]
=

[
−x
√

1− x2 sinφ

x2 − x
√

1− x2 cosφ cot θ

]
+ u(t)

[
x
√

1− x2 sinφ

(1− x2) + x
√

1− x2 cosφ cot θ

]
≡ f(θ, φ) + u · g(θ, φ).

(35)

The initial and target values of dynamical variables are

(θi, φi) = (2 arctan

√
1− x2
x

, 0),

θf = 0,φf any value.

(36)
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Although Eq. (35) becomes highly non-linear [compared to Eq. (11)], it is an equation involving only two variables.
A two-dimensional control-affine problem allows us to essentially enumerate all possibilities and thus determine the
structure of optimal control.

B. General structure of time-optimal solution for two-dimensional systems

  

(a) Fast singular arc (b) Slow singular arc

X

Y X

Y

t
Y

X

tY
X

FIG. 3: (Color Online) The singular arc α = 0 divides the manifold into α > 0, Ω+ and α < 0, Ω− region. (a) The fast singular
arc where the singular arc represents the optimal-time trajectory. (b) The slow singular arc where the singular arc is not the
optimal-time trajectory. X and Y represent the u = −1 and u = +1 bang controls respectively. The insets show the behavior
of Φ(t) ∼ 0, based on which the allowed bang-bang controls in Ω+ (Y X) and Ω− (XY ) regions are indicated. The trajectory
can be kept around α = 0 by alternating the X and Y controls.

In this subsection, we describe the general structure of the time-optimal solution in two dimension given by
Sussmann[47–49]. Let us consider the question: if u(t) is an optimal solution, i.e., all conditions in (9) are satis-
fied but with a zero switching function at time t (i.e., Φ(xxx(t)) = 0), what are the possible values of the dynamical

variables at a later time t + dt? The answer relies on Φ̇(t). Assume that f and g are linearly independent, their
commutator can be expressed as a linear combination of f and g, i.e.,

[f ,g] = α(xxx)f + β(xxx)g, (37)

where α(xxx), β(xxx) are smooth functions of xxx. Time derivative of Φ(t), Φ̇(t), can be computed as

Φ̇ = 〈λλλ, [f ,g](xxx)〉
= α〈λλλ, f〉+ βΦ,

(38)

where Φ = 〈λλλ,g〉 is used. Because Φ(t) = 0 and condition (10) indicates 〈λλλ, f〉 = −|C|, we get

Φ̇ = −α · |C|. (39)

Using Eq. (9d), we conclude {
α > 0⇒ Φ̇ < 0 allow u = −1 to u = +1, XY control

α < 0⇒ Φ̇ > 0 allow u = +1 to u = −1, Y X control
(40)

Here u = −1 is denoted as X control; u = +1 as Y control. When α 6= 0, Φ(t) = 0 can only be an isolated point in
time and therefore the optimal control has to be of the bang-bang type. Eq. (40) is illustrated in Fig. 3.

The next step is to investigate if the admissible control can keep the dynamical variables along α = 0 that divides
the manifold into α > 0, Ω+ and α < 0, Ω− regions. If this happens, then α = 0 defines a singular arc along which
the optimal control can be singular (Φ(t) = 0 over a finite amount of time); otherwise, the optimal control is of the
bang-bang type. To answer this question, we consider α(xxx0) = 0 and compute the Lie derivative of α with respect to
the vector fields X and Y. Two scenarios arise:

• (i) If LXα(xxx0) and LYα(xxx0) have the same sign, then xxx0 will move out of α = 0 for all admissible controls, so
α = 0 is not a singular arc.
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• (ii) If LXα(xxx0) and LYα(xxx0) have opposite signs, then α = 0 represents a singular arc. In this scenario, one
can keep the dynamical variables around α = 0 by alternating the X and Y controls.

The scenario (ii) has two possible cases. Case (a): if LXα(xxx0) < 0, LYα(xxx0) > 0, the α = 0 is the time-optimal
trajectory; α = 0 is referred to as a “fast” singular arc [see Fig. 3(a)]. In this case, the optimal control is obtained by
dα = 0 = Lfα+ uLgα:

u =
LXα(xxx0) + LYα(xxx0)

LXα(xxx0)− LYα(xxx0)
(41)

Case (b): if LXα(xxx0) > 0, LYα(xxx0) < 0, the α = 0 is not the time-optimal trajectory; α = 0 is referred to as a “slow”
singular arc [see Fig. 3(b)].

The reasoning is provided. In case (a), X drives xxx0 to Ω− region. To go back to the singular arc, we need to apply
Y but the XY control violates the condition (40). Therefore, to move along the singular arc, PMP implies that the
singular control takes the minimum time. In case (b), X takes xxx0 to Ω+ region. In Ω+, XY control is allowed by
Eq. (40), which brings the trajectory back to the singular arc. Therefore, it is not obvious if the bang-bang control
or the singular control takes minimum time. It is shown that bang-bang control [37] is the optimal solution. It may
be a bit surprising that the optimal control can be determined without integrating the differential equation in time
(only spatial derivatives needed), and we pinpoint that the condition 〈λλλ, f〉 = −|C| leading to Eq. (39) is what makes
this possible.

C. The structure of optimal solutions to Grover’s problem

  
(a) (c) (b) 

(target) (target)

FIG. 4: (Color Online) Trajectories using the singular (dashed curves), the optimal (solid curves), and Grover’s protocol (dash-
dot) for (a) x = 1

2
and tf = 1.567π, (b) x = 1

2
and tf = 1.3π and (c) x = 1

4
√
2

and tf = 5.221π. The parameters of (a) and (c)

are computed from Eq. (23); those of (b) are given in Fig. 2(b). In (b), tf = 1.3π which is too short to reach the target state.
The singular arc (dotted curves) determined by Eq. (43) is also plotted. The optimal trajectory and the singular arc coincide
over a finite amount of time. The trajectory of Grover’s algorithm is zigzagging through the optimal trajectory.

The analysis provided in Section IV B is now applied to Eq. (35), where the two-dimensional dynamical variables
are xxx = (θ, φ). The commutator [f ,g] is:

[f ,g] =

[
−x
√

1− x2 cot θ
1

sinφ
− (1− x2)

cosφ

sinφ

]
f +

[
−x
√

1− x2 cot θ
1

sinφ
+ x2

cosφ

sinφ

]
g

≡ α(θ, φ)f + β(θ, φ)g.

(42)

The curve defined by α(θ, φ) = −
√

1− x2(x cot θ
sinφ +

√
1− x2 cosφ

sinφ ) = 0 is

− x√
1− x2

cot θ = cosφ. (43)
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This curve divides the region around α = 0 into α > 0 (Ω+) and α < 0 (Ω−) regions. To identify these regions, we
note that α(π2 ,

π
2 ) = 0, and α(π2 ,

π
2 + ε) > 0, α(π2 ,

π
2 − ε) < 0 (with ε a small positive number).

To see if α = 0 corresponds to a singular control, we compute the Lie derivative of α(θ, φ) with respect to Y and

X. Using ∂θα = x
√
1−x2

sinφ sin2 θ
and cot θ = −

√
1−x2

x cosφ (the condition of α = 0), we get

LYα = ∂φα = 1− x2 > 0,

LXα = −(1− x2) = −LYα < 0.
(44)

Substituting Eq. (44) into Eq. (41), we see that α = 0 corresponds to a singular control with u = 0. Fig. 4 gives

the trajectories using the singular, the optimal, and Grover’s protocol for x = 1/
√

4 and x = 1/
√

32. Note that in
Fig. 4(b) we purposely use tf = 1.3π which is too short to reach the target state [see Fig. 2(b)]. The singular arc
determined by Eq. (43) is also plotted. The optimal trajectory does coincide with the singular arc over a finite interval
of time.

D. Relation to the quantum state preparation

Although we only focus on Grover’s problem, the same technique is applicable to problems which can be reduced
to a single qubit and some qualitative behaviors may provide insights into problems of higher dimensions. In this
subsection we discuss two concrete examples related to the quantum state preparation.

For the Grover’s problem, the structure of singular arc and the position of the initial state (see Fig. 4) naturally
introduce two critical times T1 and T2(> T1). For the computation time tf < T1, the trajectory does not touch the
singular arc and the optimal control is of bang-bang type (Y -X). T2 is defined as the minimum time where the target
state can be reached. For T1 < tf < T2, the optimal control is of bang-singular-bang type (Y -0-X). For tf > T2,
there is no unique trajectory to reach the target state. If only the bang-bang control is allowed, there will be many
switchings along the singular arc. These behaviors are found in the quantum state preparation problem (for both
single-qubit and multi-qubit systems) studied in Refs. [44, 45]. The fact that a singular control can be approximated
by many bang-bang controls is reflected as the “glassy” phase (in time domain) in Refs. [44, 45].

For the second example, we consider the time-optimal control that steers a two-qubit product state to the fully
entangled state, which is formulated and solved in Ref. [39]. The dimension of the two-qubit Hilbert space is four.
Using the symmetry of the Hamiltonian, the four-dimensional Hilbert space can be divided into two invariant subspaces
and each subspace is effectively a single qubit. The formalism provided in Section II and IV.A can then be applied
to one of the subspace. Without providing details, our analysis does show that the singular-bang control is the time-
optimal solution as found in Ref. [39]. One benefit of geometric control is that we are able to compute the value of
the singular control [using Eq. (41)] without performing time integration.

E. Analysis of Grover’s algorithm in the reduced dimension

We conclude this section by analyzing Grover’s algorithm in the (θ, φ) manifold, where the problem is to steer the

dynamical variables from (θi, φi) = (2 arctan
√
1−x2

x , 0) to θf = 0. We first note that by substituting tan θi =
√
1−x2

x
and φi = 0 into Eq. (34a), one gets X(θi, φi) = 0. This indicates that the X (u = −1) control cannot change the
initial dynamical variables (θi, φi) and the bang control has to start with Y (u = +1). Next, we notice that only
one of the bang controls, the X control, can change the value of θ. To drive θ from θi to 0 with a minimum number
of bang-to-bang switchings, we need to maximize the reduction of θ during the X control. To obtain the maximum
θ-reduction, we consider the dynamics with the X control given in Eq. (34a):

dθ

dt
= −2x

√
1− x2 sinφ, (45a)

dφ

dt
= (2x2 − 1)− 2x

√
1− x2 cosφ cot θ. (45b)
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For small x, x cot θ ≤ 1/N holds for θ ∈ [Nx, π − Nx] (one can pick N = 10), indicating dφ
dt ≈ −1 [Eq. (45b)] over

this range. Integrating Eq. (45a) from φi to φf with dφ
dt ≈ −1, we get the change of θ as

∆θ = −2x
√

1− x2
∫ φf

φi

sinφ
dt

dφ
dφ

≈ 2x
√

1− x2 [cosφi − cosφf ]

≥ 2x
√

1− x2 [−2] ≡ −|∆θ|max

(46)

The maximum θ-reduction |∆θ|max = 4x
√

1− x2 can only be obtained when φi = π and φf = 0. To achieve |∆θ|max

from φi = 0, one first (a) applies Y (Y = ∂φ) control for time π that takes φ from 0 to π, and then (b) applies X
(X ≈ −2x sinφ∂θ − ∂φ for small x) control for time π that takes φ from π back to 0; it is (b) that reduces the θ by
|∆θ|max. (a) and (b) will be repeated N times to bring θ = θi to θ = 0. For small x, θi ≈ π and N is estimated as

θi
|∆θ|max

≈ π

4x
. (47)

This procedure is identical to Grover’s algorithm described in Section III A. We conclude that in terms of optimal
control, Grover’s algorithm uses the bang-bang protocol with a minimum number of switchings to approximate the
optimal bang-singular-bang control. To visualize this point, in Fig. 4(c) we show that the trajectory of Grover’s algo-
rithm is zigzagging through the optimal trajectory. Cutting the number of switchings reduces the query complexity,
which is how the quantum speedup is defined in quantum computation using a discrete sequence of gates.

V. CONCLUSION

Grover’s quantum search problem is one of the most well known and important problems in quantum computation.
In this paper, we formulate this problem as a time-optimal control problem, and apply Pontryagin’s Minimum Principle
to solve it. Designing a quantum algorithm is equivalent to solving a time-optimal control problem where the dynamical
variables are the components of the wave function, the dynamics are the specified by the Schrödinger’s equation, and
the target state is the ground state of the given “problem Hamiltonian”. Although the dimension of the Hilbert space
of Grover’s problem can be arbitrarily large, it can be reduced to a two-dimensional Schrödinger equation. We show
that the optimal control for Grover’s problem has the bang-singular-bang structure and explicitly demonstrate that
the optimal protocol does take shorter time to reach the target state when comparing to other known protocols. This
bang-singular-bang can be derived without integrating the differential equations by using geometric control technique.
The key step is to derive the dynamical equations involving only two real-valued dynamical variables. Within this
manifold, applying geometric control provides the optimal protocol at each point. The formalism provided in this
paper can be beneficial to any quantum systems which can be effectively described by a single qubit. We are aware that
the generalization to systems of higher dimensions may not be as informative as the analysis relies on enumerating all
possibilities, but can be worth investigating. The key insight brought by time-optimal control theory is that in addition
to the bang-bang protocol the singular control should be considered. However, PMP provides an efficient and exact
formalism to compute the gradient of the cost function at a given control, which can be useful in numerical optimization
for problems of higher dimensions. In view of optimal control, Grover’s algorithm uses bang-bang protocol, with a
minimum number of bang-to-bang switchings to reduce the query complexity, to approximate the optimal protocol.
Our work provides a concrete example how optimal control is connected to the quantum computation, and may shed
some light on how a quantum algorithm can be designed.
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Appendix A: Operator as a vector field in (θ, φ)

In this appendix, Eq. (32) that relates the vector fields defined on the tangent space of (θ, φ) to the Pauli matrices
are derived. Applying H = σz on a state |Ψ(θ, φ)〉 over a time interval dt, we get

e−iσz·dt
[

cos θ2
sin θ

2e
iφ

]
=

[
cos θ2e

−i dt

sin θ
2e
i(φ+dt)

]
→
[

cos θ2
sin θ

2e
i(φ+2dt)

]
. (A1)

After forcing the first component to be real and positive, e−iσz·dt only changes the φ component. We therefore
conclude σz → 2∂φ.

Applying H = σx on a state |Ψ(θ(0), φ(0))〉 over a time interval dt, we get

e−iσx·dt

[
cos θ(0)2

sin θ(0)
2 eiφ(0)

]
=

[
1 −idt
−i dt 1

][
cos θ(0)2

sin θ(0)
2 eiφ(0)

]

=

[
cos θ(0)2 + dt sin θ(0)

2 sinφ(0)− i dt sin θ(0)
2 cosφ(0)

sin θ(0)
2 eiφ(0) − i dt cos θ(0)2

]
→

[
cos θ(dt)2

sin θ(dt)
2 eiφ(dt)

]
.

(A2)

Applying σx changes both θ and φ components. We note that A + i dt = A(1 + i(dt/A)) ∼ Aeidt/A, so to the first
order a small imaginary part does not change the amplitude. For the first component, we see that

cos
θ(dt)

2
= cos

θ(0)

2
+ dt sin

θ(0)

2
sinφ(0)

⇒dθ

dt
= −2 sinφ.

(A3)

The amplitude change of the first component determines the coefficient of ∂θ. The first component also introduces a

phase term 1− idt tan θ(0)
2 cosφ(0) which has to be compensated. Therefore, the second component gives

sin
θ(dt)

2
eiφ(dt) =

[
sin

θ(0)

2
eiφ(0) − i dt cos

θ(0)

2

] [
1 + i dt tan

θ(0)

2
cosφ(0)

]
⇒ sin

θ(dt)

2
eiφ(dt) − sin

θ(0)

2
eiφ(0) = i dt

[
sin

θ(0)

2
tan

θ(0)

2
cosφ(0)eiφ(0) − cos

θ(0)

2

]
⇒1

2
cos

θ

2

dθ

dt
+ sin

θ

2
i
dφ

dt
= i

[
sin

θ

2
tan

θ

2
cosφ− cos

θ

2
e−iφ

]
.

(A4)

Using dθ
dt = −2 sinφ and e−iφ = cosφ− i sinφ, we get

− cos
θ

2
sinφ+ i sin

θ

2

dφ

dt
= i

[
sin

θ

2
tan

θ

2
cosφ− cos

θ

2
(cosφ− i sinφ)

]
⇒dφ

dt
= cosφ

[
tan

θ

2
− cot

θ

2

]
= −2 cosφ cot θ.

(A5)

Combining Eq. (A3) and (A5), we get

σy → −2 sinφ∂θ − 2 cosφ cot θ∂φ. (A6)

The vector field corresponding to σy can be derived similarly. A straightforward calculation gives

nxσx + nzσz → nxVx + nzVz = −2nx sinφ∂θ + 2 [nz − nx cosφ cot θ] ∂φ, (A7)

which is useful to map Hamiltonians appeared in Grover’s problem to their corresponding vector fields.
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