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Robust Nonlinear State Estimation for Thermal-Fluid Models Using
Reduced-Order Models: The Case of the Boussinesq Equations

Mouhacine Benosman, Jeff Borggaard

Abstract— We present a method for designing robust, proper
orthogonal decomposition (POD)-based, low-order observers
for a class of spectral infinite-dimensional nonlinear systems.
Robustness to bounded model uncertainties is incorporated
using the Lyapunov reconstruction approach from robust con-
trol theory. Furthermore, the proposed methodology includes
a data-driven learning algorithm that auto-tunes the observer
gains to optimize the performance of the state estimation. A
challenging numerical example using the 2D Boussinesq equa-
tions demonstrates the effectiveness of the proposed observer.

I. INTRODUCTION

One of the important problems in heating, ventilation,
and air conditioning (HVAC) management is to estimate the
entire spatial profile of the airflow and temperature under a
limited number of sensors, placed at some optimal locations
in a room. However due to the complexity of the partial
differential equations (PDEs) that model indoor airflow and
temperature, this estimation problem is challenging. Two
well known PDE models of such systems are the Navier
Stokes (NS) equations for airflow, and the Boussinesq equa-
tions for the coupled airflow and temperature model. Several
observers have been proposed for the NS equation, e.g., [8],
[12], [21]. For the Boussinesq equation far fewer estimation
results are available due to the challenging coupling nonlin-
earity between the NS equation and the thermal equation.
Furthermore, this estimation problem is rendered even more
complex when one considers model uncertainties, which
are ubiquitous in real-life applications. Indeed, there are
many works that utilize adaptive control to design observers
for uncertain PDE systems, where both system states and
parametric uncertainties are estimated, see e.g., [19] and
references therein. However, due to the complexity of simul-
taneously estimating both the states and model parameters,
the results are often limited to linear or semi-linear PDEs
with linear parametric uncertainty.

Fewer works consider robust control to design observers
for PDEs in the presence of parametric model uncertainties
and/or measurement noise. However, in the recent work
[18], one-dimensional, semi-linear PDEs are considered and
the assumption of a sector nonlinearity allows the use of
dissipativity to design observers that are robust to spill-
over effects. In [5], the authors consider the case of a
PDE with a quadratic nonlinearity where the states and
measurements are subject to time-varying disturbances. A
MinMax approach was used to design a stabilizing robust
observer/controller, based on the tangent linearization of the
PDE along a steady state solution. Then model reduction
was carried out following two approaches. In one approach,

an H2-model reduction was used for the linearized system.
In the second, a proper orthogonal decomposition (POD)
model reduction method for nonlinear systems was used
to reduce the extended Kalman filter as in [1]. In [14],
the authors propose an interval state estimator for a class
of uncertain parabolic PDE systems, under homogeneous
Dirichlet boundary conditions, based on a finite-element
approximation of a PDE. In [17], a robust observer based
on a super twisting algorithm, which ensures finite-time
convergence, is introduced for a class of hyperbolic PDEs
with bounded additive perturbations. In [7], the authors study
the problem of stabilization and observer design for the
heat equation under uncertain boundary conditions. They
propose a two-stage unknown input observer to estimate the
uncertainty term and then observe the system states.

In this paper, we propose a methodology to design a
robust observer for a class of spectral infinite-dimensional
nonlinear systems that use a low-dimensional subspace, such
as POD in the observer design. The observer is based on
Lyapunov reconstruction theory to ‘dominate’ the influence
of parametric uncertainties. Furthermore, we extend this
methodology so that it will auto-tune the observer gains
online, using data-driven optimization methods.

In the sequel, we begin by introducing some basic defi-
nitions and notation in Section II. Section III is dedicated
to introducing the class of nonlinear PDEs studied here, and
presents the nominal observer design for a special class of
nonlinearities. We use Section IV to introduce the first result
of the paper, which is the robustification of the observer
under bounded model uncertainties. The second result of
the paper is presented in Section V, where we introduce
the iterative feedback tuning (IFT) version of the robust
observer. Section VI is used to present the third result which
is the application of the proposed robust observer and its IFT
extension to the 2D Boussinesq equations. We conclude the
paper commenting on potential future developments of this
work in Section VII.

II. BASIC NOTATION AND DEFINITIONS

For a vector q ∈ Rn, its transpose is denoted by qT , for
a matrix C ∈ Rn×m, the transpose is denoted by C∗. The
Euclidean vector norm for q ∈ Rn is denoted by ‖ · ‖ so
that ‖q‖Rn = ‖q‖ =

√
qT q. The Kronecker delta function

is defined as: δij = 0, for i 6= j and δii = 1. We shall
abbreviate the time derivative by ḟ(t, x) = ∂

∂tf(t, x), and
consider the following Hilbert space H = L2(Ω). We define
the inner product 〈·, ·〉H and the associated norm ‖ · ‖H on
H as 〈f, g〉H =

∫
Ω
f(x)g(x)dx, for f, g ∈ H, and ‖f‖2H =



∫
Ω
|f(x)|2dx. A function z(t, x) is in L2([0, tf ];H) if for

each 0 ≤ t ≤ tf , z(t, ·) ∈ H, and
∫ tf

0
‖z(t, ·)‖2Hdt < ∞.

We will use the standard notation from distributed parameter
control theory and drop the “·” when it is understood,
e.g., z(t) = z(t, ·) ∈ H. A pseudo-inverse of an operator
T on H will be denoted as T †, and its adjoint operator
on H is denoted by T ∗. In the sequel when we discuss
the boundedness of a solution for an impulsive dynamical
system, we mean uniform boundedness as defined in [9]
(p. 67, Definition 2.12). Finally, an impulsive dynamical
system is said to be well-posed, if it has well-defined distinct
resetting times, admits a unique solution over a finite forward
time interval, and does not exhibit any Zeno solutions, i.e.,
does not have an infinite number of resettings in the system
over any finite time interval [9].

III. PROBLEM STATEMENT AND OBSERVER DESIGN

We consider the state estimation problem for nonlinear
systems of the form

ż(t) = Az(t) +Bu(t) + h(z(t), u(t)), z(0) = z0,
y(t) = Cz(t),

(1)

where z0 ∈ D(A) ⊂ H, A is a linear operator that generates
a C0-semigroup on the Hilbert space H, B : Rm → H is
an input operator, C : D(A) → Rp is the bounded linear
operator for measurements, and h contains higher-order
terms. For the well posedness of the estimation problem, we
assume that system (1) satisfies the following assumption.

Assumption 1: The Cauchy problem for equation (1) has
a solution with bounded norm ‖.‖H for any initial condition
z0 ∈ D(A).
Furthermore, for analysis purposes we assume that h satisfies
the Lipschitz assumption:

Assumption 2: The function h : D(A) × Rm → [D(A)]
′

satisfies h(0, 0) = 0 and the local Lipschitz assumption: for
every pair (z, u) ∈ D(A)×Rm, there exist positive constants
εz , εu, Lz , and Lu such that

‖h(z, u)− h(z̃, ũ)‖H ≤ Lz‖z − z̃‖H + Lu‖u− ũ‖Rm ,

for all (z̃, ũ) ∈ D(A)× Rm satisfying

‖z − z̃‖H < εz and ‖u− ũ‖Rm < εu.
We define a low-dimensional subspace Ĥ ⊂ H that inherits
the norm of H, i.e., ‖·‖Ĥ = ‖·‖H, and follow the framework
in e.g. [2] in designing the nominal observer, while changing
the roles for some operators. Consider an observer with the
following structure

˙̂z = Acẑ(t) +Bcu(t) + Fy(t) +G(ẑ(t), u(t)), (2)

with ẑ(0) = ẑ0 ∈ D(Ac), and where Ac : Ĥ → Ĥ,
Bc : Rm → Ĥ, F : Rp → Ĥ, and G : Ĥ × Rm → Ĥ
are to be determined. Possible choices for Ĥ may be the
space spanned by a set of dominant eigenfunctions of A
(modal approximation) or a set of basis functions obtained
by performing a proper orthogonal decomposition (POD)
of a collection of simulations of (1) and truncating (POD
approximation).

Let T : H → Ĥ be the orthogonal projector from H to Ĥ
(hence, ‖T ‖H = 1) and T † be the injection from Ĥ into H:
T †ẑ = ẑ for all ẑ ∈ Ĥ ⊂ H. Then we define the reduced
estimation error as

e(t) = ẑ(t)− T z(t) ∈ Ĥ. (3)

This can be used as a proxy for the state estimation error,
ese ≡ T †ẑ − z ∈ H, when T produces a small projection
error (z−T †T z), since ese(t) = T †e(t)−

(
z(t)− T †T z(t)

)
.

When Ĥ is the span of r dominant POD basis functions and
TPOD is the corresponding projection for a specific trajectory
z, then TPOD minimizes the projection error

P(T , z) =

(∫ tf

0

‖z(t)− T †T z(t)‖2H dt

)1/2

, (4)

over all projections T into subspaces of H with dimension r,
and where tf denotes the finite time support over which the
projection error is evaluated, cf. [11]. Although we are free
to choose Bc and G in the observer (2), to guarantee con-
vergence we shall make the following natural assumptions
for the remainder of this paper

Bc = T B and G(ẑ, u) = T h(T †ẑ, u) (5)

for all ẑ ∈ Ĥ and u ∈ Rm.
We can now state our first result.
Theorem 1: Consider the system described by (1) under

Assumptions 1, 2, for which we associate the state observer
defined by (2) and (5). We assume that F , Ac, and T satisfy
the conditions

[AcT − T A+ FC] z = 0, for all z ∈ D(A), (D0)

‖eAct‖Ĥ ≤Me−δt, for all t > 0 (D1)

and,
δ > MLz, (D2)

where M ≥ 1 and δ > 0. Then we can guarantee the
exponential stability of the estimation error, e(t) in (3).
Namely, there exists a constant c, depending on δ, M , the
initial error ‖e(0)‖Ĥ, and the P(T , z) in (4) such that

‖e(t)‖Ĥ ≤ ce
(MLz−δ)t‖e(0)‖Ĥ, (6)

where,

c = M

{
‖e(0)‖Ĥ + Lz

(
e2δtf − 1

2δ

) 1
2

P(T , z)

}
. (7)

Proof 1: Refer to [4].

A. Observer Design Based on the Proper Orthogonal De-
composition

We first compute the proper orthogonal decomposition
(POD) from solutions to (1) then use this as a basis for Ĥ.
Since POD and Galerkin projection is a well-known model
reduction method for nonlinear problems, we will keep this
discussion brief and refer the interested reader to [11], [16].

Given a trajectory (or snapshots) of (1)

S = {z(t, ·) ∈ H | t ∈ [0, tf ]}. (8)



The spatial autocorrelation function K is defined as
K(x, x̄) = 1

tf

∫ tf
0
z(t, x)z∗(t, x̄) dt, and is well defined

since z(t, x) is in L2([0, tf ];H). The function K is used as
the kernel of the Fredholm problem

∫
Ω
K(x, x̄)φ(x̄) dx̄ =

λφ(x). Using Fredholm theory, there exist solution pairs
{(λi, φi)}∞i=1, where the POD eigenvalues {λi}∞i=1 satisfy
λ1 ≥ λ2 ≥ · · · ≥ 0 with the only accumulation point at
0, and the POD basis functions {φi}∞i=1 are orthonormal
functions, 〈φi, φj〉H = δij . We now consider the reduced
basis of the first r terms based on a desired projection error
(4): Ĥr = span{φ1(·), φ2(·), · · · , φr(·)}, and approximate
solutions to (1) in Ĥr using

zpodr (t, ·) =

r∑
i=1

qi(t)φi(·) ∈ Ĥr, (9)

where qi, i = 1, ..., r are the POD projection coefficients.
We then define the (orthogonal) projection operator

TPOD : H → Ĥr as follows

[TPODz] (·) =

r∑
i=1

φi(·)〈φi, z〉H. (10)

The pseudo-inverse of T is the injection of Ĥr into H. Thus
T †z = z for all z ∈ Ĥr and since T is a projection operator,
we have T T † = Ir.

Next, we define Ac : Ĥr → Ĥr as

Ac = T †∗AT †. (11)

With this selection, we can show that for any ẑ ∈ Ĥr with
‖ẑ‖Ĥ = 1, the following holds: 〈Acẑ, ẑ〉 = 〈AT †ẑ, T †ẑ〉 ≤
max‖z‖H=1〈Az, z〉.

Finally, to satisfy condition (D0), we define F as

F = (T A−AcT )C†, (12)

where C† is a left pseudo-inverse of the bounded linear
operator C.

IV. MAIN RESULT 1: ROBUSTIFICATION OF THE
OBSERVER

In this section we will use some tools from robust control
theory, i.e., Lyapunov redesign techniques, e.g., [13], to
robustify the nominal observer developed in the previous
section.

Let us consider the case where the system (1) contains an
uncertainty on h, as follows

ż(t) = Az(t) +Bu(t) + h(z(t), u(t)) + ∆h(z(t)), (13)
y(t) = Cz(t), (14)

from z(0) = z0, where the uncertainty ∆h : H → H,
satisfies the following assumption.

Assumption 3: The uncertainty ∆h : H → H, is uni-
formly bounded: there exists a constant ∆hmax > 0 such
that ‖∆h(z)‖H ≤ ∆hmax, ∀z ∈ H.
Now, if we examine the dynamics of the observer (2), we
see that the observer convergence relies on the design of the
nonlinear function G, in (5). To robustify the nominal design,

presented in Section III, and account for the additional
uncertainty term ∆h, we use a Lyapunov redesign approach
and add an additional term to G.

The robust observer is now written as

˙̂z(t) = Acẑ(t) +Bcu(t) +Fy(t) +G(ẑ, u) + ∆G(ẑ), (15)

with Ac, Bc, F, G satisfying conditions (5), (D0), (D1),
(D2), and where ∆G : Ĥ → Ĥ, must be designed to
compensate for any negative impact that the uncertainty ∆h
might have on the exponential stability of e obtained in (6).

Carrying out a similar analysis for the robust observer (15),
under (5), and (D0), the associated error dynamics satisfy

ė(t) =Ace(t) +G (e(t) + T z(t), u(t))

− T h(z(t), u(t)) + ∆G(ẑ)− T ∆h(z). (16)

In the sequel of this section, we will try to recover at
least the convergence of e to a positively invariant set with
a radius that we can control, regardless of the form of the
bounded uncertainty ∆h.

We summarize the result of this section in the following
theorem.

Theorem 2: Consider the error dynamics (16) for the
observer (15) and (5), tracking the uncertain system (13).
Let h and ∆h satisfy Assumptions 2 and 3, respectively.
Define the compensation term ∆G as

∆G(ẑ) = k∆hmaxC̃
∗C̃e, (17)

for k < 0, and any C̃ satisfying

C̃T = C. (18)

Then under conditions (D0), (D1), and (D2), the solution of
the error dynamics equation (16) converges to the invariant
set

S = {e ∈ Ĥ, satisfying, k‖e‖Ĥλmin(C̃∗C̃) + 1 ≥ 0}.
Proof 2: Refer to [4].

The robustification presented above guarantees asymptotic
convergence of the observer. However, this robustness might
lead to poor performance in practice. Thus, one is also
interested in improving the transient performance of the
observer. For this reason, we want to improve the robust
observer presented in this section by complementing it with
an active learning step. This step learns the best observer
feedback gain k (in an optimal sense that we define later).

V. MAIN RESULT 2: LEARNING-BASED TUNING OF THE
OBSERVER GAIN

In this section we want to merge together the robust
observer given by (15), and (17), with an active learning
algorithm, to improve the performance of the observer. In-
deed, if we examine the results of Theorem 2, we see that the
estimation error upper-bound (invariant set radius), decreases
with the decrease of the negative feedback gain k. However,
if we are concerned with more than asymptotic convergence
to an invariant set, we need to tune the feedback gain k to
achieve other performances. For instance, if one is interested
in optimizing the transient behavior of the observer, the gain



k needs to be tuned to optimize a transient estimation cost
performance.

To find this optimal value of the observer gain, we propose
to use a data-driven optimization algorithm to auto-tune the
gain online, while the observer is estimating the system
states. This problem is strongly related to iterative feedback
tuning (IFT), e.g.,[10], [3], [15]. We will follow [15], [3], and
use an extremum seeking (ES)-based auto tuning approach.

We first write the feedback gain as

k = knominal + δk, knominal < 0, (19)

where knominal represents the nominal value of the observer
gain, and δk is the necessary adjustment of the gain to
improve the transient performance of the observer.

We then define the learning cost function

Q(δk) =
∫ T

0
||ey||2Ĥdt,

ey(δk) = ŷ(t; δk)− y(t),
ŷ = Cẑ,

(20)

where T > 0, ẑ is solution of the observer (15), (17), and y
is the measured output. Furthermore, for analysis purposes,
we will need the following assumptions on Q.

Assumption 4: The cost function Q(δk) in (20) has a local
minimum at δk = δk∗.

We propose to use the following time-varying amplitude-
based ES algorithm, introduced in [20], to tune δk

ẋk = −δkωk sin(ωkt)Q(δk),

δk(t) = xk(t) + ak sin(ωkt), (21)
ȧk = −δkωkεkak,

where δk > 0, ωk > 0, εk > 0.
We can summarize the gain auto-tuning algorithm in the

following Theorem.
Theorem 3: Consider the observer (5), (15), and (17),

where the gain k is tuned iteratively, with each iteration being
of finite time T , such that the state is reset over the tuning
iteration j = 1, 2, ..., as ẑ(jT ) = ẑ0, j = {1, 2, ...}, and the
gain–over iterations–is defined as

k(t) = knominal + ∆k(t), knominal > 0
∆k(t) = δk((j − 1)T ), (j − 1)T ≤ t < jT, j = 1, 2, 3...

(22)
where δk is defined by the forward first order Euler dis-
cretization of (20), (21), with a time step equal to T . Then,
the impulsive dynamic (15), (17), (20), (21), and (22), is well
posed, the state vector ẑ is uniformly bounded, and under
Assumption 4, the gain k converges to a neighborhood of its
local optimum value knom + δk∗.

Proof 3: Refer to [4].

VI. MAIN RESULT 3: APPLICATION TO ESTIMATION OF
FLOW PROBLEMS–THE 2D BOUSSINESQ EQUATION

We consider estimating solutions to the challenging 2D
Boussinesq equation. We focus on the dynamics of the
velocity field v(x, t) : Ω × R+ → R3 and the temperature
profile T (x, t) : Ω × R+ → R, where x denotes the
spatial coordinate x ∈ Ω, and t ≥ 0 denotes the time.

The spatial domain Ω considered here is a two dimensional
space. The governing equations are described by Navier-
Stokes equation with the condition of incompressible flow
and the conservation of the energy through the heat transfer,
which leads to the following coupled system

ρ

(
∂v

∂t
+ v · ∇v

)
=−∇p+∇ · τ(v) + ρg, (23)

∇ · v =0, (24)

ρcp

(
∂T

∂t
+ v · ∇T

)
=∇ (κ∇T ) (25)

where ρ is the density profile, p is the pressure field, τ(v)
is the viscous stress, cp is the constant heat capacity, κ
is the constant thermal conductivity, and g = −ge3 is
the gravitational force. In Boussinesq approximation, the
buoyancy force is driven by changes in density ρ = ρ0 +∆ρ
from the nominal density ρ0, and the density change is
modeled as perturbations from the nominal temperature T0

using the perfect gas law ∆ρg = −ρ0β(T−T0)g, β = 1/T0,
and the constant term ρ0g is absorbed into the pressure. The
viscous stress is governed by τ(v) = ρν(∇v +∇vT ) with
kinematic viscosity ν. By introducing a characteristic length
L, characteristic velocity v0, wall temperature Tw, we define
the following normalized states

x̃ =
x

L
, t̃ =

tv0

L
, ṽ =

v

v0
, p̃ =

p

ρv2
0

, T̃ =
T − T0

Tw − T0

(26)

Using these variables, PDEs (23)–(25) can be reduced to the
following (we dropped the tilde notation)

∂v

∂t
+ v · ∇v =−∇p+∇ · τ(v) +

Gr

Re2Te3, (27)

∇ · v =0, (28)
∂T

∂t
+ v · ∇T =∇

(
1

RePr
∇T
)

(29)

where we defined Reynolds number Re= v0L
ν , Grashof

number Gr= gβ(Tw−T0)L3

ν2 , and Prandtl number Pr= ν
k/ρ0cp

.
1 These equations are of the form (1), where z = (v, T )T , the
A operator is defined by Az = (∇ · τ(v),∇

(
1

RePr∇T
)
)T ,

h(z, u) = (−v · ∇v + Gr
Re2

Te3,−v · ∇T )T , and B = 0.
We selected the case with the Reynolds number Re = 8800,
which corresponds to a challenging near-turbulent flow. A
finite element discretization of Az, and h is obtained using
n = 1579779 elements. We consider p = 20 measurements
of the form

y(t) =

(∫
Ω1

z(t, x)dx, ...,

∫
Ωp

z(t, x)dx

)T
=: Cz(t)

(30)

1 We are well aware that Assumption 1 does not hold in the case of the
Boussinesq equations, however, we wanted to report here, and discuss with
our colleagues at the conference, the encouraging results obtained applying
this algorithm to a challenging thermal-fluid model. Academic examples
that satisfy the local Lipschitz assumption will be presented in the journal
version of this work.
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Fig. 1. Evolution of the Euclidian norm of the error between the all the
estimated projected states and the true projected states.

Next, the nominal observer (2) is designed using a projec-
tion with 10 POD basis functions for the velocity and 10
basis functions for the temperature. Then, Ac is obtained
by projecting A onto this POD basis, which also define
the projection operator T . To check if Ac is stable, we
computed the eigenvalues of Ac which are found to be all
real and negative (bounded above by −8.31e − 4).Then, F
is obtained by solving equation (D0). Note that due to the
high dimension of the discretized state z, the matrix C is in
R20×1579779, which makes solving for F challenging, i.e.,
the pseudo-inverse in (12) induces some numerical errors
that the robust observer will have to compensate for. Next,
we implement the robust observer (15), (17), with ∆hmax =
1, k = −103, and C̃ = CT †. To test the convergence of the
estimator, we start the estimator with large initial conditions
errors, s.t., ev(0) = 2 + vtrue(0), eT (0) = 4Ttrue(0),
where ev(0), eT (0) denote the initial error on the velocity,
and temperature, respectively. vtrue(0), Ttrue(0) denote the
actual velocity and temperature, respectively. Twenty sensors
that record the average temperature and sum of the velocity
component averages were taken at ten unique locations for
each quantity and selected using the Q-DEIM algorithm [6].
In particular, this algorithm was used to find point locations
that best distinguish the ten temperature POD modes and ten
velocity POD modes. The size of the integration intervals
Ωi, i = 1, ..., p was selected as 0.03 × 0.03. Finally, To
make the tests more realistic, we also added a random
additive measurement noise of maximum amplitude 10−3,
corresponding to 38% of the maximum output measurement
signal amplitude. The Euclidian norm of the error vector
between all the projection states is reported in Figure 1. We
can see from this plot that the estimated states converge
to the true states, despite a large initial estimation error,
see the rapid decay of the error vector norm in Figure 1.
Some residual errors remain though, due to the measurement
noise and to the numerical errors occurring when inverting
the large matrices obtained from discretizing the challenging
Boussinesq equations. Next, to have a better visualization of
the estimation performance, we show in Figure 2, a snapshot
at t = 1 [sec] of the error between the velocity field estimate,
and the true velocity. Similar snapshots are reported in Figure
3, for the temperature. It is clear from these snapshots that

Fig. 2. Error between the estimated and the true velocity snapshot at
t = 1 [sec].

Fig. 3. Error between the estimated and the true temperature snapshot at
t = 1 [sec].

the initial estimates of velocity and temperature are not very
precise, which is due to the introduced large initial estimation
errors we imposed. To depict the estimator convergence
performance, we then report in Figures 4, and 5, the velocity
and temperature estimation error snapshots at t = 4 [sec]. We
can see a clear estimation amelioration on both velocity and
temperature fields.

To end this section, we report some numerical results
on the observer’s feedback gain auto-tuning. In the results
reported above, we have chosen k = −103, which satis-
fies the basic constraint k < 0, as stated in Theorem 2.
However, as discussed in Section V, this gain could be fine-
tuned to improve the estimation performance, depending on
the choice of a performance cost function. To test if we
could indeed find a better gain, which implies a decrease
in the learning cost (20), we implemented the auto-tuning
algorithm (20, (21), with T = 7 [sec], δk = 0.02, ω =

Fig. 4. Error between the estimated and the true velocity snapshot at
t = 4 [sec].



Fig. 5. Error between the estimated and the true temperature snapshot at
t = 4 [sec].

0 100 200 300 400 500 600 700 800 900 1000
Learning Iterations

-2400

-2200

-2000

-1800

-1600

-1400

-1200

-1000

-800

-600

-400

G
ai

n
k

Fig. 6. Learning cost vs. number of learning iterations.

0 100 200 300 400 500 600 700 800 900 1000
Learning Iterations

30

31

32

33

34

35

36

37

Le
ar

ni
ng

 C
os

t

Fig. 7. Gains vs. number of learning iterations.

100 [rad/sec], εk = 10−3, and ak(0) = 100. The auto-
tuning results are reported in Figures 6, 7. We can see from
these figures that the learning cost in minimized, and that
after 1000 iterations, we can stop the learning and select any
gain from the interval [−2200,−1800], which will imply a
better estimation performance than the initial gain. We recall
that if we keep the learning going beyond 1000 iterations,
the learning amplitude ak will eventually vanish, due to
its exponential decrease as in (21), which will refine the
selection to a tighter interval of gains. However, here we
stoped the learning process at 1000 iterations, since we
can already see the convergence trend of the learning cost
function.

VII. CONCLUSIONS

The problem of robust observer design for nonlinear infi-
nite dimension systems is challenging. The results proposed
in this paper are: 1) a robust reduced order observer for

nonlinear PDEs with bounded model uncertainties; 2) an
IFT approach for online tuning of the observer gain; 3) an
application to a challenging thermal-fluid model, namely the
2D Boussinesq equations.

Further studies will concern the case of 3D Boussinesq
equations.
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