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Abstract
In this paper we propose a new family of continuous-time optimization algorithms based on
discontinuous second order gradient optimization flows, with finite-time convergence guar-
antees to local optima, for locally strongly convex time-varying cost functions. To analyze
our flows, we first extend a well-know Lyapunov inequality condition for finite-time stability,
to the case of time-varying differential inclusions. We then prove the convergence of these
secondorder flows in finite-time. We show the performance of these flows on a time-varying
quadratic cost and on the nonlinear time-varying Rosenbrock function.
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Abstract: In this paper we propose a new family of continuous-time optimization algorithms
based on discontinuous second order gradient optimization flows, with finite-time convergence
guarantees to local optima, for locally strongly convex time-varying cost functions. To analyze
our flows, we first extend a well-know Lyapunov inequality condition for finite-time stability, to
the case of time-varying differential inclusions. We then prove the convergence of these second-
order flows in finite-time. We show the performance of these flows on a time-varying quadratic
cost and on the nonlinear time-varying Rosenbrock function.

1. INTRODUCTION

An important class of continuous optimization algorithms
are the so-called extremum seeking (ES) controllers, which
deal with static cost functions, as well as dynamic cost
functions, modeled as the output of a dynamical system.
Most importantly, ES algorithms are often based only on
the cost function measurements, i.e., zero-order optimiza-
tion methods, whereas the higher order derivatives of the
cost function, e.g., gradient and Hessian, are estimated
from the cost function measurements using feedback fil-
ters, e.g., Poveda & Teel [2017], Guay& Zhang [2003],
Krstić [2000], Ariyur & Krstić [2003], Scheinker & Krstić
[2016], Zhang & Ordónez [2012], Grushkovskaya et al.
[2018]. Since we are not considering zero-order methods
in this work, we will not discuss specifically ES results,
and will focus on the more general class of continuous-
optimization algorithms, including higher order methods.

For instance, in Su et al. [2016], the authors derive a
second-order ODE as the limit of Nesterov’s accelerated
gradient method, when the gradient step sizes go to
zero. This ODE is then used to attempt to analyze
Nesterov’s scheme, particularly in an larger effort to better
understand acceleration without substantially increasing
computational burden. Thanks to the ODE continuous-
time approximation of the algorithm, the authors also
obtain a family of schemes with similar convergence rates
as Nestrov’s algorithm.

In Franka et al. [2018], The differential equations that
model the continuous-time limit of the sequence of iterates
generated by the alternating direction method of multi-
pliers (ADMM), are derived. Then, the authors employ
Lyapunov theory to analyze the stability of critical points
of the dynamical systems and to obtain associated conver-
gence rates.

In Franca et al. [2019a], non-smooth and linearly con-
strained optimization problems are analyzed by deriv-
ing equivalent (at the limit) non-smooth dynamical sys-

tems related to variants of the relaxed and accelerated
ADMM. In particular, two new ADMM-like algorithms
are proposed, one based on Nesterov’s acceleration and
the other inspired by Polyak’s heavy ball method, and
derive differential inclusions modeling these algorithms in
the continuous-time limit. Using a non-smooth Lyapunov
analysis, results on rate-of-convergence are obtained for
these dynamical systems in the convex and strongly convex
setting.

In Cortes [2006], two normalized first-order gradient flows
are proposed. Their convergence is rigorously analyzed
using tools from non-smooth dynamics theory, and con-
ditions guaranteeing finite-time convergence are derived.
Finally, the proposed non-smooth flows are applied to
problems in multi-agent systems and it is shown they
achieve consensus in a finite-time. The finite convergence
time’s upper bound is given as function of the gradient
value at the initial point as well as the minimum eigenvalue
of Hessian at the initial point.

More recently, in Poveda & Li [2019], the authors establish
uniform asymptotic stability and robustness properties
for the continuous-time limit of the Nestrov’s accelerated
gradient method, and in Yuan et al. [2019] the authors pro-
pose a powerball method to accelerate the convergence of
some first order and second order optimization algorithms
for static cost functions.

In Romero & Benosman [2019], the authors introduce
two discontinuous dynamical systems in continuous time
with guaranteed prescribed finite-time local convergence
to strict local minima of a given static cost function. In
this work, we extend these results to the case of time-
varying costs, and propose a new family of discontinuous
second-order flows, which guarantee local convergence to
an optimum, in a desired pre-defined finite-time, for time-
varying cost functions. We use some ideas from Lyapunov-
based finite-time state control to an invariant set, proposed
by one of the current authors in an early paper Benosman
& Lum [2009], in the context of aerospace applications,



to design a new family of discontinuous flows, which
ensure a desired finite-time convergence to the invariant
set containing a unique local optima. Furthermore, due to
the discontinuous nature of the proposed flows, we propose
to extend one of the existing Lyapunov-based inequality
condition for finite-time convergence of continuous-time
dynamical systems, to the case of time-varying differential
inclusions.

This paper is organized as follows: Section 2 is dedicated
to some preliminaries about continuous-time optimization,
and finite-time stability in the context of time-varying
differential inclusions. Our main results are presented in
Section 3, where we first establish an extension to time-
varying differential inclusions of a well-know Lyapunov-
based inequality condition for finite-time stability. We then
propose and analyze our second-order discontinuous flows,
including a flow for time-varying cost functions. In Section
4, we show the efficiency of this continuous-time optimiza-
tion flow on a well established optimization benchmarks.
The paper ends with a summarizing conclusion and a
discussion of our ongoing investigations, in Section 5.

2. PRELIMINARIES

2.1 Filippov Differential Inclusion for Time-Variant Systems

Similarly to the time-invariant case, a solution to an initial
value problem

ẋ(t) = F (t, x(t)) (1a)

x(0) = x0 (1b)
with F : R+×Rn → Rn is typically guaranteed to exist and
be unique by ensuring that F (·, x) is continuous near x =
x? and F (t, ·) is Lipschitz continuous near t = 0. When
F (t, ·) is not Lipschitz continuous (e.g. due to singularities
or discontinuities), we understand solutions to (1a) in the
sense of Filippov. More precisely, x : [0, τ) → Rn with
0 < τ ≤ ∞ is a Filippov solution to (1) if it is absolutely
continuous, x(0) = x0, and

ẋ(t) ∈ K[F ](t, x(t)) (2)
holds almost everywhere (a.e.) within every compact
subinterval of [0, τ), where K[F ] denotes the Filippov
set-valued map Paden & Sastry [1987], Cortes [2008] given
by

K[F ](t, x) ,
⋂
δ>0

⋂
µ(S)=0

coF (t, Bδ(x) \ S), (3)

where µ denotes the Lebesgue measure and co the convex
closure. Furthermore, x(·) : [0, τ) → Rn is a maximal
Filippov solution if it cannot be extended, i.e. if no
Filippov solution exists over an interval [0, τ ′) with τ ′ > τ .
Assumption 1. F is Lebesgue measurable and locally es-
sentially bounded, i.e. given any (t, x), F is bounded a.e.
on every bounded neighborhood of (t, x).

Under Assumption 1, at least one Filippov solution to (1)
must exist Paden & Sastry [1987], Cortes [2008]. Further-
more, the Filippov set-valued map (3) can be computed
as

K[F ](t, x) = co

{
lim
k→∞

F (t, xk) : NF ∪ S 63 xk → x

}
(4)

for some set NF ⊂ Rn of measure zero and any other set
S ⊂ Rn of measure zero. In particular, if F (t, ·) is contin-
uous at a fixed point x, then K[F ](t, x) = {F (t, x)}. For in-
stance, for the gradient flow, we haveK[−∇f ](t, x) = {−∇f(x)}
for every x ∈ Rn, provided that f is continuously differ-
entiable. Furthermore, if f is only Lipschitz continuous,
then K[−∇f ](t, x) = −∂f(x), where ∂f denotes Clarke’s
generalized gradient Clarke [2001].

2.2 Finite-Time Stability for Time-Variant Differential
Inclusions

Consider a general time-varying differential inclusion Bac-
ciotti & Ceragioli [1999]

ẋ(t) ∈ K(t, x(t)) (5a)

x(0) = x0 (5b)

where K : R+ × Rn ⇒ Rn is an arbitrary set-valued map.

Assumption 2. K : R+ × Rn ⇒ Rn is an upper semi-
continuous set-valued map, with nonempty, compact, and
convex values.

For instance, in Filippov & Arscott [1988] the authors
proved that, under Assumption 1, K = K[F ] satisfies
Assumption 2.

We say that x : [0, τ) → Rn with 0 < τ ≤ ∞
is a Carathéodory solution to (5) if x(·) is absolutely
continuous on any closed subinterval of [0, τ), (5a) is
satisfied a.e. within every compact subinterval of [0, τ),
and x(0) = x0.

Proposition 1. Under Assumption 2, at least one
Carathéodory solution to (5) must exist. In particular,
under Assumption 1, at least one Filippov solution to (1)
must exist.

We say that x : [0, τ)→ Rn is a maximal Carathéodory
solution of (5) if it cannot be extended, i.e. if no solution
exists over an interval [0, τ ′) with τ ′ > τ . In particular,
(maximal) Filippov solutions to (1) are nothing but (max-
imal) Carathéodory solutions to the Filippov differential
inclusion (2) with initial condition x(0) = x0.

Furthermore, we say that x? ∈ Rn is an equilibrium of (5)
if x(t) ≡ x? over (0,∞) is a Carathéodory solution to (5).
In other words, if 0 ∈ K(t, x?) holds a.e. in t ≥ 0. We
say that (5) is (strongly) Lyapunov stable at x? ∈ Rn
if, for every ε > 0, there exists δ > 0 such that, for
every Carathéodory solution x(·) of (5), we have ‖x0 −
x?‖ < δ =⇒ ‖x(t) − x?‖ < ε for every t ≥ 0 in the
interval where x(·) is defined. Furthermore, we say that (5)
is (locally and strongly) asymptotically stable at x? ∈ Rn
if it is Lyapunov stable at x? and there exists some δ > 0
such that every maximal Carathéodory solution x(·) to (5)
is defined over [0,∞) and, if ‖x0−x?‖ < δ then x(t)→ x?

as t→∞. Finally, we say that (5) is (locally and strongly)
finite-time stable at x? ∈ Rn if it is asymptotically stable
at x? and there exist some δ > 0 and positive definite
function (w.r.t. x?) T : Bδ(x

?)→ R+ (called the settling
time) such that, for every Carathéodory solution x(·) of (5)
with x0 ∈ Bδ(x?) \ {x?}, we have x(t) ∈ Bδ(x?) \ {x?} for
every t ∈ [0, T (x0)) and x(t)→ x? as t→ T (x0).

3. MAIN RESULTS

To establish finite-time stability, first we will propose an
extension to the case of time-variant differential inclusions
of a well-know Lyapunov-based result for the case of
systems of the form (1), with Lipschitz continuous flow
F (.), e.g., see (Lemma 1 in Benosman & Lum [2009]).
Next, we will use these results to analyze the stability of
our discontinuous gradient-like flows for continuous-time
optimization.

Theorem 1. Let x? ∈ Rn be an equilibrium point of (5)
and let V : R+ × D → R be a continuously differentiable
and positive definite function w.r.t. x?, whereD ⊂ Rn is an
open and positively invariant neighborhood of x?. Suppose
that K(t, x) = K[F (t, ·)](x) is nonempty for every x ∈ D.
Let



V̇ (t, x)
def
=

{
∂V

∂t
(t, x) +∇V (t, x) · v : v ∈ K(t, x)

}
(6)

for t ≥ 0 and x ∈ D, where ∇V (t, x) denotes the gradient
of V (t, x) w.r.t x. If there exist constants c > 0 and
α ∈ (0, 1) such that

sup V̇ (t, x) ≤ −c[V (t, x)]α (7)

a.e. in t ≥ 0 and x ∈ D, then x(t) → x? in finite-time for
every solution x(·) of (5) with x0 ∈ D, and the settling
time t? is upper bounded by

t? ≤ V (0, x0)1−α

c(1− α)
. (8)

Furthermore, if V̇ (t, x) contains a single point a.e. in x ∈ D
and (7) is exact, then so is (8).

Proof 1. Lyapunov stability follows from [Filippov & Ar-
scott, 1988, 3§15 – Theorem 1] for time-varying differ-
ential inclusions, which also tells us. that the origin is
an equilibrium. Now, given an arbitrary Carathéodory
solution x(·) of (5), note that E(t) , V (t, x(t)) is abso-
lutely continuous (Appendix, Lemma 2) due to V being
continuously differentiable. Therefore, since d

dtV (t, x(t)) =

Ė(t) ∈ V̇ (t, x(t)) [Bacciotti & Ceragioli, 1999, Lemma 1],
we note from (7) that

d

dt
V (t, x(t)) ≤ −cV (t, x(t))α, (9)

a.e. in t ≥ 0. The rest of the proof follows by integrating
and setting x(T (x0)) = 0.

Next, we propose to use the result of Theorem 11, to
design a discontinuous flow with finite-time convergence
guarantees.

Let us first introduce the following assumptions.

Assumption 3. Let f : R+×Rn → R be twice continuously
differentiable in both variables, let xopt : R+ → D s.t., for
each t, xopt(t) be a strict local minimizer (respectively,
maximizer) and isolated stationary point of f(t, ·), where
D ⊂ Rn is an open set s.t. xopt(t) ∈ D, ∀t ≥ 0. Then,
we assume that ∇2f(t, x) < 0 (respectively > 0),∀x ∈
D, ∀t ≥ 0.

Assumption 4. Let f : R+×Rn → R be twice continuously
differentiable, in both variables, let xopt : R+ → D s.t.,
for each t, xopt(t) be a strict local optima and isolated
stationary point of f(t, ·), where D ⊂ Rn is an open set
s.t. xopt(t) ∈ D, ∀t ≥ 0. Then, we assume the existence of
a continuous function l : R+ × Rn → R, such that

‖ ∂
∂t

[∇f(t, x)]‖ ≤ l(t, x),∀t ≥ 0,∀x ∈ D. (10)

We can now present the main result of this paper.

Proposition 2. Let f : R+×Rn → R be twice continuously
differentiable, in both variables, let xopt : R+ → D s.t., for
each t, xopt(t) be a strict local minimizer (respectively,
maximizer) and isolated stationary point of f(t, ·), where
D ⊂ Rn is an open set s.t. xopt(t) ∈ D, ∀t ≥ 0. Consider
the flow given by

ẋ = −1

2

[∇2f(t, x)]r∇f(t, x)

∇f(t, x)T [∇2f(t, x)]r+1∇f(t, x)

(
2l(t, x)‖∇f(t, x)‖

+c‖∇f(t, x)‖2α
)
,

(11)
with c > 0, α ∈ [0.5, 1), r ∈ R, and where l : R+×Rn → R
satisfies Assumption 4. Then, under Assumption 3, any

Filippov solution x(·) of (11), with x(0) = x0 sufficiently
close to xopt(t) for a given t ≥ 0, will converge in finite-

time to xopt(.) with a settling time t? ≤ ‖∇f(0,x0)‖2(1−α)

c(1−α) .

Proof 2. Let us define the tracking error as e = x −
xopt(t), we then consider the Lyapunov function V (t, e) =
‖∇f(t, e + xopt(t))‖2, and write its derivative as follows,
for e ∈ {x− xopt : x ∈ D} \ {0}:

sup V̇ (t, e) =
∂

∂t
[∇f(t, e+ xopt(t))T∇f(t, e+ xopt(t))]

∂

∂e
[∇f(t, e+ xopt(t))T∇f(t, e+ xopt(t))]ė,

=
∂

∂t
[∇f(t, e+ xopt(t))T∇f(t, e+ xopt(t))]

+2∇f(t, x)T [∇2f(t, x)](ẋ− ẋ∗(t)),
=

∂

∂t
[∇f(t, x)T∇f(t, x)] +

∂

∂x
[∇f(t, x)T∇f(t, x)]ẋ∗(t)

+2∇f(t, x)T [∇2f(t, x)](ẋ− ẋ∗(t))
=

∂

∂t
[∇f(t, x)T∇f(t, x)] + 2∇f(t, x)T [∇2f(t, x)]ẋ,

(12)
next, by using (11), we can write

sup V̇ (t, e) =
∂

∂t
[∇f(t, x)T∇f(t, x)]− 2l(t, x)‖∇f(t, x)‖

−c‖∇f(t, x)‖2α
≤ −c‖∇f(t, e+ xopt(t)‖2α = −cV (t, e)α,

(13)
which, by Theorem 1, leads to the desired finite-time
convergence result.

Remark 1. (Robustness). It is clear from equation (13)
that if instead of using an upper-bound l(t, x) of the norm
of ∂

∂t [∇f(t, x)] in the flow (11), one uses the exact term

− ∂
∂t [∇f(t, x)T∇f(t, x)] , we can obtain an exact value

of the finite-time convergence, i.e., t∗ = ‖∇f(0,x0)‖2(1−α)

c(1−α) .

However, this will not be very practical, since it is difficult
to be able to obtain the term ∂

∂t [∇f(t, x)T∇f(t, x)] in
closed-form is any meaningful application, and its numer-
ical approximation will induce numerical errors, implying
a lack of robustness of this solution, since it is based on
an exact cancellation of this time-varying term.

4. NUMERICAL EXAMPLES

First, we consider the quadratic time-varying cost function

f(t, x) = (x− (8 + 4sin(t)))2. (14)
We apply the flow given by (11), with different upper-
bound functions l. We chose the constants to be r =
−1, α = 0.5, c = ‖∇f(0, x(0))‖, and the initial condition
x(0) = 4. We report below the numerical results for each
upper-bound function l. In the first case, we assume exact
knowledge of the cost function and compute the upper-
bound in (10) in closed-form as l(t, x) = 32(12 + ‖x‖).
The corresponding results are reported in Figure 1. It is
clear that the flow manages to minimize the time-varying
cost function in finite-time. To appreciate this result, we
also report in Figure 2 the results when we force l to zero.
One can see that the flow without the upper-bound term
l does not converge, which underlines the necessity of this
term in ensuring convergence, as see in the analysis of the
results of Proposition 2.

In the previous result we used an exact upper-bound l de-
rived from closed-from manipulation of the cost function.
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Fig. 1. Time-varying cost function: Flow (11) with l(t, x) =
32(12 + ‖x‖).
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Fig. 2. Time-varying cost function: Flow (11) with l(t, x) =
0.

However, this is not always possible in real applications,
and thus we show next that any loose upper-bound suffice
to ensure the finite-time stability result. Indeed, we first
report in Figure 5 the results obtained with the positive
definite function l(t, x) = 50+t2. Then we report in Figure
6 the results corresponding to the case l(t, x) = 100, which
is the simplest upper-bound one can choose. In both cases
the flow achieves the expected finite-time convergence.
This shows that the proposed flow (11) is not very sensitive
to the choice of the function l, as long as it is a valid upper-
bound, as defined in (10).

Finally, we test the performance of our flow on the more
challenging time-varying Rosenbrock cost function
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Fig. 3. Time-varying cost function: Flow (11) with l(t, x) =
50 + t2.
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Fig. 4. Time-varying cost function: Flow (11) with l(t, x) =
100.

f(t, x1, x2) = (a(t)− x1)2 + b(t)(x2 − x21)2,
a(t) = 2 + sin(t),
b(t) = 50(1 + sin(t)),

(15)

We apply the flow given by (11), with different upper-
bound functions l. We chose the constants to be r =
−1, α = 2/3, c = 100, and the initial condition x(0) =
(4, 15)′. we first report in Figure 5 the results obtained
with the positive definite function l(t, x) = 500 + t2. Then
we report in Figure 6 the results corresponding to the case
l(t, x) = 500, which is the simplest upper-bound one can
choose. In both cases the flow achieves the expected finite-
time convergence. This shows that the proposed flow (11)
is robust to the choice of the function l, as long as it is a
valid upper-bound, as defined in (10).
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Fig. 5. Time-varying cost function: Flow (11) with l(t, x) =
500 + t2.

5. CONCLUSION

We have introduced a new family of second-order flows for
continuous-time optimization of time-varying cost func-
tions. The main characteristic of the proposed flows is
their pre-defined finite-time convergence guarantees. To be
able to analyze these discontinuous flows, we had to first
extend an exiting Lyapunov-based inequality condition for
finite-time stability in the case of smooth dynamics to
the case of non-smooth dynamics modeled by time-varying
differential inclusions. These flows were tested on two well
known optimization benchmarks.

Future investigation will include working on developing
constructive discretization methods, which preserve the
main guarantees of the proposed flows.

APPENDIX

Recall that a function x : I → Rn defined over an interval
I ⊂ R is absolutely continuous if, for every ε > 0, there
exists some δ > 0 such that

k∑
j=1

(t′j − tj) < δ =⇒
k∑
j=1

‖x(t′j)− x(tj)‖ < ε (16)

for any disjoint subintervals [t1, t
′
1], . . . , [tk, t

′
k] ⊆ I.
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Fig. 6. Time-varying cost function: Flow (11) with l(t, x) =
500.

Lemma 1. If x : I → Rn is absolutely continuous, then so
is t 7→ (t, x(t)).

Proof 3. We start by fixing an arbitrarily small ε > 0.
Since x(·) is absolutely continuous, we can choose some
δ > 0 such that (16) holds. Furthermore, we can clearly
always make δ smaller, and thus assume 0 < δ ≤ ε. Let
ε′ = ε − δ. Once again invoking the absolute continuity
of x(·), we can choose some δ′ > 0 such that (16) holds
for δ′ and ε′ instead of δ and ε. Furthermore, we can
choose δ′ in the interval (0, δ]. Therefore, we have, for
any disjoint subintervals [t1, t

′
1], . . . , [tk, t

′
k] ⊂ I such that∑k

j=1(t′j − tj) < δ,

k∑
j=1

‖(t′j ,x(t′j))− (tj , x(tj))‖ (17a)

=

k∑
j=1

‖(t′j − tj , x(t′j)− x(tj))‖ (17b)

≤
k∑
j=1

[(t′j − tj) + ‖x(t′j)− x(tj)‖] (17c)

< δ′ + ε′ (17d)

≤ ε. (17e)



Therefore, t 7→ (t, x(t)) is absolutely continuous in I.

As a direct corollary, we have the following result.

Lemma 2. If x : [0, τ ] → Rn is absolutely continuous and
V : [0, τ ] × D → Rn is Lipschitz continuous (in both
variables), where D ⊂ Rn is an open set that contains
the trajectory x(·), then t 7→ V (t, x(t)) is absolutely
continuous.

Proof 4. By Lemma 1, we know that t 7→ (t, x(t)) is
absolutely continuous in [0, τ ]. Therefore, given that V (·)
is Lipschitz continuous, it follows that its composition with
t 7→ (t, x(t)) is absolutely continuous in [0, τ ].
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