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Abstract
3D skeleton-based action recognition and motion prediction are two essential problems of hu-
man activity understanding. In many previous works: 1) they studied two tasks separately,
neglecting internal correlations; 2) they did not capture sufficient relations inside the body.
To address these issues, we propose a symbiotic model to handle two tasks jointly; and we
propose two scales of graphs to explicitly capture relations among body-joints and body-
parts. Together, we propose symbiotic graph neural networks, which contain a backbone, an
action-recognition head, and a motion-prediction head. Two heads are trained jointly and
enhance each other. For the backbone, we propose multi-branch multiscale graph convolution
networks to extract spatial and temporal features. The multiscale graph convolution networks
are based on joint-scale and part-scale graphs. The joint-scale graphs contain actional graphs,
capturing action-based relations, and structural graphs, capturing physical constraints. The
part-scale graphs integrate body-joints to form specific parts, representing high-level rela-
tions. Moreover, dual bone-based graphs and networks are proposed to learn complementary
features. We conduct extensive experiments for skeleton-based action recognition and mo-
tion prediction with four datasets, NTU-RGB+D, Kinetics, Human3.6M, and CMU Mocap.
Experiments show that our symbiotic graph neural networks achieve better performances on
both tasks compared to the state-of-the-art methods.
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Abstract—3D skeleton-based action recognition and motion prediction are two essential problems of human activity understanding. In
many previous works: 1) they studied two tasks separately, neglecting internal correlations; 2) they did not capture sufficient relations
inside the body. To address these issues, we propose a symbiotic model to handle two tasks jointly; and we propose two scales of
graphs to explicitly capture relations among body-joints and body-parts. Together, we propose symbiotic graph neural networks, which
contain a backbone, an action-recognition head, and a motion-prediction head. Two heads are trained jointly and enhance each other.
For the backbone, we propose multi-branch multiscale graph convolution networks to extract spatial and temporal features. The
multiscale graph convolution networks are based on joint-scale and part-scale graphs. The joint-scale graphs contain actional graphs,
capturing action-based relations, and structural graphs, capturing physical constraints. The part-scale graphs integrate body-joints to
form specific parts, representing high-level relations. Moreover, dual bone-based graphs and networks are proposed to learn
complementary features. We conduct extensive experiments for skeleton-based action recognition and motion prediction with four
datasets, NTU-RGB+D, Kinetics, Human3.6M, and CMU Mocap. Experiments show that our symbiotic graph neural networks achieve
better performances on both tasks compared to the state-of-the-art methods.

Index Terms—3D skeleton-based action recognition, motion prediction, multiscale graph convolution networks, graph inference.
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1 INTRODUCTION

HUMAN action recognition and motion prediction are
crucial problems in computer vision, being widely

applicable to surveillance [2], pedestrian tracking [3], and
human-machine interaction [4]. Respectively, action recog-
nition aims to classify the categories of query actions ac-
curately [5]; and motion prediction forecasts the future
movements based on observations [6].

The data of actions can be represented in various for-
mats, including RGB videos [7] and 3D skeleton data [8].
Notably, skeleton data, locating 3D body-joints, is shown
to be effective in action representation, efficient in compu-
tation, as well as robust against environmental noise [9].
In this work, we focus on action recognition and motion
prediction based on the 3D skeleton data.

In most studies, 3D skeleton-based action recognition
and motion prediction are treated separately due to the
discriminative and generative properties of the two tasks.
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For action recognition, methods employed full action se-
quences for pattern learning [10], [11], [12]; however, with
the long-term inputs, these methods failed in some real-time
applications due to the hysteretic discrimination, while the
model should respond as early as possible. As for motion
prediction, previous works [13], [14], [15], [16] learned shal-
low dynamics, but often ignored semantics. Actually, there
are mutual promotions between action recognition and mo-
tion prediction, which were rarely explored. For example,
the classifier provides the action categories as the auxiliary
information to guide prediction, as well as the predictor pre-
serves more detailed information for accurate recognition
via self-supervision. Considering the mutual promotions,
we aim to develop a symbiotic method to enable action
recognition and motion prediction simultaneously.

For both 3D skeleton-based action recognition and mo-
tion prediction, previous studies have been conducted. Con-
cretely, some traditional attempts built hand-crafted models
for feature learning [10], [13], [17], [18], [19]. Recently, some
deep models based on either convolutional neural networks
(CNN) or recurrent neural networks (RNN) learned high-
level features from the vectorized poses [11], [14], [15], [16],
[20], [21], [22], [23], [24], [25], [26]; however, these methods
rarely investigated the joint relations, missing crucial dy-
namics. To capture richer features, several works exploited
joint relations from various aspects. [12] proposed skeleton-
graphs with nodes as joints and edges as bones. [10],
[14], [27], [28], [29], [30] built the relations between coarser
body-parts. These works essentially aggregated informa-
tion based on body structures, while the neglected some
implicit relations over action-related joints, such as hands
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Fig. 1. Symbiotic Graph Neural Networks (Sybio-GNN) contains a prime joint-based network and a dual bone-based network to learn both joint-
based and bone-based action features. Each network has three main modules: a backbone, an action-recognition head, and a motion-prediction
head. The backbone is multi-branch multiscale graph convolution networks. The action-recognition head and the motion-prediction head predict the
action category and future poses. The predicted category further assists in motion prediction.

and feet moving collaboratively during walking. Moreover,
some methods of motion prediction fed ground-truth action
categories to enhance performance in both training and
testing phases, but labels are hard to obtain in the real-
world scenarios. To solve those issues, we construct graphs
to model both local and long-range body relations and use
graph convolutions to capture informative features.

In this paper, we propose a novel model called symbi-
otic graph neural network (Sybio-GNN), which handles 3D
skeleton-based action recognition and motion prediction
simultaneously and uses graph-based operations to extract
features; see Fig. 1. Sybio-GNN consists of a joint-based net-
work and a bone-based network, which focuses on learning
features from body-joints and body-bones to obtain comple-
mentary patterns. Each network is constructed with a back-
bone, called multi-branch multiscale graph convolutional net-
work (multi-branch multiscale GCN), an action-recognition
head and a motion-prediction head, where two heads work
on various tasks. Note that there are task promotions, i.e. the
action-recognition head determines action categories, which
is used to enhance prediction; the motion-prediction head
predicts poses and improves recognition by promoting self-
supervision and preserving detailed features.

As basic operators of the backbone, we propose the joint-
scale graph convolution (JGC) and part-scale graph convolution
(PGC) to extract multiscale spatial information. JGC is based
on two types of graphs: actional graphs and structural
graphs. The actional graphs are learned from data by an
actional graph inference module (AGIM), capturing action-
based relations; the structural graphs are built by extending
the skeleton graphs, capturing physical constraints. PGC
is based on a part-scale graph, whose nodes are integrated
body-parts and edges are based on body-part connections.
We also propose a difference operator to extract multiple
orders of motion differences, reflecting positions, velocities,
and accelerations of body-joints.

To validate the Sybio-GNN, we conduct extensive ex-
periments on four large-scale datasets: NTU-RGB+D [31],
Kinetics [12], Human3.6M [32], and CMU Mocap1. The
results show that 1) Sybio-GNN outperforms the state-
of-the-art methods in both action recognition and motion

1 http://mocap.cs.cmu.edu/

prediction; 2) Using the symbiotic model to train the two
tasks simultaneously produces better performance than us-
ing individual models; and 3) the multiscale graphs model
complicated relations between body-joints and body-parts,
and the proposed JGC extract informative spatial features.

Overall, the main contributions in this paper are sum-
marized as follows:

• Multitasking framework. We propose novel sym-
biotic graph neural networks (Sybio-GNN) to achieve
3D skeleton-based action recognition and motion
prediction in a multitasking framework. Sybio-GNN
contains a backbone, an action-recognition head, and
a motion-prediction head. We exploit the mutual pro-
motion between two heads, leading to improvements
in both tasks; see Section 5;

• Basic operators. We propose novel operators to ex-
tract information from 3D skeleton data: 1) a joint-
scale graph convolution operator extracts joint-level
spatial features based on both actional and structral
graphs; see Section 4.1.4; 2) a part-scale graph con-
volution operator extracts part-level spatial features
based on part-scale graphs; see Section 4.2.1; 3) a
pair of bidirectional fusion operators fuses information
across two scales; see Section 5.1.2 and 4) a difference
operator extracts temporal features; see Section 4.3;

• Experimental findings. We conduct extensive ex-
periments for both tasks of 3D skeleton-based ac-
tion recognition and motion prediction. The results
show that Sybio-GNN outperforms the state-of-the-
art methods in both tasks; see Section 6

2 RELATED WORKS

3D skeleton-based action recognition. For 3D skeleton-
based action recognition, conventionally, some models
learned semantics based on hand-crafted features and phys-
ical intuitions [10], [17], [18], [33]. With the developed
deep learning methods, some recurrent-neural-network-
based (RNN-based) models captured temporal dependen-
cies along consecutive frames [11], [34]. Moreover, convo-
lutional neural networks (CNN) also achieve remarkable
results [21], [22]. Recently, the graph-based approaches drew
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many attentions [1], [12], [27], [28], [30], [35], [36], [37],
[38]. In this work, we adopt the graph-based approach. We
construct multiscale graphs adaptively from data, capturing
useful and comprehensive information about actions.

3D skeleton-based motion prediction. In earlier stud-
ies, state models were considered to predict future mo-
tions [13], [19], [39]. Recently, some RNN-based methods
learned the dynamics from sequences [14], [15], [25], [40],
[41], [42]. Moreover, adversarial mechanics and geodesic
loss could further improve predictions [16]. As for our
method, we use graph structures to explicitly model the
relations between body-joints and body-parts, guiding the
networks to learn local and non-local motion patterns.

Graph deep learning. Graphs, focused on by many
recent studies, are effective to express data associated with
non-grid structures [12], [27], [43], [44], [45], [46], [47], [48].
Given the fixed topologies, previous works explored to
propagate node features based on the spectral domain [46],
[47] or the vertex domain [48]. [1], [12], [28], [35], [36] lever-
aged graph convolution for 3D skeleton-based action recog-
nition. [14] also considered the skeleton-based relations for
motion prediction. In this paper, we propose multiscale
graphs to represent multiple relations: joint-scale and part-
scale relations. Then, we propose novel graph convolution
operators to extract deep features for action recognition and
motion prediction. Different from [1] obtaining multiple
actional graphs with complicated inference processes, our
method employs more efficient graph learning operations.

3 PROBLEM FORMULATION

In this paper, we study 3D skeleton-based action recogni-
tion and motion prediction jointly. Let the action pose at
timestamp t be X(t) ∈ RM×Dx , where t > 0 indicates the
future frames, otherwise the observations; notably, t = 0
denotes the current frame. M is the number of joints and
Dx = 3 reflects the 3D joint positions. The action pose
is essentially associated with a skeleton graph built with
pairwise bone connectivity. Let the self-looped adjacency
matrix of a skeleton graph be A ∈ {0, 1}M×M , where the
(i, j)th elements (A)ij = 1 when the ith and the jth body-
joints are connected with bones, and (A)ij = 0, otherwise.

For an action sequence belonging to one class, we have
{Xprev,Xpred,y}, where Xprev = [X(−Tprev), . . . ,X(0)] ∈
R(Tprev+1)×M×Dx denotes the previous motion tensor;
Xpred = [X(1), . . . ,X(Tpred)] ∈ RTpred×M×Dx denotes the
future motion tensor; Tprev and Tpred are the frame numbers
of previous and future motions, respectively; and one-hot
vector y ∈ {0, 1}C denotes the class-label in C possible
classes. Let F(·) be the overall model. The discriminated
class ŷ and the predicted motion X̂pred are formulated as

ŷ, X̂pred = F(Xprev;θbk,θrecg,θpred),

where θbk, θrecg and θpred denote trainable parameters of
the backbone, the action-recognition head and the motion-
prediction head, respectively.

4 BASIC COMPONENTS

In this paper, we propose a novel Symbiotic Graph Neu-
ral Network (Sybio-GNN), which simultaneously performs

(c) structural graph(b) actional graph(a) skeleton graph

Fig. 2. Joint-scale graphs for walking. We consider an actional graph (b)
and a structural graph (c), which is an extension of a skeleton graph (a).
In each graph, the edges from ”Left Hand” to its neighbors are shown in
solid lines and other links in the skeleton are shown in dashed lines.

skeleton-based human action recognition and motion pre-
diction. Before constructing the entire Sybio-GNN, We pro-
pose joint-scale graph operators and part-scale operators
that are leveraged in the encoder of multiscale GCNs (see
Fig. 1). The functionalities of these two operators are to learn
body graphs at multiple scales and extract comprehensive
motion features on each scale. Then, we propose a difference
operator, which performs on the original human pose data
and is located at the input of the entire model, providing
richer motion priors for the subsequent learning modules.

4.1 Joint-Scale Graph Operators in Multiscale GCN
To model the joint relations, we build joint-scale graphs
including actional graphs and structural graphs, which cap-
ture moving interactions and physical constraints between
joints. Fig. 2 sketches some examples: (a) a skeleton graph
with the local neighborhood; (b) an actional graph about
action-based dependencies; (c) a structural graph, which
allows ‘Left Hand’ to link with the entire arm. As follows,
we propose the construction of joint-scale actional and struc-
tural graphs with the relevant operations.

4.1.1 Actional Graph Convolution
For different actions, some structurally distant joints may
interact with various manners, leading to distinctive action-
based relations. To represent these relations, we employ an
actional graph: Gact(V,Aact), where V = {v1, . . . , vM} is
the joint set and Aact ∈ RM×M is the adjacency matrix.
To obtain the graph topology, we propose a data-adaptive
module, called actional graphs inference module (AGIM), to
learn Aact purely from observed motions.

In AGIM, we let the vector representation of the
ith joint positions across all observed frames be xi =
vec (Xprev[:, i, :]) ∈ R(DxTprev). To learn the relations, we
propagate pose information between body-joints and pos-
sible edges. We first initialize p

〈0〉
i = f

〈0〉
v (xi) ∈ RDv ,

where f 〈0〉v (·) is a multilayer perceptron (MLP) that maps
the moving joints xi to features p

〈0〉
i . In the kth updating

iteration, the features are propagated as follows:

q
〈k〉
i,j = f 〈k〉e

([
p
〈k−1〉
i ,p

〈k−1〉
j

])
∈ RDe , (1a)

p
〈k〉
i = f 〈k〉v

 1

M − 1

∑
vj∈V,j 6=i

q
〈k〉
i,j

 ∈ RDv , (1b)

where p
〈k〉
i , q〈k〉i,j are the features of the ith joint vi and the

edge connecting vi and vj at the kth iteration; f 〈k〉e (·) and
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Fig. 3. Actional graphs inference module (AGIM) propagates features
between joints and edges forK iterations and uses correlations between
joint features to obtain actional graphs. In the box ‘Joint-edge feature
propagation ×K ’, any two joint features p

〈k−1〉
i and p

〈k−1〉
j are con-

catenated and fed in to an MLP, f〈k〉e (·), corresponding to Eq. (1a). The
edge features associated with the ith joint, q〈k〉i,j are summed and fed

into an MLP, f〈k〉v (·), corresponding to Eq. (1b). The aggregated features
mapped by two MLPs, femb(·) and gemb(·) are used to calculate the
adjacency matrix of the actional graph, corresponding to Eq. (2).

f
〈k〉
v (·) are MLPs; [·, ·] is the concatenation. Eq. (1a) maps a

pair of joint features to the in-between edge features; Eq. (1b)
aggregates all edge features associated with the same joint to
update the joint. After K iterations, each joint feature p〈K〉

has integrated information in a long-range.
With the aggregated feature p〈K〉 of any joint, we

compute the affinity of each pair of joints, leading to an
action-based relation. We build two individual embedding
networks, femb(·) and gemb(·), to further learn the high-
level representations of joints. The (i, j)th element of the
adjacency matrix of actional graph is

(Aact)i,j =
exp (fT

i gj)∑M
k=1 exp (fT

i gk)
∈ [0, 1] (2)

where fi = femb(p
〈K〉
i ) and gi = gemb(p

〈K〉
i ) ∈ RDemb

are the two different embeddings of joint vi. Notably,
(Aact)i,j 6= (Aact)j,i, indicating incoming and outgoing
relations between joints. Eq. (2) uses the softmax to nor-
malize the edge weights and promote a few large ones. The
structure of AGIM is illustrated in Fig. 3.

Based on the inferred Aact, we design an actional graph
convolution (AGC) to capture the actional features. Math-
ematically, let the input and output features at frame t be
X(t) ∈ RM×Dx and Y

(t)
AGC ∈ RM×Dy , the AGC works as

Y
(t)
AGC = AGC(X(t)) = AactX

(t)W>
act (3)

where Wact ∈ RDy×Dx is a trainable weight. Therefore,
the model aggregates the action-based information from
collaboratively moving joints even in the distance.

4.1.2 Structural Graph Convolution
Intuitively, the joint dynamics is limited due to physical
constraints, namely bone connections. To capture these rela-
tions, we develop a structural graph, Gstr(V,Astr). Accord-
ing to the skeleton structure, we first normalize the skeleton
graph adjacency matrix, A, by

Ã = D−1A,

where D ∈ NM×M is a diagonal degree matrix of A. Ã
provides nice initialization to learn the edge weights and
avoids multiplication explosion [49], [50].

Notably, Ã only describes the 1-hop neighborhood based
on bone-connections. To represent long-range relations, we

use the high-order polynomials of Ã. Let the γ-order poly-
nomial of Ã be Ãγ , which indicates the relations between
each joint and its γ-hop neighbors on skeleton. Then, we
introduce several individual edge-weight matrices M(γ) ∈
RM×M corresponding to Ãγ , whose elements are trainable
to reflect the relation strength. We finally obtain the γ-order
structural graph adjacency matrix,

A
(γ)
str = Ãγ �M(γ) ∈ RM×M ,

where � denotes the element-wise product. In this way,
we model the structure-based relations between joints in
relatively longer range. We consider γ = 0, 1, . . . ,Γ, thus
we have multiple structural graphs for one body. See plot
(c) in Fig. 2, the hand is correlated with the entire arm.
Note that, when we set Γ = 1, the structural graph achieves
the ‘distance partitioning’ proposed by [12]; as for Γ > 1,
some related works like [51] also consider the high-order
structural graphs for feature extraction.

Given the computed A
(γ)
str , we propose the structural

graph convolution (SGC) operator. Let the input and output
features at frame t be X(t) ∈ RM×Dx and Y

(t)
SGC ∈ RM×Dy ,

the SGC operator is formulated as

Y
(t)
SGC = SGC(X(t)) =

Γ∑
γ=1

A
(γ)
str X

(t)W
(γ)>
str (4)

where W
(γ)
str ∈ RDy×Dx is the trainable weights. Notably,

the multiple structural graphs have different corresponding
weights, which help to extract richer features.

4.1.3 Joint-Scale Graph Convolution

Based on AGC (Eq. (3)) and SGC (Eq. (4)), we present the
joint-scale graph convolution (JGC) to capture comprehen-
sive joint-scale spatial features. Mathematically, let the input
joint features at frame t be X(t) ∈ RM×Dx , the output
features be Y(t) ∈ RM×Dy , the JGC is formulated as

Y(t) = ρ(JGC(X(t)))

= ρ(λactAGC(X(t)) + SGC(X(t))),
(5)

where λact is a hyper-parameter to trade off the contribu-
tion between actional and structural features; ρ(·) denotes
the nonlinear ReLU function. In this way, the joint features
are effectively aggregated to update each center joint accord-
ing to the joint-scale graphs.

We further show the stability of the proposed activated
joint-scale graph convolution layer; that is, when input
3D skeleton data is disturbed, the distortion of the output
features is upper bounded.

Theorem 1 (Stability) Let two joint-scale feature matrices be
X and X∗ ∈ RM×Dx associated with a skeleton graph A ∈
{0, 1}M×M , where Dx = 3 and ‖X∗ −X‖F ≤ ε (ε ≥ 0). Let
Y = ρ (JGC (X)) and Y∗ = ρ (JGC (X∗)) ∈ RM×Dy . Let
A∗act and Aact ∈ [0, 1]M×M be the joint-scale actional graph
inferred from X∗ and X, respectively, where

‖A∗actX
∗ −AactX‖F ≤ Cεq,

with q the amplify factor and C some constant. Let µact =

‖Wact‖max, η(γ) = ‖M(γ)‖max and µ
(γ)
str = ‖W(γ)

str ‖max,
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where Wact, W(γ)
str ∈ RDy×Dx and M(γ) ∈ RM×M . Then,

‖Y∗ −Y‖F ≤
√

3Dy

(
εqλactµactC +

ε
Γ∑
γ=1

√
‖Aγ‖0η(γ)µ

(γ)
str

)
= O (max (εq, ε)) .

Note that ‖ · ‖F denotes Frobenius norm and ‖ · ‖0 is zero norm.
ρ(·) denotes ReLU-activation function. O(·) denotes the effects
that rely on ‘max (εq, ε)’.

See the proof in Appendix. Theorem 1 shows the joint-scale
graph convolution at the first layer, but the bound can be
extended to the subsequent layers. Theorem 1 shows that 1)
the outputs of JGC followed by the activation function can
be upper bounded, reflecting its robustness against input
perturbation; and 2) given a fixed model, the bound is
mainly related to the amplify factor q. The JGC’s robustness
ensures the stability of Sybio-GNN given small noises.

4.1.4 Joint-Scale Graph and Temporal Convolution Block
While the JGC leverages the joint spatial relations and
extracts rich features, we should consider modeling the tem-
poral dependencies among consecutive frames. We develop
the temporal convolution operator (TC); that is, a convolu-
tion along time to learn the movements. Stacking JGC and
TC, we build the joint-scale graph and temporal convolution
block (J-GTC block), which learn the spatial and temporal
features in tandem. Mathematically, let Xin ∈ RT×M×Dx be
an input tensor, each J-GTC block works as

(X ′)[t,:,:] = ρ
(
JGC((Xin)[t,:,:])

)
∈ RM×Dx′ , (6a)

Xout = ρ (TC(X ′; τ, s)) ∈ RT/s×M×(sDx′ ). (6b)

TC(·) is a standard 1D convolution along the time axis,
whose temporal kernel size is τ ; s is the convolution stride
along time to shrink the temporal dimension; t slice the
pose at the corresponding timestamp. In each J-GTC block,
Eq. (6a) extracts spatial features of joints; and Eq. (6b)
extracts temporal features by aggregating the consecutive
frames. Our J-GTC block also includes batch normalization
and dropout operations. Moreover, there is a residual con-
nection preserving the input features. The architecture of
one J-GTC block is illustrated in Fig. 4. By stacking several J-
GTC blocks in a hierarchy, we gradually convert the motion
dynamics from the sample space to the feature space.

4.2 Part-Scale Graph Operators in Multiscale GCN
The joint-scale graphs treat body-joints as nodes and model
their relations, but some action patterns depend on more

Joint-scale Graph Part-scale Graph

Avg

Copy

joint2part pooling

part2joint matching

Fig. 5. A joint-scale graph consists of body-joints represented as blue
nodes and a part-scale graph consists of body-parts represented as
orange nodes. The bidirectional fusion converts features across two
scales through the operations of joint2part pooling and part2joint match-
ing. We only plot the 1-hop structural graph for the joint-scale graph.

abstract movements of body-parts. For example, ‘hand wav-
ing’ shows a rising arm, but the finger and wrist are less
important. To model the part dynamics, we propose the
part-scale graph and temporal convolution (P-GTC) block
to extract part-scale features.

4.2.1 Part-Scale Graph Convolution
For a part-scale graph, we define Mp = 10 body-parts as
graph nodes: ‘head’, ‘torso’, pairs of ‘upper arms’, ‘fore-
arms’, ‘thighs’ and ‘crura’, which integrates the covered
joints on joint-scale body. And we build the edges accord-
ing to body nature; see the right plot of Fig. 5. The self-
looped adjacency matrix of the part-scale graph is defined
as Ap ∈ {0, 1}Mp×Mp , and we preprocess Ap by

Apart = (D−1
p Ap)�Mp ∈ RMp×Mp

where Dp ∈ NMp×Mp is the diagonal degree matrix of Ap;
Mp ∈ RMp×Mp is a trainable weight matrix and � is the
element-wise product.

Similarly to the JGC operator (Eq. (5)), we propose
the part-scale graph convolution (PGC) for spatial feature
learning. Let the part features at time t be X

(t)
p ∈ RMp×Dx ,

the output features be Y
(t)
PGC ∈ RM×Dy , the PGC works as

Y(t)
p = PGC(X(t)

p ) = ApartX
(t)
p W>

part, (7)

where W>
part is the trainable parameters. With Eq. (7), we

propagate information between body-parts, leading to ab-
stract spatial patterns. Notably, We do not need a part-scale
actional graph, because the part-scale graph includes some
integrated relations internally, as well as it has a shorter
distance to build long-range links.

4.2.2 Part-Scale Graph and Temporal Convolution Block
Considering the temporal evolution, we use the same tem-
poral convolution as in J-GTC block to form the part-scale
graph and temporal convolution (P-GTC) block . Let the input
part feature tensor be Xp,in ∈ RT×Mp×Dx , we have

(X ′p)[t,:,:] = ρ
(
PGC((Xp,in)[t,:,:])

)
∈ RMp×Dx′ , (8a)

Xp,out = ρ
(
TC(X ′p; τ, s)

)
∈ RT/s×Mp×(sDx′ ), (8b)

where t slices the pose at the timestamp and s is the
temporal convolution stride. Comparing to the J-GTC block,
the P-GTC block extracts the spatial and temporal features
of actions in a higher scale. Given the part-scale features as
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Fig. 6. Backbone is essentially multi-branch multiscale graph convolution networks. It uses three individual multiscale GCNs to extract spatial and
temporal features. A difference operator (‘Diff’) calculate three orders of differences, which represent joint positions (‘pos.’), velocities (‘vel.’) and
accelerations (‘acc.’). Each multiscale GCN takes one order as input and uses multiple J-GTC, P-GTC blocks and bidirectional fusion to learn spatial
and temporal features from two scales.

the additional information, the model extracts more com-
prehensive features for pattern capturing. The effectiveness
of leveraging the part-scale feature also has been verified
by [10], [11], [27], [28], [29], [30], [31], [33], [52], [53], [54].

4.3 Difference Operator on Input Motions
Intuitively, the states of motion, such as velocity and accel-
eration, carry important dynamics information and make
it easier to extract spatial-temporal features. To achieve
this, we employ a difference operator to preprocess the
input sequences. The idea is to compute high-order differ-
ences of the pose sequences. The zero-order difference is
∆0X(t) = X(t) ∈ RM×Dx , where X(t) is the pose at the
time t, and the β-order difference (β > 0) of the pose is

∆β+1X(t) = ∆βX(t) −∆βX(t−1) ∈ RM×Dx , (9)

where ∆β denotes the βth-order difference operator. We use
zero paddings after diference computation to handle bound-
ary conditions. We take the first three orders (β = 0, 1, 2) to
our model, reflecting positions, velocities, and accelerations.
In the model, the three differences can be efficiently com-
puted in parallel. Compared to previous works which only
consider the position and velocity information [27], [28],
[55], [56], [57], [58], we naturally introduce more detailed
accelerations to depict the dynamics of motions.

5 SYMBIOTIC GRAPH NEURAL NETWORKS

In this section, we present the architecture of our Symbiotic
Graph Neural Networks (Sybio-GNN), which is constructed
with a deep backbone and two task-specific modules. We
present the deep backbone network, which employs mul-
tiscale graphs to learn the high-level features of motions
(see Section 4.1 and Section 4.2) to provide the downstream
tasks with informative representations; We then present
the action-recognition head and the motion-prediction head
with an effective multitasking scheme. Finally, we present a
dual bone-based network to learn complementary features
from body bones for downstream tasks.

5.1 Backbone: Multi-Branch Multiscale Graph Convolu-
tion Networks
To learn the high-level action pattern, Sybio-GNN consists
of a deep backbone called multi-branch multiscale graph con-
volution network (multi-branch multiscale GCN). It employs

parallel multiscale GCN branches to treat high-order action
differences and also considers multiscale graphs for spatial
feature extraction. Fig. 6 shows the backbone, where the left
plot is the backbone framework including three branches
of multiscale GCNs; the right plot is the structure of each
branch. As follows, we propose the backbone in detail.

5.1.1 Multiple Branches
The backbone has three branches of multiscale GCN. Each
branch uses a distinct order of action differences as input,
treating the motion states (‘positions’, ‘velocities’ and ‘ac-
celerations’) for dynamics learning (see Fig. 6). The three
branches have identical network architectures. We obtain
semantics of high-order differences and concatenate them
together for action recognition and motion prediction.

5.1.2 Multiscale GCN
To learn the multiscale action features comprehensively,
each branch of the backbone is a multiscale GCN based
on the joint-scale and part-scale graphs. Concretely, for the
joint-scale graphs, both the actional and structural graphs
are used to capture body-joint correlations. We employ a
cascade of J-GTC blocks (see section 4.1.4) based on the
joint-scale graphs for feature capturing. With the part-scale
graphs whose nodes represent high-level body instances, we
stack P-GTC blocks (see section 4.2.1) for feature capturing.
To be aware of the multiscale immediate representations
and learn rich and consistent patterns, we introduce a
fusion mechanism between the hidden layers of two scales;
called bidirectional fusion.

Bidirectional Fusion. The bidirectional fusion exchanges
features from both the joint scale and the part scale; see
illustrations in Fig. 5 and Fig. 6. It contains two operations:
• Joint2part pooling. For the joint scale, we use pool-

ing to average the joint features on the same part
to represent a super node. Then, we concatenate the
pooling result to the corresponding part feature in
the part scale. As shown in Fig. 5, we average torso
joints to obtain a node in the part-scale graph and
concatenate it to the original part-scale features.

• Part2joint matching. For the part scale, the part
features are copied for several times to match the
number of corresponding joints, as well as we con-
catenate the copied parts to the joints. As shown in
Fig. 5, we copy the thigh twice and concatenate them
to the hip and knee in the joint scale.
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Fig. 6 (right plot) shows the operations and one bidirectional
fusion in multiscale GCN. Given the joint-scale input, we
first use a J-GTC block to extract the initial joint-scale fea-
tures, and a joint2part pooling is applied on the joint-scale
features to compute the initial part-scale features. We next
feed them into two parallel J-GTC and P-GTC blocks. Then
we concatenate the responses mapped by joint2part pooling
and part2joint matching to the features in opposite scales.
Compared to previous methods without the bidirectional
fusion at immediate layers [10], [11], [27], [28], [29], [30],
[31], [33], [52], [53], [54], the proposed Sybio-GNN model
captures rich multiscale features at each network layer to
enhance the information flow and comprehensive feature
extraction. Therefore, both scales have good adaptability to
multiscale information. After multiple interactive J-GTC and
P-GTC blocks, we fuse the outputs of two scales through
summation, followed by the average pooling to remove the
temporal dimension, and obtain the high-level features.

Finally, we concatenate the outputs from three branches
together and use them as the comprehensive semantics for
action recognition and motion prediction.

5.2 Multitasking I: Action Recognition

For action recognition, Sybio-GNN can be represented as
ŷ = Frecg(Xprev;θbk,θrecg), where Frecg(·) is the recogni-
tion sub-model in Sybio-GNN, which combines the back-
bone network and a recognition head. Given the high-level
features extracted by three branches of backbone, H0, H1

and H2 ∈ RM×Dh , we concatenate them and employ an
MLP to produce the fused feature:

Hrecg = MLPrecg ([H0,H1,H2]) ∈ RM×Dh ,

where MLPrecg(·) denotes the fusing network of recognition
task and [·, ·, ·] is the concatenation of three matrices along
feature dimension. To integrate the joint dynamics, we apply
the global averaging pooling on the M joints of Hrecg and
obtain a feature vector hrecg ∈ RDh that represents the
whole body. We finally feed the vector into a 1-layer softmax
classifier, obtaining ŷ ∈ [0, 1]C .

5.3 Multitasking II: Motion Prediction

For motion preidction, Sybio-GNN works as X̂pred =
Fpred(Xprev;θbk,θpred), where Fpred(·) is the prediction
sub-model that uses the backbone and a prediction head.
Fig. 7 shows the structure of the prediction head, whose
functionality is to sequentially predict the future poses. We
adopt the self-regressive mechanics and identical connection
in the prediction head, and we use gated recurrent unit
(GRU) to model the temporal evolution.

Concretely, an MLP is first employed to embed the
features of three action differences:

Hpred = MLPpred([H0,H1,H2]) ∈ RM×Dh ,

where MLPpred(·) denotes the fusing network of prediction
task. Let H

(0)
pred = Hpred be the initial states of the GRU-

based predictor and X̂(0) = X(0) be the pose in the current

MLP

…
MLP

GRU …JGC

Diff
Action Category

MLP

GRUJGC

Diff
Action Category

ŷ ŷ

H0

H1

H2

Hpred

X(0)

X̂(1)
X̂(Tpred)

X̂(Tpred-1)

Fig. 7. The motion-prediction head of Sybio-GNN uses JGC (Eq. (5)),
the difference operator (Eq. (9)) and GRU to predict the future poses
sequentially. The box named ‘JGC’ performing on the hidden states
corresponds to Eq. (10a). The box named ‘GRU’ performing on the input
dynamics and action category corresponds to Eq. (10b). The output MLP
and the residual connection summing up the input poses and outputs
correspond to Eq. (10c)

timestamp. To produce the (t+1)th pose (t ≥ 0), the motion-
prediction head works as

H̃
(t)
pred = JGC(H

(t)
pred), (10a)

H
(t+1)
pred = GRU([X̂(t),∆1X̂(t),∆2X̂(t), ŷ], H̃

(t)
pred), (10b)

X̂(t+1) = X̂(t) + fpred(H
(t+1)
pred ), (10c)

where JGC(·), GRU(·) and fpred(·) represent JGC opera-
tor, GRU cell and output MLP, respectively. The following
X̂(t)s are the predictions obtained sequentially and used
recylingly. In Step (10a), we apply the JGC to update the
hidden states; in Step (10b), we feed the updated hidden
states, current pose and classified labels into the GRU cell
to produce the features that reflect future displacement;
In Step (10c), we add the predicted displacement to the
previous pose to predict the next frame.

The motion-prediction head has three advantages: (i) we
use JGC to update hidden features, capturing more com-
plicated motion patterns; (ii) we input multiple orders of
poses differences and classified labels to the GRU, providing
explicit motion priors; and (iii) Connected by the residual,
the GRU and MLP predict the displacement for each frame;
this makes predictions precise and robust.

5.4 Multi-Objective Optimization
To train action recognition and motion prediction simulta-
neously, we consider a multi-objective scheme.

To recognize actions, we minimize the cross entropy
between the ground-truth categorical labels and the inferred
ones. Let the true label of the nth sample be (y)n ∈ {0, 1}C
and the corresponding classification results be (ŷ)n ∈
{0, 1}C . For N training samples in one mini-batch, the
action recognition loss is formulated as

Lrecg = − 1

N

N∑
n=1

(y)>n log(ŷ)n, (11)

where > denotes the transpose operation.
For motion prediction, we minimize the `1 distance

between the target motions and the predicted clips. Let the
nth target and predictions be (Xpred)n and (X̂pred)n, for N
samples in one mini-batch, the prediction loss is

Lpred =
1

N

N∑
n=1

‖(Xpred)n − (X̂pred)n‖1, (12)

where ‖ · ‖1 denotes the `1 norm. According to our ex-
periments, the `1 norm leads to more precise predictions
compared to the common `2 norm.
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To integrate two losses for training, we propose a convex
combination that weighted sums Eq. (11) and Eq. (12),

L = αLrecg + (1− α)Lpred,

where α trade-offs the importances of two tasks. In our
training scheme, all the model parameters are trained end-
to-end with the stochastic gradient descent algorithm [59].

5.5 Bone-based Dual Graph Neural Networks

While the joints contain some information of action repre-
sentation from the joint aspect, the attributes of bones, such
as lengths and orientations, are crucial to provide some
complementary information [35], [36], [60]. In this section,
we construct a bone-based dual graph against the original
joint-scale graph, whose vertices are bones and edges link
bones.

To represent the feature of each bone, we compute the
subtraction of two endpoint joint coordinates, which in-
cludes information of bone lengths and orientations. The
subtraction order is from the centrifugal joint vj to the
centripetal vi. Let the joint locations along time be xi,xj ∈
R(DxTprev), the bone attribute is bi,j = xj −xi ∈ R(DxTprev).
Then, we construct the bone-based dual actional and struc-
tural graphs to model the bone relations; and we also build
the part-scale dual graph. The dual actional graph is learned
from bone features by AGIM (see section 4.1.1); for dual
structural graph, the 1-hop edges are linked when two bones
with articulated joints and the high-hop edges are extended
from the 1-hop edges; the part-scale attributes are obtained
by integrating bone attributes and the part-scale graph is
built according to body nature; The bone-based graphs are
dual of joint-scale graphs, which are employed to extract
complementary bone features.

Given the bone-based graphs, we train a bone-based graph
neural network besides the original joint-based network,
which takes body-bones as inputs and learns underlying
action patterns from the bone-based perspective. We note
that, for action recognition, we leverage both the joint-based
and bone-based networks in training and test phases to
make action recognition more effective. We stress that for
action recognition, the output space of action recognition
is the space of action labels. This naturally allows action
recognition to extract and fuse motion information from
various perspectives to improve the quality of features.
Besides the joint-based network, the bone-based network
could provide crucial and complementary motion features,
providing more comprehensive information. However, as
for motion prediction, we leverage both the joint-based
network and the bone-based network in the training phase,
but only use the joint-based network in the test phase. The
reasons for this design mainly include: 1) In the training
phases, both the joint-based and the bone-based motion-
prediction heads work in a self-supervision manner and
capture detailed motion information from two related, yet
different perspectives, leading to the mutual enhancement
of the model training. 2) In the test phases, the joint-based
motion-prediction head can directly produce the future
positions of the body-joints. On the other hand, we need
to convert the bone-based prediction output to the joint-
based representation, which might affect the overall pre-

diction performance. We thus do not need the bone-based
prediction output.

5.6 Discussion about the Actional Graph
Here we compare the learned actional graphs in our Sybio-
GNN to the previous models which model long-range spa-
tial dependencies of human actions.

To learn the actional graph from data, taking the joint-
based network as an example, we estimate the affinities of
arbitrary two joints given the joint embeddings by the pro-
posed ‘Actional Graph Inference Module’ (AGIM). Specifi-
cally, the feature of any joint is learned by aggregating the
features of any other joints through the estimated possible
links for several times of information propagation, where
the link features are learned based on the end-point joints.
We finally construct the actional graph based on the affinity
weights of any two joints by computing the normalized
embedded Gaussian.

The intuition of our AGIM includes that we explicitly
model the links and build the information propagation pro-
cess between any two joints in distance, obtaining reliable
information in a long-range for graph construction. Here
are the comparisons between the proposed method and the
existing methods [1], [35], [61], [62]:

• Compared to 2s-AGCN [35], both Sybio-GNN and
2s-AGCN calculate the joint affinities based on joint
embeddings; however, when learning the joint em-
beddings, 2s-AGCN uses ego information and Sybio-
GNN uses neighboring information.

• Compared to sLnL [61], both Sybio-GNN and sLnL
consider local and non-local dependencies; however,
sLnL captures only the joint-based dependencies in
multiple ranges while Sybio-GNN learns dependen-
cies of comprehensive body-joints and body-parts.

• Compared to GR-GCN [62], both Sybio-GNN and
GR-GCN build relations between joints; however,
GR-GCN designs a separate objective function to
adjust the graph, which is independent from the final
task, while the proposed Sybio-GNN learns data-
adaptive graphs in an end-to-end manner.

• Compared to our previous work AS-GCN [1], both
Sybio-GNN and AS-GCN employ joint-edge feature
propagation before actional graph inference, while
Sybio-GNN computes joint affinities in a more ef-
ficient manner and AS-GCN pretrains an encoder-
decoder to capture the latent joint relations with a
complex data sampling.

In summary, the novelty of our learnable actional graph
mainly focuses on a rich joint-edge propagation process for
information aggregation; meanwhile, based on the affinity
calculation, we obtain the stable and reasonable graph struc-
tures through end-to-end training.

6 EXPERIMENTS AND ANALYSIS

In this section, we evaluate the proposed Sybio-GNN. First,
we introduce the datasets and model settings; then, the
performance comparisons between Sybio-GNN and other
state-of-the-art methods are presented; and we finally show
the ablation studies of our model.
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6.1 Datasets and Model Setting

6.1.1 Dataset
We conduct extensive experiments on four large-scale
datasets: NTU-RGB+D [31], Kinetics [12], Human3.6M [32]
and CMU Mocap. The details is shown as follow.

NTU-RGB+D: NTU-RGB+D, containing 56, 880 skele-
ton action sequences completed by one or two performers
and categorized into 60 classes, is one of the largest datasets
for 3D skeleton-based action recognition. It provides the 3D
spatial coordinates of 25 joints for each subject in an action.
For method evaluation, two protocols are recommended:
‘Cross-Subject’ (CS) and ‘Cross-View’ (CV). In CS, 40, 320
samples performed by 20 subjects are separated into the
training set, and the rest belong to the test set. CV assigns
data according to camera views, where training and test set
have 37, 920 and 18, 960 samples, respectively.

Kinetics: Kinetics is a large dataset for human action
analysis, containing over 240, 000 video clips. There are
400 classes of actions. Due to only RGB videos, we obtain
skeleton data by estimating joint locations on pixels with
OpenPose toolbox [63]. The toolbox generates 2D pixel
coordinates (x, y) and confidence score c for totally 18 joints.
We represent each joint as a three-element feature vector:
[x, y, c]>. For the multiple-person cases, we select the body
with the highest average joint confidence in each sequence.
Therefore, one clip with T frames is transformed into a
skeleton sequence with the dimension of 18× 3× T .

Human3.6M: Human3.6M (H3.6M) is a large motion
capture dataset. Seven subjects are performing 15 classes of
actions, where each subject has 32 joints. We downsample
all sequences by two. The models are trained on six subjects
and tested on the specific clips of the 5th subject. Notably,
the dataset provides the joint locations in angle space, and
we transform them into exponential maps and only use the
joints with non-zero values.

CMU Mocap: CMU Mocap includes five major action
categories, and each subject in CMU Mocap has 38 joints,
which are presented by angle positions. We use the same
strategy presented in [26] to select the actions. Thus we
choose eight actions: ‘Basketball’, ‘Basketball Signal’, ‘Di-
recting Traffic’, ‘Jumping’, ‘Running’, ‘Soccer’, ‘Walking’
and ‘Washing Window’. We preprocess the data and com-
pute the corresponding exponential maps with the same
approach as we do for Human3.6M dataset.

6.1.2 Model Setting and Implementation Details
The models are implemented with PyTorch 0.4.1. Since dif-
ferent datasets have distinctive patterns and complexities,
we employ specific configurations of Sybio-GNN networks
on corresponding datasets.

For NTU-RGB+D and Kinetics, the backbone network of
Sybio-GNN contains 9 J-GTC blocks and 8 P-GTC blocks. In
each three J-GTC and P-GTC blocks, the feature dimensions
are respectively 64, 128 and 256. The kernel size of TC
is 9 and it shrinks the temporal dimension with stride 2
after the 3rd and 6th blocks, where we use bidirectional
fusion mechanisms. λact = 0.5. The action-recognition head
is a 2-layer MLP, whose hidden dimension is 256. For the
motion-prediction head, the hidden dimensions of GRU
and output MLP are 256. For the actional graph inference

module (AGIM), we use 2-layer 128-D MLPs with ReLU,
batch normalization and dropout in each iteration. For the
loss function, we the coefficient α in a range of [0.8, 0.95]. We
use SGD algorithm to train Sybio-GNN, where the learning
rate is initially 0.1 and decays by 10 every 30 epochs. The
model is trained with batch size 64 for 100 epochs on 8 GTX-
1080Ti GPUs. For both NTU-RGB+D and Kinetics, the last
10 frames are used for motion prediction and other previous
frames are fed into Sybio-GNN for action recognition.

As for Human3.6M and CMU Mocap, due to the simpler
dynamics and fewer categories, we propose a light version
of Sybio-GNN, which extracts meaningful features with
more shallow networks, improving efficiency for motion
prediction. In the backbone, we use 4 J-GTC blocks and 3
P-GTC blocks, whose feature dimensions are 32, 64, 128 and
256; the temporal convolution strides in 4 blocks are: 1, 2,
2, 2, respectively. We apply bidirectional fusions at the last
3 layers. λact = 1.0. The recognition and motion-prediction
heads, as well as AGIM, leverage the same architecture as
we set for NTU-RGB+D. We train the model using Adam
optimizer with the learning rate 1 × 104 and batch size 64
for 105 iterations on one GTX-1080Ti GPU. All the hyper-
parameters are selected using a validation set.

6.2 Comparison with State-of-the-Arts
On the three large-scale skeleton-formed datasets, we com-
pare the proposed Sybio-GNN with state-of-the-art methods
for human action recognition and motion prediction.

6.2.1 3D Skeleton-based Action Recognition
For action recognition, we first show the classification ac-
curacies and model complexities of Sybio-GNN and base-
lines on two recommended benchmarks of NTU-RGB+D,
i.e. Cross-Subject and Cross-View [31]. The state-of-the-art
models are based on manifold analysis [10], recurrent neural
networks [11], [27], [31], [34], convolution networks [9],
[21], [22], and graph networks [1], [12], [27], [28], [30],
[35], [36], [51], [62], [64]. Moreover, to investigate differ-
ent components of Sybio-GNN, such as multiple graphs
and multitasking, we test several model variants, including
Sybio-GNN using only joint-scale structural graphs (Only
J-S), only joint-scale actional graphs (Only J-A), only-part
scale graph (Only P), no bone-based networks (No bone),
no prediction for multitasking (No pred) and the complete
model. For these methods, Table 1 presents recognition
accuracies. We also count the numbers of model parameters
and the average inference time to run each test sample
of several methods with their open-source codes. We see
that the complete Sybio-GNN outperforms the baselines
on both benchmarks. The results reveal that richer joint
relations promote to capture more useful patterns, and ad-
ditional motion prediction and complementary bone-based
features improve the discrimination. In addition, to compare
the model complexities, many recent models, such as AS-
GCN, DGBNN and Sybio-GNN have a similar magnitude
of parameter numbers, but Sybio-GNN effectively improves
the recognition performances. For the test time, Sybio-GNN
costs time that is similar to the previous works, and it
outperforms the previous AS-GCN with a large margin.

Then, we evaluate the recognition performance and com-
plexity of Sybio-GNN on Kinetics, and we it with eights
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TABLE 1
Comparison of action recognition on NTU-RGB+D. The accuracies on

both Cross-Subject (CS) and Cross-View (CV) benchmarks.

Methods CS CV Param (M) Test time (s)
Lie Group [10] 50.1% 52.8% - -

H-RNN [11] 59.1% 64.0% - -
Deep LSTM [31] 60.7% 67.3% - -
PA-LSTM [31] 62.9% 70.3% - -

ST-LSTM+TS [34] 69.2% 77.7% - -
Temporal Conv [21] 74.3% 83.1% - -
Visualize CNN [22] 76.0% 82.6% - -

ST-GCN [12] 81.5% 88.3% 3.10 2.28× 10−2

DPRL [64] 83.5% 89.8% - -
SR-TSL [27] 84.8% 92.4% - -

HCN [9] 86.5% 91.1% 2.06 2.42× 10−2

PB-GCN [30] 87.5% 93.2% 3.55 3.37× 10−2

AS-GCN [1] 86.8% 94.2% 6.99 2.64× 10−1

2s-AGCN [35] 88.5% 95.1% 6.94 4.05× 10−2

AGC-LSTM [28] 89.2% 95.0% - -
DGNN [36] 89.9% 96.1% 8.18 4.17× 10−2

sLnL [61] 89.1% 94.1% - -
GR-GCN [62] 87.5% 94.3% - -
RA-GCN [51] 87.3% 93.6% 6.21 4.12× 10−2

Sybio-GNN (Only J-S) 88.3% 94.5% 7.83 2.37× 10−2

Sybio-GNN (Only J-A) 85.7% 93.7% 5.12 2.64× 10−2

Sybio-GNN (Only P) 86.5% 87.3% 5.14 2.29× 10−2

Sybio-GNN (No bone) 87.1% 93.8% 7.43 5.97× 10−2

Sybio-GNN (No pred) 89.0% 95.7% 9.14 4.23× 10−2

Sybio-GNN 90.1% 96.4% 14.85 6.03× 10−2

TABLE 2
Comparison of action recognition on Kinetics. The top-1 and top-5

classification accuracies are listed.

Methods Top-1 Top-5 Param (M) Test time (s)
Feature Encoding [20] 14.9% 25.8% - -

Deep LSTM [31] 16.4% 35.3% - -
Temporal Conv [21] 20.3% 40.0% - -

ST-GCN [12] 30.7% 52.8% 3.10 2.17× 10−2

STGR-GCN [37] 33.6% 56.1% - -
AS-GCN [1] 34.8% 56.3% 6.99 2.80× 10−1

2s-AGCN [35] 36.1% 58.7% 6.94 3.94× 10−2

DGNN [36] 36.9% 56.9% 8.18 4.09× 10−2

sLnL [61] 36.6% 59.1% - -
Sybio-GNN (No pred) 36.4% 57.4% 9.14 4.30× 10−2

Sybio-GNN 37.2% 58.1% 14.85 5.97× 10−2

baselines, including a hand-crafted based method, Feature
Encoding [20], two deep models, Deep LTSM [31] and
Temporal ConvNet [21], and five graph-based methods [1],
[12], [35], [36], [37]. Table 2 shows the top-1 and top-5
classification results, parameter numbers and average test
times for each sample, where Sybio-GNN (No pred) denotes
the Sybio-GNN variant without motion-prediction head for
multitasking. We see that Sybio-GNN outperforms other
methods on top-1 recognition accuracy and achieves com-

TABLE 3
Comparison of action recognition on Human3.6M and CMU Mocap

dataset. The top-1 and top-5 classification accuracies are listed.

Human3.6M CMU Mocap
Methods Top-1 Top-5 Top-1 Top-5

ST-GCN [12] 40.2% 78.4% 87.5% 96.9%
HCN [9] 47.6% 88.8% 95.4% 99.2%

2s-AGCN [35] 55.4% 94.1% 97.1% 99.8%
Sybio-GNN (Only J) 55.6% 93.9% 96.5% 99.4%
Sybio-GNN (Only P) 54.3% 93.1% 94.9% 98.0%

Sybio-GNN (No bone) 53.5% 93.2% 93.5% 95.8%
Sybio-GNN (No pred) 55.2% 94.1% 96.6% 99.4%

Sybio-GNN 56.5% 95.3% 98.8% 100%

petitive results on top-5 accuracy, as well as Sybio-GNN has
acceptable model weights and running speed.

Additionally, we evaluate our model for action recog-
nition on Human3.6M and CMU Mocap. Table 3 presents
the top-1 and top-5 classification accuracies for both two
datasets. Here we compare Sybio-GNN with a few re-
cently proposed methods: ST-GCN [12], HCN [9], and 2s-
AGCN [35]. We also show the effectiveness of our model.
Notably, for Human3.6M, there is a relatively large gap

between the top-1 and top-5 accuracies, because the input
motions are some fragmentary clips of long sequences with
incomplete semantics and activities have subtle differences
(e.g. ‘Eating’ and ‘Smoking’ are similar). In other words,
Sybio-GNN learns the common features and provides rea-
sonable discrimination, resulting in high top-5 accuracy;
but it confuses in non-semantic variances, causing not high
top-1 accuracy. However, CMU Mocap has more distinctive
actions, where we obtain high classification accuracies.

6.2.2 3D Skeleton-based Motion Prediction

To validate the model of motion prediction, we train the
Sybio-GNN on NTU-RGB+D, Human3.6M, and CMU Mo-
cap. There are two specific tasks: short-term and long-
term motion prediction. Concretely, the target of short-
term prediction is commonly to predict poses within 400
milliseconds, while the long-term prediction aims to predict
poses in 1000 ms or longer. To reveal the effectiveness of
Sybio-GNN, we introduce many state-of-the-art methods,
which learned dynamics from pose vectors [15], [16], [25],
[42], [66] or separate body-parts [14], [26], [67]. We also
introduce a naive baseline, named ZeroV [15], which sets
all predictions to be the last observed frame.

Short-term motion prediction: We validate Sybio-GNN
on two datasets: Human3.6M and NTU-RGB+D. We first
compare Sybio-GNN to baselines for short-term prediction
on Human3.6M, where the models generate poses up to the
future 400 ms. We analyze several variants of Sybio-GNN
with different components, including using only joint-scale
actional graphs (Only J-A) or joint-scale structural graphs
(Only J-S), and no recognition head (No recg). For the
metric, the mean angle errors (MAE) between the predic-
tions and the ground truths are computed, representing the
prediction errors in angle space. We first test 4 representa-
tive actions: ‘Walking’, ‘Eating’, ‘Smoking’ and ‘Discussion’.
Table 4 shows MAEs of different methods. As we see, when
Sybio-GNN simultaneously employs multiple graphs and
multitasking, our method outperforms all the baselines and
its own ablations.

We also test Sybio-GNN on the remaining 11 actions
in Human3.6M, where the MAEs of some recent methods
are shown in Table 5. Sybio-GNN also achieves the best
performance on most actions and the lowest average MAE
on 15 motions. Although the mentioned top-1 classification
accuracy on this dataset is not very high (see Table 3),
we note that the estimated soft labels cover the common
motion factors (reflected by top-5 accuracy), such as the
walking factor in ‘Walking’, ‘Walking Dog’ and ‘Walking
Together’, and we need the walking factors instead of the
specific labels for motion generation. Given the soft labels,
the model tends to obtain precise predictions.
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TABLE 4
Comparisons of MAEs between Sybio-GNN and state-of-the-art methods for short-term motion prediction on the 4 representative actions of
H3.6M. Sybio-GNN (J-A) and Sybio-GNN (J-S) are Sybio-GNN with joint-scale actional graphs only and with joint-scale structural graph only,

respectively. Sybio-GNN (No recg) represents the model trained without action classification.

Motion Walking Eating Smoking Discussion
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
ZeroV [15] 0.39 0.68 0.99 1.15 0.27 0.48 0.73 0.86 0.26 0.48 0.97 0.95 0.31 0.67 0.94 1.04
ERD [42] 0.93 1.18 1.59 1.78 1.27 1.45 1.66 1.80 1.66 1.95 2.35 2.42 2.27 2.47 2.68 2.76

Lstm3LR [42] 0.77 1.00 1.29 1.47 0.89 1.09 1.35 1.46 1.34 1.65 2.04 2.16 1.88 2.12 2.25 2.23
SRNN [14] 0.81 0.94 1.16 1.30 0.97 1.14 1.35 1.46 1.45 1.68 1.94 2.08 1.22 1.49 1.83 1.93

DropAE [65] 1.00 1.11 1.39 / 1.31 1.49 1.86 / 0.92 1.03 1.15 / 1.11 1.20 1.38 /
Samp-loss [15] 0.92 0.98 1.02 1.20 0.98 0.99 1.18 1.31 1.38 1.39 1.56 1.65 1.78 1.80 1.83 1.90
Res-sup [15] 0.27 0.46 0.67 0.75 0.23 0.37 0.59 0.73 0.32 0.59 1.01 1.10 0.30 0.67 0.98 1.06

CSM [26] 0.33 0.54 0.68 0.73 0.22 0.36 0.58 0.71 0.26 0.49 0.96 0.92 0.32 0.67 0.94 1.01
TP-RNN [66] 0.25 0.41 0.58 0.65 0.20 0.33 0.53 0.67 0.26 0.47 0.88 0.90 0.30 0.66 0.96 1.04

QuaterNet [23] 0.21 0.34 0.56 0.62 0.20 0.35 0.58 0.70 0.25 0.47 0.93 0.90 0.26 0.60 0.85 0.93
AGED [16] 0.21 0.35 0.55 0.64 0.18 0.28 0.50 0.63 0.27 0.43 0.81 0.83 0.26 0.56 0.77 0.84

BiHMP-GAN [25] 0.33 0.52 0.63 0.67 0.20 0.33 0.54 0.70 0.26 0.50 0.91 0.86 0.33 0.65 0.91 0.95
Skel-TNet [67] 0.31 0.50 0.69 0.76 0.20 0.31 0.53 0.69 0.25 0.50 0.93 0.89 0.30 0.64 0.89 0.98
VGRU-r1 [68] 0.34 0.47 0.64 0.72 0.27 0.40 0.64 0.79 0.36 0.61 0.85 0.92 0.46 0.82 0.95 1.21

Sybio-GNN (Only J-A) 0.19 0.35 0.54 0.63 0.18 0.34 0.54 0.66 0.23 0.43 0.84 0.82 0.26 0.62 0.81 0.87
Sybio-GNN (Only J-S) 0.19 0.33 0.54 0.69 0.17 0.32 0.52 0.66 0.21 0.41 0.83 0.82 0.24 0.64 0.93 1.01
Sybio-GNN (No recg) 0.18 0.31 0.50 0.59 0.16 0.29 0.49 0.61 0.21 0.40 0.80 0.80 0.22 0.57 0.85 0.93

Sybio-GNN 0.17 0.31 0.50 0.60 0.16 0.29 0.48 0.60 0.21 0.40 0.76 0.80 0.21 0.55 0.77 0.85

TABLE 5
Comparisons of MAEs between Sybio-GNN and previous methods for short-term motion prediction on other 11 actions of H3.6M dataset.

Motion Directions Greeting Phoning Posing Purchases Sitting
millisecond 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
ZeroV [15] 0.39 0.59 0.79 0.89 0.54 0.89 1.30 1.49 0.64 1.21 1.65 1.83 0.28 0.57 1.13 1.37 0.62 0.88 1.19 1.27 0.40 1.63 1.02 1.18

Res-sup [15] 0.41 0.64 0.80 0.92 0.57 0.83 1.45 1.60 0.59 1.06 1.45 1.60 0.45 0.85 1.34 1.56 0.58 0.79 1.08 1.15 0.41 0.68 1.12 1.33
CSM [26] 0.39 0.60 0.80 0.91 0.51 0.82 1.21 1.38 0.59 1.13 1.51 1.65 0.29 0.60 1.12 1.37 0.63 0.91 1.19 1.29 0.39 0.61 1.02 1.18

TP-RNN [66] 0.38 0.59 0.75 0.83 0.51 0.86 1.27 1.44 0.57 1.08 1.44 1.59 0.42 0.76 1.29 1.54 0.59 0.82 1.12 1.18 0.41 0.66 1.07 1.22
Skel-TNet [67] 0.36 0.58 0.77 0.86 0.50 0.84 1.28 1.45 0.58 1.12 1.52 1.64 0.29 0.62 1.19 1.44 0.58 0.84 1.17 1.24 0.40 0.61 1.01 1.15

Sybio-GNN (No recg) 0.24 0.45 0.61 0.67 0.36 0.61 0.98 1.17 0.50 0.86 1.29 1.43 0.18 0.44 0.99 1.22 0.40 0.62 1.00 1.08 0.23 0.41 0.80 0.97
Sybio-GNN 0.23 0.42 0.57 0.65 0.35 0.60 0.95 1.15 0.48 0.80 1.28 1.41 0.18 0.45 0.97 1.20 0.40 0.60 0.97 1.04 0.24 0.41 0.77 0.95

Motion Sitting Down Taking Photo Waiting Walking Dog Walking Together Average
millisecond 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
ZeroV [15] 0.39 0.74 1.07 1.19 0.25 0.51 0.79 0.92 0.34 0.67 1.22 1.47 0.60 0.98 1.36 1.50 0.33 0.66 0.94 0.99 0.39 0.77 1.05 1.21

Res-sup. [15] 0.47 0.88 1.37 1.54 0.28 0.57 0.90 1.02 0.32 0.63 1.07 1.26 0.52 0.89 1.25 1.40 0.27 0.53 0.74 0.79 0.40 0.69 1.04 1.18
CSM [26] 0.41 0.78 1.16 1.31 0.23 0.49 0.88 1.06 0.30 0.62 1.09 1.30 0.59 1.00 1.32 1.44 0.27 0.52 0.71 0.74 0.38 0.68 1.01 1.13

TP-RNN [66] 0.41 0.79 1.13 1.27 0.26 0.51 0.80 0.95 0.30 0.60 1.09 1.28 0.53 0.93 1.24 1.38 0.23 0.47 0.67 0.71 0.37 0.66 0.99 1.11
Skel-TNet [67] 0.37 0.72 1.05 1.17 0.24 0.47 0.78 0.93 0.30 0.63 1.17 1.40 0.54 0.88 1.20 1.35 0.27 0.53 0.68 0.74 0.36 0.64 0.99 1.02

Sybio-GNN (No recg) 0.30 0.62 0.91 1.03 0.16 0.34 0.55 0.66 0.22 0.49 0.89 1.09 0.42 0.74 1.09 1.25 0.17 0.34 0.52 0.57 0.26 0.50 0.82 0.94
Sybio-GNN 0.28 0.60 0.89 0.99 0.14 0.32 0.53 0.64 0.22 0.48 0.87 1.06 0.42 0.73 1.08 1.22 0.16 0.33 0.50 0.56 0.26 0.49 0.79 0.92

For NTU-RGB+D, Sybio-GNN aims to forecast future 10
frames. We compare our Sybio-GNN with several previous
methods. We also construct a Sybio-GNN variant that aban-
dons action-recognition head (No recg). Specifically, let the
input pose vector have dimension of 3M to represent M 3D
joint positions, and the input dimension of GRU is also set
to be 3M to match the pose dimension. As for the metric, we
use the percentage of correct keypoints within a normalized
region 0.05 (PCK@0.05), where a joint is correctly predicted
if the normalized distance between the predicted position
and ground-truth is less than 0.05. The PCK@0.05 of differ-
ent models is illustrated in Figure 8. We see: 1) our model
outperforms the baselines with a large margin especially
at the last several frames; 2) Using action recognition and
motion prediction together obtains the highest PCK@0.05
along time, demonstrating the enhancements from recogni-
tion task for dynamics learning.

Long-term motion prediction: For long-term prediction,
Sybio-GNN is tested on Human3.6M and CMU Mocap. We
predict the future poses with high variation up to 1000
millisecond. Table 7 presents the MAEs of various models

(a) Cross-Subject (b) Cross-View

Fig. 8. Comparison of PCK@0.05 (%) between Sybio-GNN and state-of-
the-art methods for short-term motion prediction on NTU-RGB+D. The
variant of Sybio-GNN (No recg) denotes our model without using the
recognition task to enhance motion prediction.

for predicting the 4 motions in Human3.6M at the future
560 ms and 1000 ms. We see that Sybio-GNN outperforms
the competitors on ‘Eating’, ‘Smoking’ and ‘Discussion’, and
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TABLE 6
Comparisons of MAEs between our model and the state-of-the-art methods on the 8 actions of CMU Mocap dataset. We evaluate the model for

long-term prediction and present the MAEs at both short and long-term prediction timestamps.

Motion Basketball Basketball Signal Directing Traffic Jumping
milliseconds 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000
Res-sup [15] 0.49 0.77 1.26 1.45 1.77 0.42 0.76 1.33 1.54 2.17 0.31 0.58 0.94 1.10 2.06 0.57 0.86 1.76 2.03 2.42
Res-uns [15] 0.53 0.82 1.30 1.47 1.81 0.44 0.80 1.35 1.55 2.17 0.35 0.62 0.95 1.14 2.08 0.59 0.90 1.82 2.05 2.46

CSM [26] 0.37 0.62 1.07 1.18 1.95 0.32 0.59 1.04 1.24 1.96 0.25 0.56 0.89 1.00 2.04 0.39 0.60 1.36 1.56 2.01
BiHMP-GAN [25] 0.37 0.62 1.02 1.11 1.83 0.32 0.56 1.01 1.18 1.89 0.25 0.51 0.85 0.96 1.95 0.39 0.57 1.32 1.51 1.94

Skel-TNet [67] 0.35 0.63 1.04 1.14 1.78 0.24 0.40 0.69 0.80 1.07 0.22 0.44 0.78 0.90 1.88 0.35 0.53 1.28 1.49 1.85
Sybio-GNN (No recg) 0.33 0.48 0.95 1.09 1.47 0.15 0.26 0.47 0.56 1.04 0.20 0.41 0.77 0.89 1.95 0.32 0.55 1.40 1.60 1.87

Sybio-GNN 0.32 0.48 0.91 1.06 1.47 0.12 0.21 0.38 0.49 0.94 0.20 0.41 0.75 0.87 1.84 0.32 0.55 1.40 1.60 1.82
Motion Running Soccer Walking Washing Window

milliseconds 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000
Res-sup [15] 0.32 0.48 0.65 0.74 1.00 0.29 0.50 0.87 0.98 1.73 0.35 0.45 0.59 0.64 0.88 0.32 0.47 0.74 0.93 1.37
Res-uns [15] 0.35 0.50 0.69 0.76 1.04 0.31 0.51 0.90 1.00 1.77 0.36 0.47 0.62 0.65 0.93 0.33 0.47 0.75 0.95 1.40

CSM [26] 0.28 0.41 0.52 0.57 0.67 0.26 0.44 0.75 0.87 1.56 0.35 0.44 0.45 0.50 0.78 0.30 0.47 0.80 1.01 1.39
BiHMP-GAN [25] 0.28 0.40 0.50 0.53 0.62 0.26 0.44 0.72 0.82 1.51 0.35 0.45 0.44 0.46 0.72 0.31 0.46 0.77 0.92 1.31

Skel-TNet [67] 0.38 0.48 0.57 0.62 0.71 0.24 0.41 0.69 0.79 1.44 0.33 0.41 0.45 0.48 0.73 0.31 0.46 0.79 0.96 1.37
Sybio-GNN (No recg) 0.21 0.33 0.53 0.56 0.66 0.22 0.38 0.72 0.83 1.38 0.26 0.32 0.38 0.41 0.54 0.22 0.33 0.62 0.83 1.07

Sybio-GNN 0.21 0.33 0.53 0.56 0.65 0.19 0.32 0.66 0.78 1.32 0.26 0.32 0.35 0.39 0.52 0.22 0.33 0.55 0.73 1.05

TABLE 7
Comparisons of MAEs between our model and other methods for

long-term motion prediction on 4 actions of H3.6M.

Motion Walking Eating Smoking Discussion
milliseconds 560 1k 560 1k 560 1k 560 1k
ZeroV [15] 1.35 1.32 1.04 1.38 1.02 1.69 1.41 1.96
ERD [42] 2.00 2.38 2.36 2.41 3.68 3.82 3.47 2.92

Lstm3LR [42] 1.81 2.20 2.49 2.82 3.24 3.42 2.48 2.93
SRNN [14] 1.90 2.13 2.28 2.58 3.21 3.23 2.39 2.43

DropAE [65] 1.55 1.39 1.76 2.01 1.38 1.77 1.53 1.73
Res-sup. [15] 0.93 1.03 0.95 1.08 1.25 1.50 1.43 1.69

CSM [26] 0.86 0.92 0.89 1.24 0.97 1.62 1.44 1.86
TP-RNN [66] 0.74 0.77 0.84 1.14 0.98 1.66 1.39 1.74
AGED [16] 0.78 0.91 0.86 0.93 1.06 1.21 1.25 1.30

BiHMP-GAN [25] / 0.85 / 1.20 / 1.11 / 1.77
Skel-TNet [67] 0.79 0.83 0.84 1.06 0.98 1.21 1.19 1.75

Sybio-GNN 0.75 0.78 0.77 0.88 0.92 1.18 1.17 1.28

obtain competitive results on ‘Walking’.
To further evaluate Sybio-GNN, we conduct long-term

prediction on CMU Mocap. We present the MAEs of Sybio-
GNN with or without using the action-recognition head.
Table 6 shows the predicting MAEs ranging from future 80
ms to 1000 ms. We see that Sybio-GNN significantly outper-
forms the state-of-the-art methods on actions ‘Basketball’,
‘Basketball Signal’ and ‘Washing Window’, and obtains
competitive performance on ‘Jumping’ and ‘Running’.

Effectiveness-efficiency tradeoff: We compare the pre-
diction errors and efficiency of various models on motion
prediction. The high response speed and precise generation
are both essential in real-time scenarios. In Symbio-GNN,
the AGIM propagates the features between joints and edges
iteratively. The iteration times K trades off between effec-
tiveness and speed; i.e. a larger K leads to a lower MAE
but slower speed. To represent the running speed, we use
the generated frame numbers in each 20 ms (frame period)
when we predict up to 400 ms. Tuning K from 0 to 4,
we compare Sybio-GNN to other methods on Human3.6M
and show the running speeds and MAEs in Fig. 9, where
different red circles denote different numbers of iterations
K in AGIM, i.e. from the rightmost circle to the leftmost
one, K = 0, 1, 2, 3, 4. We see that the Sybio-GNN is both
faster and more precise compared to its competitors.
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Fig. 9. Sybio-GNN is both faster and more precise compared to others.
Various red circles denote different iteration numbers K in AGIM, where
K = 0, 1, 2, 3, 4. The bottom right corner (highlighted by a trophy cup)
indicates higher speed and lower error, showing an ideal target.

6.3 Ablation Studies

6.3.1 Symbiosis of Recognition and Prediction

To analyze the mutual effects of action recognition and
motion prediction, we conduct several experiments.

We first study the effects on action recognition from
motion prediction. We use accurate class labels but noisy
future poses to train the multitasking Sybio-GNN for action
recognition. To represent noisy supervisions, we randomly
shuffle a percentage of targets motions among training data.
Table 8 presents the recognition accuracies with various
ratios of noisy prediction targets on two benchmarks of
NTU-RGB+D. We also show the recognition results of the
model without motion-prediction head. We see that 1) the
predicted head benefits the action-recognition head. Intro-
ducing a motion-prediction head is beneficial even when the
noise ratio is around 50%; 2) when the noise ratio exceeds
50%, the recognition performance is just slightly worse
than that of the model without the motion-prediction head,
reflecting that the action recognition is robust against the
deflected motion prediction. Consequently, we show that
motion prediction strengthens action recognition. Similarly,
we also test how the confused recognition results affect
motion prediction by using noisy action categories, which
are presented in Appendix.
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TABLE 8
Action recognition accuracies with noisy motion prediction targets in
varying degrees on NTU-RGB+D dataset. ‘No pred’ denotes model

without motion prediction task.
Noise ratio CS CV

0% 90.1% 96.4%
10% 89.8% 96.1%
20% 89.5% 96.1%
50% 89.1% 95.5%
70% 88.5% 94.9%
100% 87.7% 93.9%

No pred 89.0% 95.7%

Fig. 10. Given the same input, predicting more future poses leads to
a better performance of action recognition. We see that across all the
observation ratios, predicting all future poses is better than predicting 10
future poses; and both are better than no prediction.

We finally test the promotion on recognition when the
observed data is limited, where we intercept the early mo-
tions by a ratio (e.g. 10%) for action recognition. There are
three models with various prediction strategies: 1) predict-
ing the future 10 frames (‘Pred 10 frames’); 2) predicting
all future frames (‘Pred all frames’); 3) no prediction (‘No
pred’). Fig. 10 illustrates the recognition accuracies of three
models on different observation ratios. As we see, when the
observation ratio is low, ‘Pred all frames’ can be aware of
the entire action sequences and capture richer dynamics,
showing the best performance; when the observation ratio
is high, predicting 10 or all frames are similar because
the inputs carry sufficient patterns, but they outperform
‘No pred’ as they preserve information. By introducing the
motion-prediction head, our Sybio-GNN has the potential
for action classification in the early period.

6.3.2 Effects of Graphs
In this section, we study the abilities of various graphs,
namely, only joint-scale structural graphs (Only J-S), only
joint-scale actional graphs (Only J-A), only part-scale graphs
(Only P), and combining them (full).

For action recognition, on Cross-Subject of NTU-RGB+D,
we investigate different graph configurations. While involv-
ing a joint-scale structural graph, we respectively set the
number of hop in the joint-scale structural graphs (JS-Hop)
to be Γ = 1, 2, 3, 4. Note that when we use only joint-
scale structural graphs with Γ = 1, the corresponding
graph is exactly the skeleton itself. Table 9 presents the
results of Sybio-GNN with different graph components for
action recognition. We see that 1) representing long-range
structural relations, higher Γ leads to more effective action
recognition; 2) combining the multiple graphs introduced

TABLE 9
Recognition accuracies on NTU-RGB+D, CS with various graphs: only
joint-scale structural graphs (Only J-S), only joint-scale actional graph

(Only J-A), only part-scale graph (Only P) and all graphs (full).
JS-Hop (Γ) Only J-S Only J-A Only P full

1 85.9%

85.7% 87.3%

86.1%
2 86.2% 86.9%
3 87.5% 88.3%
4 88.3% 90.1%
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Fig. 11. Average action recognition accuracies and motion prediction
MAEs of models with different λact.

from different perspectives improves the action recognition
performance significantly. We also test various graph com-
ponents for motion prediction in Appendix.

6.3.3 Balance Joint-Scale Actional and Structural Graphs

In our model, we present that the power of actional and
structural graphs in JGC operator is traded off by a hyper-
parameter λact (see Eq. (5)). Here we analyze how λact

affects the model performances.
For action recognition, we test our model on NTU-

RGB+D, Cross-Subject, and present the classification accura-
cies with different λact; for motion prediction, we show the
average MAEs for short-term prediction on Human3.6M.
Fig. 11 illustrates the model performances for both tasks. We
see: 1) when λact = 0.5, we obtain the highest recognition
accuracies, showing large improvements than other λact;
2) for motion prediction, the performance is robust against
different λact, where the MAEs fluctuate around 0.615, but
λact = 0.9 and 1.0 lead to the lowest errors.

6.3.4 Bone-based Dual Graph Neural Networks

We validate the effectiveness of using dual networks which
take joint and bone features as inputs for action recognition,
respectively. Table 10 presents the recognition accuracies for
different combinations of joint-based and bone-based dual
networks on two benchmarks of NTU-RGB+D dataset. We
see that only using joint features or bone features for action
recognition cannot obtain the most accurate recognition, but
combining joint and bone features could improve the clas-

TABLE 10
The recognition accuracies of model with different parallel networks on

NTU-RGB+D.
Parallel Network CS CV

Only Joint 87.1% 93.8%
Only Bone 87.4% 93.5%

Joint & Bone 90.1% 96.4%
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Walking (16) Walking (17) Posing (14) Greeting (14)

Fig. 12. Joint-scale actional graphs on different motions in H3.6M.
Orange lines indicate the connections whose weights are greater than
0.5 in actional graphs, and bule lines indicate the original skeletons. The
numbers with brackets presented below plots denotes the numbers of
actional relations that are drawn here.

Fig. 13. 2D T-SNE map of learned actional graphs corresponding to 8
activities in H3.6M. Walking-related graphs are separated from sitting-
related graphs with a large margin.

sification performances with a large margin, indicating the
complementary information carried by the two networks.

6.4 Visualization
In this section, we visualize some representations of Sybio-
GNN, including the learned joint-scale actional graphs and
their low dimensional manifolds. Moreover, we show some
predicted motions to evaluate the model qualitatively.

6.4.1 Joint-Scale Actional Graphs
We first show the learned joint-scale actional graphs on
four motions in Human3.6M. Fig. 12 highlights a few edges
whose weights are greater than 0.5. We see: 1) The joint-
scale actional graphs capture some action-based long-range
relations beyond direct bone-connections; 2) Some reason-
able relations associated with the motions themselves are
captured, e,g, for ‘Greeting’, the stretched arms are corre-
lated to other joints; 3) For motions with the same category,
we tend to obtain the similar graphs; see two plots of
‘Walking’, while different classes of motions have distinct
actional graphs; see ‘Walking’ and the other motions, where
our model learns the discriminative patterns from data.

6.4.2 Manifolds of Joint-Scale Actional Graphs
To verify how discriminative the patterns embedded in the
joint-scale actional graphs, we visualize the low-dimension
manifolds of different joint-scale actional graphs. We select 8
representative classes of actions in Human3.6M and sample
more clips from long test motion sequences. Here we treat
all the joint-scale actional graphs as vectors and obtain their
2D T-SNE map; see Fig. 13. We see that ‘Walking’, ‘Walking
Dog’ and ‘Walking Together’, which have the common
walking dynamics, are distributed closely, as well as ‘Sitting’
and ‘Sitting Down’ are clustered; however, walking-related

actions and sitting-related actions are separated with a large
margin; as for ‘Eating’, ‘Smoking’ and ‘Taking Photo’, they
have similar movements on arms, showing a new cluster.

6.4.3 Predicted Sequences
Finally, to qualitatively show the prediction performances,
we compare the generated samples and illustrated predic-
tion errors of Sybio-GNN to those of Res-sup [15] and
CSM [26] on Human3.6M. Here we represent the prediction
errors by plotting a line segment that connects the prediction
position and ground-truth position of each corresponding
joint. In other words, a longer line segment indicates a larger
prediction error on the corresponding joint. Fig. 14 illus-
trates the future poses of ‘Walking’ and prediction errors
over 1000 ms with the frame interval of 40 ms. Comparing
to baselines, we see that Sybio-GNN provides significantly
better predictions. The poses generated by Res-sup has large
discontinuity at the after the 600th ms, where the error map
shows several long line segments on knees and feet; for
Res-sup, in the long term, the generated poses converge
to a mean pose, causing the steadily increasing prediction
errors. The poses generated by CSM overcome the early
discontinuity to some extent, while the errors become large
after the 600th millisecond. Sybio-GNN completes the action
accurately and reasonably.

6.5 Stability Analysis: Robustness against Input Per-
turbation
According to Theorem 1, we present that Sybio-GNN is
robust against perturbation on inputs, where we calculate
an upper bound of output deviation. To verify the sta-
bility, we add Gaussian noises sampled from N (0, σ2) on
input actions. We show the recognition accuracies on NTU-
RGB+D (Cross-Subject) and short-term prediction MAEs on
Human3.6M with standard deviation σ varied from 0.01 to
0.1. The recognition/prediction performances with different
σ are illustrated in Fig. 15. We see: 1) for action recogni-
tion, Sybio-GNN stays a high accuracy when the noise has
σ ≤ 0.04, but it tends to deteriorate due to severe per-
turbation when σ > 0.04; 2) for motion prediction, Sybio-
GNN produces precise poses when the noise has σ < 0.03,
but the prediction performance is degraded for larger σ. In
all, Sybio-GNN is robust against small perturbation. More
experimental analysis of model robustness and verification
of Theorem 1 are presented in Appendix.

7 CONCLUSIONS

In this paper, we propose a novel symbiotic graph neu-
ral network (Sybio-GNN), which handles action recogni-
tion and motion prediction jointly and use graph-based
operations to capture action patterns. Our model consists
of a backbone, an action-recognition head, and a motion-
prediction head, where the two heads enhance each other.
As building components in the backbone and the motion-
prediction head, graph convolution operators based on
learnable joint-scale and part-scale graphs are used to ex-
tract spatial information. We conduct extensive experiments
for action recognition and motion prediction with four
datasets, NTU-RGB+D, Kinetics, Human3.6M, and CMU
Mocap. Experiments show that our model achieves consis-
tent improvements compared to the previous methods.
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Fig. 14. Visualization of motion prediction on Human3.6M over the future 100 millisecond. We shows the predictions of ‘Waling’ in Human3.6M. We
compare the predictions of Sybio-GNN, Res-sup, and CSM to the ground truth (GT).
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