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Figure 1: Environments included in this work, motivated by industrial control applications
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https://github.com/xiangyuan-zhang/controlgym
https://github.com/xiangyuan-zhang/controlgym


ZHANG MAO MOWLAVI BENOSMAN BAŞAR

1. Introduction

The intersection of machine learning (ML), reinforcement learning (RL), and control theory has
garnered significant attention in recent years, giving rise to the learning for dynamics & control
(L4DC) research community (Recht, 2019; Vamvoudakis et al., 2021; Brunke et al., 2022; Hu et al.,
2023). L4DC has the naturally driven mission to unlock the power of learning-based methods for
control and establish a rigorous theoretical foundation (L4DC, 2023). This mission could only
be fulfilled with joint forces and close collaboration between theorists and practitioners from ML,
control theory, and optimization.

Theorists are keen to validate their algorithms and theories in real-world scenarios but encounter
challenges with OpenAI Gym/Gymnasium (Gym) environments (Brockman et al., 2016; Towers
et al., 2023). Specifically, most Gym environments feature highly nonlinear dynamics, often in-
volving contacts, and offer very limited parameter customization options, making them ill-suited
testbeds for control theory research. Meanwhile, control textbook examples lack the complexity for
cutting-edge ML/RL research that prioritizes efficiency and scalability.

To address these requirements, we introduce controlgym, a lightweight and versatile Python
library that offers a spectrum of environments spanning from linear systems to chaotic, large-
scale systems governed by partial differential equations (PDEs). Specifically, controlgym fea-
tures thirty-six linear industrial control environments, encompassing sectors like aerospace, cyber-
physical systems, ground and underwater vehicles, and power systems. Additionally, controlgym
includes ten large-scale control environments governed by fundamental PDEs in fluid dynamics and
physics. These PDEs are discretized in space by custom solvers, yielding user-tunable state-space
dimensions without affecting the dynamics of the environment, a key aspect for assessing the scal-
ability of RL algorithms. All environments comply with Gym and support standard RL algorithms
(Sutton et al., 2000; Kakade, 2002; Schulman et al., 2015, 2017; Mnih et al., 2016; Sutton and Barto,
2018), e.g., as seen in stable-baselines3 (Raffin et al., 2021).

Our primary contribution is the introduction of a diverse array of control environments charac-
terized by continuous and unbounded action-observation spaces, designed for large-scale systems.
These environments, detailed in Tables 1 and 2, enhance Gym’s collection and are highly customiz-
able to support theoretical advancement in L4DC. For example, users can manipulate the open-loop
dynamics of PDEs by adjusting physical parameters, with explicit formulas relating parameters and
eigenvalues available in linear PDE environments (cf., Section 3.1). Moreover, our PDE environ-
ments uniquely allow the users to extend system dimensionality to infinity while preserving the
intrinsic dynamics. The PDE solvers implemented to power controlgym are innovative, employ-
ing state-of-the-art schemes with exponential spatial convergence and high-order temporal accuracy
masked behind a user-friendly discrete-time state-space formulation. Specifically for linear PDE
environments, we have developed novel state-space models to evolve the PDE dynamics.

Leveraging its strengths, controlgym is a testbed for exploring three essential aspects of ap-
plying RL to continuous control. First, it aims to probe whether RL algorithms can consistently
converge in learning control policies. Second, it examines the stability and robustness of the pol-
icy and training process, motivated by real-world safety-critical applications. Lastly, it assesses
the scalability of RL algorithms in high-dimensional and potentially infinite-dimensional systems.
With controlgym, we bridge the theoretical development and practical applicability of L4DC by
providing a research platform that supports the establishment of a rigorous foundation. Initial de-
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ployments of controlgym include RL for PDE control (Zhang et al., 2024b; Botteghi and Fasel,
2024) and toward a foundational control transformer (Zhang et al., 2024a).

Related works. The COMPleib project (Leibfritz, 2004; Leibfritz and Lipinski, 2004) pioneered
in offering standard control tasks, as MATLAB files, for analyzing model-based control algorithms.
In the era of ML and RL, Gym (Brockman et al., 2016; Towers et al., 2023) has become the stan-
dard platform for developing and benchmarking RL algorithms for continuous control, offering a
variety of environments such as cart pole, inverted pendulum, and robotic tasks powered by Mu-
joco (Todorov et al., 2012). Numerous follow-up projects that implement RL algorithms on Gym
environments include rllab/garage (Duan et al., 2016), RLlib (Liang et al., 2018), dm control (Tun-
yasuvunakool et al., 2020), deluca (Gradu et al., 2020), stable-baselines3 (Raffin et al., 2021), safe-
control-gym (Brunke et al., 2022), realworldrl-suite (Dulac-Arnold et al., 2020), tianshou (Weng
et al., 2022), and TorchRL (Bou et al., 2023). Very recently, HydroGym (Callaham et al., 2023)
provided fluid dynamics environments for testing RL algorithms for flow control.

Complying with Gym’s framework, we offer a spectrum of control environments designed to
support the foundational theoretical developments in RL for linear optimal control (Fazel et al.,
2018; Bu et al., 2019a; Tu and Recht, 2019; Mohammadi et al., 2021; Yang et al., 2019; Dean et al.,
2020; Malik et al., 2020; Furieri et al., 2020; Simchowitz and Foster, 2020; Simchowitz et al., 2020;
Hambly et al., 2021; Chen and Hazan, 2021; Perdomo et al., 2021; Li et al., 2021; Zhao and You,
2021; Jansch-Porto et al., 2022; Ozaslan et al., 2022; Ju et al., 2022; Lale et al., 2022; Duan et al.,
2022; Zhang and Başar, 2023; Tang et al., 2023; Tsiamis et al., 2022; Ziemann et al., 2022; Duan
et al., 2023), linear robust control and dynamic games (Agarwal et al., 2019; Gravell et al., 2019; Bu
et al., 2019b; Zhang et al., 2019, 2021a; Yang et al., 2020; Zhang et al., 2021c, 2020, 2021b; Keivan
et al., 2022; Guo and Hu, 2022; Cui et al., 2023), estimation and filtering (Umenberger et al., 2022;
Zhang et al., 2023a,b,c), and PDE control (Pan et al., 2018; Bucci et al., 2019; Liu and Wang, 2021;
Degrave et al., 2022; Zeng et al., 2022; Vignon et al., 2023; Mowlavi et al., 2023; Werner and Peitz,
2023; Peitz et al., 2023).

Notations. In the paper, we follow the list of notations in the following table.

Notation Description

sk, ak system state and control input/action at discrete time k, respectively
wk, vk stochastic noise or deterministic uncertainty at discrete time k

ns, na, ny dimensionalities of state, action, and observation, respectively
Ω, L, x, u physical domain, domain length, spatial coordinates, and spatial field of PDE, respectively
Φi(x) time-invariant forcing support function for the ith control input ai
∆t, dt sampling time and numerical integration time step, respectively
K total number of discrete time steps
W discrete Fourier transform (DFT) matrix
I , 0 Identity and zero matrices of appropriate dimensions, respectively
c velocity in the convection-diffusion-reaction (CDR) and wave equations
ν diffusivity constant in CDR, Burgers’, Fisher, Allen-Cahn, and Cahn-Hilliard equations
r reaction constant in CDR and Fisher equations

ℏ,m Planck constant and particle mass, respectively, in the Schrödinger equation
V potential constant in Schrödinger and Allen-Cahn equations
Γ surface tension constant in the Cahn-Hilliard equation
ψ local change rate of u(x, t) in the wave equation
ξ, η real and imaginary parts of u(x, t) in the Schrödinger equation, respectively
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Table 1: List of the linear control environments in controlgym

ID ns na ny Task ID ns na ny Task

ac1 5 3 3 aircraft cm5 480 1 2 cable-mass model
ac2 5 3 3 aircraft dis1 8 4 4 decentralized system
ac3 4 1 2 aircraft dis2 4 2 2 decentralized system
ac4 9 1 2 aircraft dlr 40 2 2 space structure
ac5 9 1 5 aircraft he1 4 2 1 helicopter
ac6 10 4 5 aircraft he2 8 4 6 helicopter
ac7 55 2 2 aircraft he3 8 4 6 helicopter
ac8 4 3 4 aircraft he4 8 4 2 helicopter
ac9 40 3 4 aircraft he5 20 4 6 helicopter
ac10 10 2 2 aircraft he6 20 4 6 helicopter
bdt1 11 3 3 distillation tower iss 270 3 3 International Space Station
bdt2 82 4 4 distillation tower je1 30 3 5 jet engine
cbm 348 1 1 clamped beam model je2 24 3 6 jet engine
cdp 120 2 2 CD player lah 48 1 1 L.A. University Hospital
cm1 20 1 2 cable-mass model pas 5 1 3 piezoelectric bimorph actuator
cm2 60 1 2 cable-mass model psm 7 2 3 power system
cm3 120 1 2 cable-mass model rea 8 1 1 chemical reactor
cm4 240 1 2 cable-mass model umv 8 2 2 underwater vehicle

2. Control Environments

2.1. Linear Control Environments

We incorporate 36 linear control environments from various industries, as detailed in Table 1. We
select and organize these continuous-time linear systems from the pioneering COMPleib project
(Leibfritz, 2004; Leibfritz and Lipinski, 2004), and provide them as standard Gym environments.
These environments span control applications ranging from aircraft, helicopters, jet engines, reac-
tor models, decentralized cyber-physical systems, binary distillation towers, ground and underwater
autonomous vehicles, power systems, compact disk (CD) players, and large space structures. Ad-
ditionally, the scope of our environments extends to control problems within projects such as the
International Space Station and the Los Angeles Hospital.

With the user-selected sampling time ∆t, we assume the control input is constant over each ∆t
and generate the discrete-time system dynamics as

sk+1 = Ask +B1wk +B2ak,

zk = C1sk +D11wk +D12ak,

yk = Csk +D21wk,

where sk ∈ Rns is the state, ak is the control/action input, wk is the disturbance input that could
be either stochastic or adversarial, zk ∈ Rnz is the output, yk ∈ Rny is the observation, and A,
B1, B2, C1, C, D11, D12, D21 are the discretized system matrices with appropriate dimensions.
These linear control environments are directly applicable to support theoretical research of RL for
the fundamental linear control, games, and estimation tasks (cf., Section 1).

Linear control objectives. For each linear control task in Table 1, we define a regulation task whose
primary objective is to steer the system’s dynamics toward the zero vector. The reward function (to
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Table 2: List of PDE control environments in controlgym

ID ns na ny Linearity

convection diffusion reaction (50,+∞) (1,+∞) (1,+∞) Linear
wave (100,+∞) (1,+∞) (1,+∞) Linear

schrodinger (100,+∞) (1,+∞) (1,+∞) Linear
burgers (50,+∞) (1,+∞) (1,+∞) Nonlinear

kuramoto sivashinsky (200,+∞) (1,+∞) (1,+∞) Nonlinear
fisher (50,+∞) (1,+∞) (1,+∞) Nonlinear

allen cahn (50,+∞) (1,+∞) (1,+∞) Nonlinear
korteweg de vries (200,+∞) (1,+∞) (1,+∞) Nonlinear

cahn hilliard (50,+∞) (1,+∞) (1,+∞) Nonlinear
ginzburg landau (50,+∞) (1,+∞) (1,+∞) Nonlinear

be maximized) is formulated as the negative sum of the linear-quadratic (LQ) stage cost

J (ak) = −E
{K−1∑

k=0

(s⊤k Qsk + a⊤k Rak + 2s⊤k Sak)
}
,

where Q = C⊤
1 C1, R = D⊤

12D12, and S = C⊤
1 D12 aim to balance regulation performance and

control efforts, and K is the total number of discrete time steps.

2.2. PDE Control Environments

In this section, we describe one-dimensional PDE control environments with periodic boundary
conditions and spatially distributed control inputs. We first define a spatial domain Ω = [0, L] ⊂ R
and a continuous field u(x, t) : Ω × R+ → R, where x and t represent spatial and temporal
coordinates, respectively, and L is the length of the domain. Each PDE control task listed in Table
2 then takes the general continuous form

∂u

∂t
−F

(
∂u

∂x
,
∂2u

∂x2
, . . .

)
= a(x, t), (2.1)

where F is a linear or nonlinear differential operator (see Sections 2.2.1-2.2.10 for specific def-
initions for each PDE) that contains spatial derivatives of various orders and depends on various
physical constants, and a is a distributed control force defined as

a(x, t) =

na−1∑
j=0

Φj(x)aj(t). (2.2)

The control force consists of na scalar control inputs aj(t), each acting over a specific subset of
Ω defined by its corresponding forcing support function Φj(x), as illustrated in Figure 2. Such a
control force can be used to model the addition of energy to the system or other external influences
that affect the PDE dynamics. We use periodic boundary conditions in all of our PDE control tasks,
meaning that u and all its spatial derivatives are equal at both ends of the domain Ω.
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Figure 2: Illustration of how distributed control inputs influence the dynamics of a PDE through
forcing support functions Φj , taking Ω = [0, 1] as an example. Left: The forcing support
function corresponding to a single control input is depicted, with its width, a tunable pa-
rameter, set to 0.3. This represents a control input that uniformly affects state components
spanning the middle 30% of the physical domain. Middle: The forcing support functions
corresponding to two control inputs are shown. They are spaced equidistantly from one
another, and each has a width of 0.1 so that each control input uniformly affects state
components spanning 10% of the physical domain. Right: The forcing support functions
corresponding to five control inputs are shown, each with a width of 0.05 uniformly af-
fecting state components spanning 5% of the physical domain.

Discretization of space and time. To solve the PDEs listed in Table 2, we first need to discretize
space and time in the continuous form (2.1). For a state dimension ns that is even and a sampling
time ∆t ∈ R+, both selected by the user, we define a state vector sk ∈ Rns that contains the values
of u at ns equally-spaced points in Ω and at discrete time k ∈ N corresponding to the simulation
time t = k∆t. The total simulation time is K∆t, where K ∈ N is an input parameter specifying
the total number of discrete-time steps. We also assume that the scalar control inputs ai(t) are
piecewise constant over each discrete-time step of duration ∆t so that they can be concatenated into
a discrete-time vector ak ∈ Rna for all k ∈ {0, · · · ,K − 1}.

Numerical solver for nonlinear PDEs. After discretizing space and time, the dynamics of the
nonlinear PDEs can be approximated by a discrete-time finite-dimensional nonlinear system

sk+1 = f(sk, ak;wk), (2.3)

where f : Rns × Rna → Rns is a time-invariant mapping contingent on the physical parameters of
each specific PDE and forcing support functions Φi, and wk is an optional stochastic process noise.
To compute the mapping f , we numerically approximate the space and time derivatives in (2.1)
using, respectively, a pseudo-spectral method (Trefethen, 1996) and a fourth-order exponential time
differencing Runge-Kutta (ETDRK4) scheme (Cox and Matthews, 2002; Kassam and Trefethen,
2005). We then integrate numerically the dynamics over one discrete-time step of duration ∆t using
an internal integration time step dt. The mapping f is therefore not obtained explicitly; rather, its
action is evaluated through a numerical integration loop. The sampling time ∆t may be selected as
large as desired, but it should be an integer multiple of the integration time step dt.

In general, one should choose ns to be sufficiently large and dt to be sufficiently small to ensure
the accuracy of the discretized system (2.3). Due to the exponential convergence rate of the pseudo-
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spectral method as well as the high convergence rate of the ETDRK4 scheme, ns larger than about
50 is sufficient in most cases, except the Korteweg de Vries and Kuramoto-Sivashinsky PDEs that
require ns larger than about 200 for accurate solutions. For all PDEs, the presence of small-scale
(i.e., high wavenumber) spatial features in the initial condition may necessitate higher values of ns.

Explicit state-space model for linear PDEs. After space and time discretization, the linear PDEs
listed in Table 2 can be approximated by a discrete-time linear state-space model of the form

sk+1 = Ask +B2ak + wk, (2.4)

where A ∈ Rns×ns is a time-invariant transition matrix contingent on the physical parameters of
each specific PDE, B2 ∈ Rns×na is a time-invariant control matrix, and wk ∼ N (0,Σw) is an
optional process noise. The A matrix in (2.4) is constructed from a spectral approximation of the
space derivatives in (2.1) combined with an analytical temporal integration of the continuous-time
linear dynamics over one discrete-time step of duration ∆t (see Sections 2.2.1-2.2.3 for detailed
treatments of each case). Contrary to the case of nonlinear PDEs where evaluating the mapping f
in (2.3) requires an internal numerical integration loop, the availability of matrix A in explicit form
for linear PDEs allows for the direct application of model-based linear controllers.

Similar to nonlinear PDEs, due to the numerical approximation of the spatial derivatives, one
should choose ns to be sufficiently large to ensure the accuracy of the state-space model (2.4), with
ns greater than about 50 sufficient in most cases. Due to the analytical temporal integration of
the dynamics, there is no internal integration time step dt to select. As in the nonlinear case, the
sampling time ∆t may be chosen as large as desired.

Since the state-space model (2.4) is derived from a PDE, the eigenvalues and eigenvectors of the
A matrix can be analyzed explicitly. This method allows for a clearer understanding of the impact
of the PDE’s physical parameters on the system dynamics, such as open-loop stability. By adjust-
ing these parameters, users can tailor the system dynamics to better assess their algorithms. We
demonstrate this process with the convection-diffusion-reaction equation in Section 3.1, illustrating
the relationships between its physical parameters and open-loop system dynamics.

Observation process. For all PDEs listed in Table 2, we place ny sensors uniformly throughout
the domain Ω, where each sensor measures the unscaled value of the state at its location, perturbed
by additive zero-mean Gaussian white noise. That is, the observation yk at time k is computed by
yk = Csk + vk, where C ∈ Rny×ns is structured with a single 1 per row and zeros elsewhere, and
vk ∼ N (0,Σv). Both ny and Σv are user-configurable parameters.

PDE control objectives. For all PDEs listed in Table 2, we define a control task whose primary
objective is to steer the system’s dynamics toward a user-defined target state sref ∈ Rns . The
reward function is formulated as the negative sum of the LQ stage cost

J (ak) = −E

{
K−1∑
k=0

[
(sk − sref )

⊤Q(sk − sref ) + a⊤k Rak

]}
,

where Q and R are positive-definite weighting matrices that balance tracking performance and
control effort. When the target state is the zero vector, the tracking problem reduces to the LQ
regulation problem.
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2.2.1. CONVECTION-DIFFUSION-REACTION EQUATION

The convection-diffusion-reaction (CDR) equation models the transfer of particles, energy, or other
physical quantities within a system due to convection, diffusion, and reaction processes. The tempo-
ral dynamics of the continuous concentration function u(x, t) in one spatial dimension is given by

∂u

∂t
+ c

∂u

∂x
− ν

∂2u

∂x2
− r u = a(x, t), (2.5)

where c is the convection velocity, ν > 0 is the diffusivity constant, r is the reaction constant,
and a(x, t) is a source term defined in (2.2) that models the addition of energy to the system or
other external influences that affect the PDE dynamics. The scalar physical parameters of the CDR
equation characterize the strength of convection, diffusion, and reaction processes. When c = r =
0, the CDR equation (2.5) reduces to the heat equation. The CDR equation with r = 0 has been
used to validate the global convergence of RL algorithms in Kalman filtering (Zhang et al., 2023b).
We visualize the uncontrolled solution of the CDR equation for a specific choice of parameters and
initial condition in Figure 3.

Figure 3: The uncontrolled solution to the CDR equation in a domain of length L = 1 with pa-
rameters, c = 0.01, ν = 0.002, and r = 0.1. The initial condition is u(x, t = 0) =
sech(10x− 5). Left: Contour plot that shows the value of the state variable over the total
simulation time (x-axis) and across the spatial domain (y-axis). Middle: Lines represent-
ing the state variable at fixed times. The x- and y-axes represent spatial coordinates and
values of the state variable, respectively. The color of the lines corresponds to different
time stamps within the total simulation time. Right: 3D surface plot showing the value of
the state variable (z-axis) over time (y-axis) and across the spatial domain (x-axis).

After discretizing space and time, the CDR equation can be approximated by the linear state-
space model (2.4) with

A =
1

ns
W †diag(e(−ickx−νk2x+r)∆t)W, B2 = [Φ0 Φ1 · · · Φna−1 ] ∈ Rns×na (2.6)

where i is the imaginary unit, kx = 2π
L [0, . . . , ns

2 − 1, 0,−ns
2 + 1, . . . ,−1] ∈ Rns is the vector of

spatial wavenumbers, Φj ∈ Rns are the forcing support functions evaluated at ns equally-spaced
points in Ω, and W ∈ Rns×ns is the discrete Fourier transform (DFT) matrix with entries defined
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by (Rao and Yip, 2018)

∀p, q, Wpq = e−
2πi(p−1)(q−1)

ns . (2.7)

The scaled conjugate transpose ofW , denoted byW †/ns, is the inverse DFT matrix. In Section 3.1,
we present the analytical eigenvalues and eigenvectors of the A matrix in (2.6), derived as functions
of the physical parameters of the CDR equation.

2.2.2. WAVE EQUATION

The wave equation is a fundamental linear PDE in physics and engineering, describing the propa-
gation of various types of waves through a homogeneous medium. The temporal dynamics of the
perturbed scalar quantity u(x, t) propagating as a wave through one-dimensional space is given by

∂2u

∂t2
− c2

∂2u

∂x2
= a(x, t), (2.8)

where c is a constant representing the wave’s speed in the medium, and a(x, t) is a source term
defined in (2.2) that models the effect of a force or other external influences acting on the system.
We visualize the uncontrolled solution of the wave equation for a specific choice of parameters and
initial condition in Figure 4.

Figure 4: The uncontrolled solution to the wave equation in a domain of length L = 1 with parame-
ter c = 0.1. The initial conditions are u(x, t = 0) = sech(10x− 5) and ψ(x, t = 0) = 0.
The figure convention is consistent with that of Figure 3.

We solve the wave equation by first transforming (2.8) into a coupled system of two PDEs with
first-order time derivatives. Specifically, we introduce a second continuous field ψ(x, t) : Ω×R+ →
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R representing the rate at which the scalar quantity u(x, t) is changing locally. Then, we can write
(2.8) in the equivalent form

∂u

∂t
− ψ = 0, (2.9a)

∂ψ

∂t
− c2

∂2u

∂x2
= a(x, t). (2.9b)

We next discretize space and time by introducing a state vector sk that concatenates the values
of both u and ψ, each sampled at n′s = ns/2 equally-spaced points in Ω so that sk contains ns
components. The wave equation in the form (2.9) can then be approximated by the state-space
model (2.4) with

A =
1

n′s
·
[

W 0n′
s×n′

s

0n′
s×n′

s
W

]†
exp

([
0n′

s×n′
s

In′
s×n′

s

Λ 0n′
s×n′

s

]
∆t

)[
W 0n′

s×n′
s

0n′
s×n′

s
W

]
(2.10)

B2 =

[
0n′

s
0n′

s
· · · 0n′

s

Φ′
0 Φ′

1 · · · Φ′
na−1

]
∈ Rns×na ,

where Λ = diag(−c2k2x) ∈ Rn′
s×n′

s with kx = 2π
L [0, . . . , n

′
s
2 − 1, 0,−n′

s
2 + 1, . . . ,−1] ∈ Rn′

s

the vector of spatial wavenumbers, Φ′
j ∈ Rn′

s are the forcing support functions evaluated at n′s
equally-spaced points in Ω, and W ∈ Rn′

s×n′
s is the DFT matrix (2.7) but with ns replaced by n′s.

2.2.3. SCHRÖDINGER EQUATION

The Schrödinger equation is fundamental in quantum mechanics, describing how the quantum state
of an isolated quantum-mechanical system, a complex-valued wave function, changes over time.
For a single non-relativistic particle in a constant potential, the Schrödinger equation for the wave
function u(x, t) is given by

iℏ
∂u

∂t
+

ℏ2

2m

∂2u

∂x2
− V u = ℏ a(x, t), (2.11)

where i is the imaginary unit, ℏ is the Planck constant, V is the real potential constant, and a(x, t) is
a real-valued source term defined in (2.2) that models a force acting on the system or other external
influences that affect the PDE dynamics. We visualize the uncontrolled solution of the Schrödinger
equation for a specific choice of parameters and initial condition in Figure 5.

We solve the Schrödinger equation by first transforming (2.11) into a coupled system of two
PDEs with first-order time derivatives, similar to the approach adopted for the wave equation.
Specifically, we introduce two continuous fields ξ(x, t) : Ω× R+ → R and η(x, t) : Ω× R+ → R
that represent the real and imaginary parts of the complex-valued scalar quantity u(x, t), respec-
tively. Then, we rewrite (2.8) in the equivalent form

∂ξ

∂t
+

ℏ
2m

∂2η

∂x2
− V

ℏ
η = 0, (2.12a)

∂η

∂t
− ℏ

2m

∂2ξ

∂x2
+
V

ℏ
ξ = a(x, t), (2.12b)

We now discretize space and time by introducing a state vector sk that concatenates the values
of both ξ and η, each sampled at n′s = ns/2 equally-spaced points in Ω so that sk contains ns

10



CONTROLGYM: LARGE-SCALE CONTROL ENVIRONMENTS

Figure 5: The uncontrolled solution to the Schrödinger equation in a domain of length L = 1 with
parameters ℏ = 1.0, m = 1.0, and V = 0.0. The initial conditions are ξ(x, t = 0) =
sech(10x − 5) and η(x, t = 0) = 0. The figure convention is consistent with that of
Figure 3.

components. The Schrödinger equation in the form (2.9) can then be approximated by the state-
space model (2.4) with

A =
1

n′s

[
W 0n′

s×n′
s

0n′
s×n′

s
W

]†
exp

([
0n′

s×n′
s

Λ

−Λ 0n′
s×n′

s

]
∆t

)[
W 0n′

s×n′
s

0n′
s×n′

s
W

]
, (2.13)

B2 =

[
0n′

s
0n′

s
· · · 0n′

s

Φ′
0 Φ′

1 · · · Φ′
na−1

]
∈ Rns×na ,

where Λ = diag(ℏ/(2m)k2x + V/ℏ) ∈ Rn′
s×n′

s with kx = 2π
L [0, . . . , n

′
s
2 − 1, 0,−n′

s
2 +1, . . . ,−1] ∈

Rn′
s the vector of spatial wavenumbers, Φ′

j ∈ Rn′
s are the forcing support functions evaluated at n′s

equally-spaced points in Ω, and W ∈ Rn′
s×n′

s is the DFT matrix defined in (2.7) but with ns therein
replaced by n′s.

2.2.4. BURGERS’ EQUATION

Burgers’ equation is a simplified version of nonlinear PDEs arising in fluid dynamics and captures
key features of water waves and gas dynamics such as shock formation. The temporal dynamics of
the velocity u(x, t) is

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= a(x, t), (2.14)
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where ν > 0 is the diffusivity (or viscosity) parameter and a(x, t) is a source term defined in
(2.2) that models a force acting on the system or other external influences that affect the PDE
dynamics. At the inviscid limit of ν = 0, Burgers’ equation predicts discontinuous shocks; at low
ν values, Burgers’ equation exhibits shock-like behavior but remains smooth; and with high values
of ν, Burgers’ equation mirrors the dissipative nature of the heat equation. The behavior of the
uncontrolled solution for a specific choice of parameters and initial condition is shown in Figure 6.

Figure 6: The uncontrolled solution to Burgers’ equation in a domain of length L = 1 with pa-
rameter ν = 0.001. The initial condition is u(x, t = 0) = sech(10x − 5). The figure
convention is consistent with that of Figure 3.

2.2.5. KURAMOTO-SIVASHINSKY EQUATION

The Kuramoto-Sivashinsky (KS) equation is a nonlinear PDE applied to studying pattern forma-
tion and instability in fluid dynamics, combustion, and plasma physics. The temporal dynamics of
u(x, t) in one spatial dimension is provided by

∂u

∂t
+ u

∂u

∂x
+
∂2u

∂x2
+
∂4u

∂x4
= a(x, t), (2.15)

where a(x, t) is a source term defined in (2.2) that models a force acting on the system or other
external influences that affect the dynamics. The nonlinear convection term, the second-order dif-
fusion term, and the fourth-order dispersion term interact to produce complex spatial patterns and
temporal chaos when the domain length L is large enough (Cvitanović et al., 2010). Figure 7 dis-
plays the behavior of the uncontrolled solution of the KS equation for a specific initial condition
and L = 32π, well into the chaotic regime. Due to the chaotic nature of the dynamics, the specific
choice of initial condition has negligible influence on the qualitative properties of the solution.

2.2.6. FISHER EQUATION

The Fisher equation is a nonlinear PDE employed in biology, ecology, and epidemiology to model
gene propagation, invasions, and population dynamics. The temporal dynamics of u(x, t) in one
spatial dimension is described by

∂u

∂t
− ν

∂2u

∂x2
− r · u(1− u) = a(x, t), (2.16)
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Figure 7: The uncontrolled solution to the KS equation in a domain of length L = 32π. The initial
condition is u(x, t = 0) = 1

16x sin(38x) . The figure convention is consistent with that of
Figure 3.

where ν > 0 is the diffusivity constant, r is the reaction constant, and a(x, t) is a source term
defined in (2.2) that models external influences affecting the PDE dynamics. The term r · u(1− u)
captures population expansion limited by carrying capacity, with r as the intrinsic growth rate. The
uncontrolled solution of the Fisher equation for a specific choice of parameters and initial condition
is depicted in Figure 8.

Figure 8: The uncontrolled solution to the Fisher equation in a domain of length L = 10 with
parameters ν = 0.0001 and r = 0.1. The initial condition is u(x, t = 0) = sin(2πx5 ).
The figure convention is consistent with that of Figure 3.

2.2.7. ALLEN-CAHN EQUATION

The Allen-Cahn equation is a nonlinear PDE modeling phase separation in binary alloy systems
in materials science. The temporal dynamics of u(x, t) in one spatial dimension, with u = ±1
indicating the presence of one phase or the other, is given by

∂u

∂t
− ν2

∂2u

∂x2
+ V (u3 − u) = a(x, t), (2.17)

where ν > 0 is the diffusivity constant, V is the potential constant, and a(x, t) is a source term
defined in (2.2) that models external influences affecting the PDE dynamics. We visualize the
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uncontrolled solution of the Allen-Cahn equation for a specific choice of parameters and initial
condition in Figure 9.

Figure 9: The uncontrolled solution to the Allen-Cahn equation in a domain of length L = 2 with
parameters ν = 0.0001 and V = 5.0. The initial condition is u(x, t = 0) = (x − 1)2 ·
cos(π(x− 1)). The figure convention is consistent with that of Figure 3.

2.2.8. KORTEWEG-DE VRIES EQUATION

The Korteweg-de Vries (KdV) equation is a nonlinear PDE pivotal in understanding nonlinear wave
dynamics, modeling solitary wave propagation across shallow water surfaces, with applications
extending to plasma physics, nonlinear optics, and quantum mechanics. The temporal dynamics of
u(x, t) with an additional source term a(x, t) that models external influences is given by

∂u

∂t
+
∂3u

∂x3
− 6u

∂u

∂x
= a(x, t). (2.18)

We visualize the uncontrolled solution of the KdV equation for a specific choice of parameters and
an initial condition that leads to two solitons propagating at different speeds in Figure 10.

Figure 10: The uncontrolled solution to the KdV equation in a domain of length L = 10. The initial
condition is u(x, t = 0) = −12(3+cosh(20−4x)+4 cosh(10−2x))

(cosh(15−3x)+3 cosh(5−x))2
. The figure convention is

consistent with that of Figure 3.
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2.2.9. CAHN-HILLIARD EQUATION

The Cahn-Hilliard equation is a nonlinear PDE modeling phase separation in alloys and polymers
in materials science. The temporal dynamics of u(x, t) in one spatial dimension, with u = ±1
indicating the presence of one phase or the other, is described by

∂u

∂t
− ν

∂2

∂x2
(u3 − u− Γ

∂2u

∂x2
) = a(x, t), (2.19)

where ν > 0 is the diffusivity constant, Γ is the constant surface tensor coefficient, and a(x, t)
is a source term defined in (2.2) that models external influences affecting the PDE dynamics. We
visualize the uncontrolled solution of the Cahn-Hilliard equation for a specific choice of parameters
and initial condition in Figure 11.

Figure 11: The uncontrolled solution to the Cahn-Hilliard equation in a domain of length L = 2
with parameters ν = 1.0 and Γ = 0.02. The initial condition is u(x, t = 0) = cos(π(x−
1))− exp(−4(π(x− 1))2). The figure convention is consistent with that of Figure 3.

2.2.10. GINZBURG-LANDAU EQUATION

The Ginzburg-Landau equation is a nonlinear PDE describing the evolution of disturbances near the
onset of instability in various physical systems. The temporal dynamics of the amplitude u(x, t) of
a disturbance in one spatial dimension is governed by

∂u

∂t
− u+ |u|2u− ∂2u

∂x2
= a(x, t), (2.20)

where a(x, t) is a source term defined in (2.2) that models external influences affecting the PDE
dynamics. We visualize the uncontrolled solution of the Ginzburg-Landau equation for a specific
choice of parameters and initial condition in Figure 12.

3. Examples of Using controlgym

This section provides several examples for using controlgym. In particular, we include a detailed
analysis of how users can design the open-loop dynamics of linear PDEs by selecting physical
parameters in Section 3.1. Sections 3.2 and 3.3 provide code examples of applying a model-based
controller (as baseline) and an RL-based controller to a helicopter environment, respectively. Lastly,
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Figure 12: The uncontrolled solution to the Ginzburg-Landau equation in a domain of length L =
100. The initial condition is u(x, t = 0) = 1

10(tanh(x − 100
3 ) − tanh(x − 200

3 )). The
figure convention is consistent with that of Figure 3.

we demonstrate in Section 3.4 how to obtain the uncontrolled PDE trajectories displayed in Figures
3-12 using a code example.

3.1. Analysis of the Open-Loop Dynamics of Linear PDEs

Evaluating learning algorithms effectively involves designing and tuning the open-loop dynamics of
control environments, for adjusting the control difficulties. Precisely, in linear PDE environments,
the open-loop dynamics is entirely specified by the spectral properties of matrix A in (2.4). Using
the CDR equation from Section 2.2.1 as a case study, we demonstrate the analytical derivation of
the open-loop system dynamics and its connection to the physical parameters c, ν, and r in the
corresponding PDE (2.5). The methodology that we follow is applicable to any linear PDEs with
constant physical parameters (Cross and Hohenberg, 1993; Schmid and Henningson, 2001).

First, we rewrite the uncontrolled CDR equation (2.5) as

∂u

∂t
− Lu = 0, L = −c ∂

∂x
+ ν

∂2

∂x2
+ r, (3.1)

Eigenvalues ω and eigenfunctions α(x) of the linear differential operator L are defined by the re-
lation Lα = ωα. For a PDE with constant physical parameters in a periodic domain with length
L, all eigenfunctions α(x) have the form of α(x) = eikx, where the admissible wavenumbers k are
calculated by k = pk0 with p ∈ N and k0 = 2π

L . The corresponding eigenvalues ω are obtained by
applying L to α; that is,

Leikx =

(
−c ∂

∂x
+ ν

∂2

∂x2
+ r

)
eikx = (−ick − νk2 + r)eikx = ωeikx. (3.2)

Hence, ω = −ick − νk2 + r is the eigenvalue corresponding to the eigenfunction eikx for any
k = pk0, p ∈ N. Denoting the real and imaginary parts of ω as ωr = −νk2 + r and ωi = −ck,
respectively, we can write general solutions to (3.1) as

u(x, t) =
∑
k

eωteikx =
∑
k

eωrtei(x+ωit). (3.3)
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Equation (3.3) shows that the eigenfunction eikx either grows or decays exponentially at rate
ωr and propagates spatially with a phase speed of −ωi/k. This allows us to employ the spectral
properties of L to characterize the behavior of solutions to (3.1).

To determine the eigenvalues and eigenvectors of matrix A in the discrete-time state-space
model (2.4), we discretize space and time in (3.3). Spatial discretization transforms the continu-
ous eigenfunctions into eigenvectors defined by the values of eikx at ns evenly distributed points
within Ω, where the admissible wavenumbers k are the entries of the vector kx from Section 2.2.1.
Temporally, ω is replaced with its discrete-time analogue λ = eω∆t. Consequently, the eigenvalues
of A are λ = e(−ick−νk2+r)∆t, where k is an element of kx.

Figure 13: Analytical and numerical eigenvalues of the uncontrolled CDR equation

Figure 13 confirms the matching analytical and numerical eigenvalues of A. Our approach
allows users to tune the system’s open-loop stability by choosing ν, c, and r. For example, the
presence of one unstable eigenvalue outside the unit circle in Figure 13 explains the growth of the
solution to the CDR equation seen in Figure 3. By choosing a negative value for r, one can instead
obtain an open-loop stable CDR equation environment. Lastly, we note that one can apply the same
derivation process to the wave and Schrödinger equations.

3.2. Model-Based Controllers as Baselines

In Figure 14, we show a code example of implementing the linear-quadratic-Gaussian (LQG)
controller to the helicopter environment “he1”. In this example, we set the sampling time ∆t to
be 0.1 and construct the environment using the function call controlgym.make(). Other en-
vironments could be set up similarly with environment IDs from Tables 1-2 and optional keyword
arguments. In addition to the LQG controller, we implement LQR and the state-feedback H2/H∞
controllers in controlgym. For examples of applying baseline model-based controllers to linear
PDE environments, we refer the readers to the example notebook file in our GitHub repository.

3.3. Model-Free RL Algorithms

Other than the baseline model-based controllers, we also implement the proximal policy opti-
mization (PPO) algorithm in controlgym. At the same time, all our environments support stan-
dard RL algorithms (Sutton et al., 2000; Kakade, 2002; Schulman et al., 2015, 2017; Mnih et al.,
2016; Sutton and Barto, 2018), e.g., as seen in stable-baselines3 (Raffin et al., 2021).
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import controlgym as gym

if __name__ == "__main__":
env = gym.make("he1")
lqg = gym.controllers.LQG(env)
lqg.run()
gym.save(lqg)

Figure 14: LQG controller applied to environment “he1”. Left: Python code snippet for setting up
the environment and controller. Right: Plot of the system states against time.

import controlgym as gym

if __name__ == "__main__":
env = gym.make("he1")
ppo = gym.controllers.PPO(env,

actor_hidden_dim = 64,
critic_hidden_dim = 64, lr = 1e-5)

ppo.train(num_train_iter=100,
num_episodes_per_iter=64,
episode_length=100, sgd_epoch_num=4,
mini_batch_size=5, cov_param=0.05)

ppo.run()
gym.save(ppo)

Figure 15: PPO controller applied to the helicopter environment “he1”

We trained the PPO algorithm over 100 iterations, using the parameters detailed in the code
snippet in Figure 15. Observations drawn from the graph on the right of Figure 15 reveal that
the PPO controller, upon convergence, successfully steers three of the four state variables towards
zero. However, one state variable settles at approximately −0.1, deviating from the target value,
which is not ideal. We provide additional examples of applying PPO to a PDE environment and RL
algorithms from stable-baselines3 to a linear control environment in our GitHub repository.

3.4. Generate Uncontrolled PDE Trajectories

In Figure 16, we show how to generate uncontrolled PDE trajectories (Figures 3-12) using a zero
controller, exemplified through the CDR equation environment. This approach is instrumental for
exploring the open-loop dynamics of PDEs, particularly in tuning physical parameters (cf., Section
3.1) and testing various initial conditions to identify the optimal experimental settings.
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import controlgym as gym

if __name__ == "__main__":
env = gym.make("convection_diffusion_reaction")
zero = gym.controllers.Zero(env)
zero.run()
gym.save(zero)

Figure 16: Applying a zero controller to the CDR environment to evaluate the open-loop trajectory

4. Conclusion

We have presented controlgym, a library designed to support the research efforts of L4DC. The
controlgym project facilitates a deeper investigation into the performance of RL algorithms,
particularly focusing on their convergence, the stability and robustness of RL-based controllers, and
the scalability of RL algorithms to systems with high and infinite state dimensionality.
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feedback gains via a model-free policy gradient method. IEEE Control Systems Letters, 7:407–
412, 2022.

Yangchen Pan, Amir-massoud Farahmand, Martha White, Saleh Nabi, Piyush Grover, and Daniel
Nikovski. Reinforcement learning with function-valued action spaces for partial differential equa-
tion control. In International Conference on Machine Learning, pages 3986–3995. PMLR, 2018.

Sebastian Peitz, Jan Stenner, Vikas Chidananda, Oliver Wallscheid, Steven L Brunton, and Kuni-
hiko Taira. Distributed control of partial differential equations using convolutional reinforcement
learning. arXiv preprint arXiv:2301.10737, 2023.

Juan C Perdomo, Jack Umenberger, and Max Simchowitz. Stabilizing dynamical systems via policy
gradient methods. In Advances in Neural Information Processing Systems, pages 29274–29286,
2021.

22



CONTROLGYM: LARGE-SCALE CONTROL ENVIRONMENTS

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dor-
mann. Stable-baselines3: Reliable reinforcement learning implementations. The Journal of Ma-
chine Learning Research, 22(1):12348–12355, 2021.

Kamisetty Ramam Rao and Patrick C Yip. The Transform and Data Compression Handbook. CRC
Press, 2018.

Benjamin Recht. A tour of reinforcement learning: The view from continuous control. Annual
Review of Control, Robotics, and Autonomous Systems, 2:253–279, 2019.

Peter J Schmid and Dan S Henningson. Stability and Transition in Shear Flows. Springer, 2001.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, pages 1889–1897, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Max Simchowitz and Dylan Foster. Naive exploration is optimal for online lqr. In International
Conference on Machine Learning, pages 8937–8948, 2020.

Max Simchowitz, Karan Singh, and Elad Hazan. Improper learning for non-stochastic control. In
Conference on Learning Theory, pages 3320–3436, 2020.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Advances in Neural Infor-
mation Processing Systems, pages 1057–1063, 2000.

Yujie Tang, Yang Zheng, and Na Li. Analysis of the optimization landscape of linear quadratic
Gaussian (LQG) control. Mathematical Programming, 2023. URL https://doi.org/10.
1007/s10107-023-01938-4.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pages 5026–5033,
2012.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, An-
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