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Abstract—Predictive control strongly depends on the quality
of disturbance predictions. While recent disturbance modeling
efforts have adopted a probabilistic perspective to protect
against unreliable deterministic predictions, such probabilistic
models are often applicable only in data-rich settings or involve
making simplifying assumptions on the underlying distributions.
Generative models, such as conditional variational autoencoders
(CVAEs), provide an expressive and automated approach for
learning distributions from data. By sampling the learned latent
space, one can generate unseen disturbance realizations. In
this paper, we develop methods to leverage these generative
models for the design of economic stochastic model predictive
control (SMPC) that utilizes disturbance signals generated by a
CVAE for online adaptation. Scenarios generated by the CVAE
can be transformed to conditional probabilities on learned
latent vectors, wherein the conditioning is with respect to
factors that affect the disturbance signal shape itself (e.g.,
effect of workday/weekend on internal heat loads) along with
the observed data (i.e., how likely the latent is, based on the
observed data). We can consequently generate the most relevant
disturbance signals for use in a scenario tree-based SMPC
approach to reduce conservativeness of the control policy while
satisfying constraints.

Index Terms—Building energy management, deep learning,
learning for control, adaptive control, model predictive control.

I. INTRODUCTION

Model-based predictive control (MPC) has demonstrated
potential for constrained control of next-generation engi-
neering systems due to their ability to leverage disturbance
forecasts and take anticipatory actions that reduce operational
costs or optimize user-specified performance objectives [1]–
[3]. MPC involves iteratively solving of an open-loop con-
strained optimal control problem (OCP) at a given time
to obtain a trajectory of control actions based on model-
based predictions, implementing the first control action on
the system [1], and then repeating this optimization step at
the next control step. The solution of this OCP allows the
controller to make anticipatory actions using model-based
predictions of the system behavior and exogenous disturbance
inputs acting on the system, while re-solving at each iteration
enables flexibility by accounting for feedback. The control
actions obtained by solving this OCP depend strongly on
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the quality of predictions made by both the disturbance
forecasting model and dynamical models.

Given that any disturbance model will not be perfectly
accurate and that the internal dynamical model will contain
unmodeled components, controllers such as stochastic MPC
(SMPC) that account for uncertainty have demonstrated
success on applications ranging from building HVAC sys-
tems [3]–[6] to chemical processes [7]–[9], in terms of
both closed-loop performance and constraint enforcement.
However, most SMPC formulations assume that the dis-
turbances are generated by simplified stochastic processes
that may not reflect the observed data [10], [11]. While
these simplifications may result in tractable controller design,
they often deteriorate performance for disturbance inputs that
cannot be represented by simple disturbance models. Our
work is motivated by occupant-centric buildings, where, for
example, energy use in building zones depend on human
occupancy patterns and appliance use, both of which cannot
be represented by simple stochastic processes as they are
affected by multiple complex components in a building
system, and human behavior does not conform to first-
principles modeling. Even the utility of non-homogeneous
Markov models is limited because most disturbance signals
are continuous not discrete, and equipping these models with
domain-informed conditional inputs requires storing large
numbers of transition matrices.

Deep probabilistic networks offer a scalable and automated
framework for learning complex conditional distributions
directly from data. Two common approaches include the use
of generative networks that construct disturbance signals over
a fixed time horizon, or forecasting networks that take a pre-
vious time window of disturbances as inputs and predict the
disturbances over a future time window. While both classes
of models have been demonstrated to be accurate [12]–[14],
we have empirically noted that the forecasting approach per-
forms better for data-rich applications but often exhibits low-
variance predictions when data is limited and conditional in-
puts are plentiful, possibly due to more complex relationships
arising from the recursive model structure, although further
work is needed to fully understand the data requirements for
these two methods. In comparison, generative models appear
to perform well even in data-limited settings, e.g., when
designing controllers for buildings that have recently been
constructed or have limited archival data, and for more non-
standard distributions [15]. While generative models have
been used for scenario generation [12], [15] and in the closed-



loop verification of control policies [13], there is no extant
work on leveraging generative models explicitly for controller
design.

In this paper, we propose τ -SMPC, a Trajectory Adapting
Uncertainty (TAU≡ τ ) framework which endows scenario-
tree based SMPC with the property of adapting the un-
certainty distributions based on measured disturbances. Our
SMPC is informed by a conditional variational autoencoder
(CVAE) whose latent space can be sampled to give realis-
tic and out-of-sample exogenous disturbance scenarios. The
primary novelty of this work is in developing a strategy to
generate disturbance samples based on a partially revealed
disturbance sequence and a learned prior, to generate more
accurate scenarios that improve control performance in prac-
tice. We show via simulation experiments on a simplified
building thermal dynamics model that τ -SMPC can reduce
operational costs and does a better job at handling constraints
by providing more accurate disturbance forecasts by learning
approximate conditional distributions from data.

II. PROBLEM STATEMENT

We consider a discrete-time dynamic system of the form

xk+1 = f(xk, uk, wk), (1)

where xk ∈ Rnx denotes the current state of the system,
uk ∈ Rnu denotes a set of control inputs, and wk ∈ Rnw

denotes the exogenous disturbances which affect the system
at the current time k. The control inputs are computed using
a two-stage scenario-tree SMPC framework, which is cast as
the optimization problem

min
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∀k = 0, · · · , np − 1, ∀s = 1, · · · , ns,

where ω(s) > 0 denotes the likelihood weight for scenario
s, x̂(s)

k|t, u
(s)
k|t, and ŵ

(s)
k|t denote the predicted state, input, and

disturbance value k steps ahead of current time step t for
scenario s, np is the prediction horizon, Z denotes the set
of joint state-input constraints, and ℓk|t(·) denotes the stage
cost function evaluated k steps ahead of current time t. The
SMPC policy can be represented generally by

u∗
t = πSMPC(xt, Ŵt), where Ŵt := {ŵ(s)

0|t , ..., ŵ
(s)
np|t}

ns
s=1

is a disturbance sequence forecast. The implication is that the
quality of the control input for any given state depends en-
tirely on the accuracy of the predicted disturbances. Scenarios
are generated by considering several disturbance realizations,
weighted by their respective probabilities. For example, a
common strategy is to uses three branches at each state,
where one branch is the expected outcome, and the other
two branches are lower probability realizations that bound

the expectation. As a result, SMPC frameworks assume a
known probability distribution function (PDF).

In this paper, we discuss how probabilistic deep gener-
ative networks can learn complex distributions from real
data whose mean and variance vary across time-series, thus
providing disturbances which can effectively be used for
constructing and forecasting SMPC scenarios required to
obtain an effective SMPC policy. For example, in building
energy systems (which motivates this work), deep generative
networks can model internal heat loads generated due to
appliance use, hot water and ventilation, all of which are
difficult to model accurately with first-principles models
because they depend on human occupancy: a signal that is
very challenging to forecast based on ‘physics’. Instead, we
can learn time-series distributions of heat loads from real
building usage data and construct synthetic scenarios along
with assigned probability weights indicating how likely they
are to occur: this information can be critical to building
performance management via SMPC.

We also recognize that when disturbance signals are
strongly time-correlated, generating scenarios without ac-
counting for past observations will result in overly con-
servative scenarios in the best cases, and failure to obey
constraints in the worst cases. An example in building
energy modeling is the ambient weather conditions: past
observations can inform good future predictions of ambient
temperature throughout the day. Ignoring the past two hours
(say) of temperatures can be detrimental when forecasting
temperature profile for the rest of the day. In such cases, to
encourage our forecast to be cognizant of past disturbance
signal values, we design an adaptive forecasting strategy that
uses a generative model to approximate a predictive posterior,
conditioned on past observations.

III. METHODOLOGY

Conditional Variational Autoencoders (CVAEs): We use
a CVAE [16] to generate the disturbance sequence W ≡
W0:T := (w0, ..., wT ) for a given day (e.g., T = 24 for an
hourly disturbance profile), conditioned on an environmental
variable c ∈ [0, 1]nc , which captures the external factors
(e.g., season, workday, etc.). The CVAE consists of an
encoder that compresses W , given c, to a latent representation
z ∈ Rnz , and a decoder that reconstructs W , given c, from
the learned latent representation; see Fig. 1. The decoder
models the conditional distribution π(W |z, c), and together
with the assumed isotropic Gaussian prior distribution of
the latent representation π(z), implicitly (and intractably)
models the conditional data distribution through π(W |c) =∫
π(W |z, c)π(z)dz. The encoder models an approximation

of the posterior distribution π(z|W, c) that is consistent with
the generative model distribution implied by the decoder.
The CVAE, parameterized by θ, is trained by optimizing the
standard evidence-based lower bound (ELBO) loss function;
c.f. [12], [16] for details.

Forecasting with a CVAE: For building control, which
motivates this work, at a given time t ∈ N we have partial
sequences of measured disturbances W0:t ≜ (w0, ..., wt), and



Fig. 1: Structure of the CVAE trained to generate disturbance
sequences from a latent space depending on the context
(environmental variable).

will leverage a trained CVAE model to provide a forecasts of
the remaining unrealized sequence Wt+1:T ≜ (wt+1, ..., wT ),
along with quantified uncertainty, e.g. confidence intervals
or standard deviations. More formally, our aim is to extract
and sample the conditional distribution π(Wt+1:T |W0:t, c)
from the model learned by the CVAE. However, this specific
conditional dependency structure is not directly provided
by the CVAE. Instead, our approach aims to first extract
the latent representation distribution conditioned on only the
partially revealed perturbations, π(z|W0:t, c). Our aim is to
try to ascertain which latent vector most likely resulted in the
revealed perturbations. Then, from sampled representations
z ∼ π(z|W0:t, c), we apply the CVAE decoder model
π(W |z, c) to sample the corresponding completed sequences,
including the unseen portions Wt+1:T .

The latent posterior π(z|W0:t, c), although not known in
closed form, can be evaluated using Bayes’ rule,

π(z|W0:t, c) ∝ N (0, I)π(W0:t|z, c). (3)

using a Gaussian prior π(z|c) = N (0, I) and likelihood
π(W0:t|z, c), noting that the marginal π(W0:t|c) is a constant.

Although π(W0:t|z, c) is also not available in closed-
form, it can be numerically approximated. First, we note that
π(W |z, c) is defined by the decoder, which uses the learned
distribution and reparameterization trick to generate samples
Ŵ . By assuming a Gaussian prior, we can numerically
evaluate the conditional probability of latent samples using

π(W0:t|z, c) =
1

β
exp

[
−δM

(
µθ,0:t,Σ

−1
θ,0:t

)2
2

]
, (4)

where δM is the Mahalanobis distance, and β is the pre-
exponential factor for a multivariate Gaussian. We can now
generate forecasts Ŵt+1:T and compute its respective prob-
ability by jointly and normally sampling the decoder and
probability function. We present this conditional forecast
graphically in Fig. 2. In the following section, we discuss
how these forecasts can be used in a scenario-tree SMPC.

Note that a tight (small variance) prior distribution may
prevent the forecaster from producing a scenarios that are
consistent with the evidence, which is problematic when
generating scenarios that are used to enforce constraints. To
alleviate this issue, a tuning parameter α ∈ [0, 1] can be used
to loosen the variance of the prior, such that (3) becomes

π(z|W0:t, c) ∝ π(z)απ(W0:t|z, c).

In the case study, we use α = 0, due to the strong short

Fig. 2: Overview of the proposed τ−SMPC framework.

term temporal correlations in weather patterns that make a
seasonal averages (i.e., the prior) effectively inconsequential
when forecasting over a given day. Furthermore, this like-
lihood based prediction facilitates the downstream task of
robust control by encouraging outlier sampling. That is, we
can determine an SMPC policy that is cognizant of low-
probability events that could prove to have a debilitating
effect on the application; e.g., the 2021 cold snap in Texas.

Forecast-based Scenario Tree: Given the conditional den-
sity π(z|W0:t, c) and disturbance forecasts Ŵt+1:T (z, c), we
require a scenario selection strategy to select the forecasts to
use in a scenario-tree MPC. Construction of the scenario tree
for non-i.i.d. disturbances requires the transition probabilities
between any two consecutive states in a scenario. However,
when building a scenario tree from generated forecasts, state-
transition probabilities π(Wi+1|Wi, c) ∀ i ∈ [t : T − 1] are
not known, and would be expensive to compute. Instead, gen-
erated samples can be directly used in a single-stage robust
horizon decision tree, where each scenario is a generated
forecast.

Assuming that the learned distribution can produce realis-
tic scenarios, sampling the distribution can produce scenarios
of a tree with arbitrarily long robust horizons, without the
need for explicitly defining branches and transition prob-
abilities. Thus taking a small subset of forecasts can be
likened to a pruned scenario tree. We do not attempt to
formally investigate the myriad strategies which one could
use for scenario selection [5], [8], [17]–[20], and instead use
a simple but effective strategy for illustrating the importance
of forecasting. Here, the scenarios are generated by using the
most probable forecasts S ⊂ {Ŵt:T (z, c)} (e.g., take the top
λ sequences), and generating scenarios

Ŵ
(s)
t:T = E[S] + ξsσ(S), (5)

where s = 1, . . . , ns. The scalars ξ = [ξ1, ..., ξns ] can are
used to select the conservativeness of the scenarios, using the
normalized probabilities of a standard Gaussian PDF ϕ(ξi)
as the weights i.e., ω(s) = ϕ (ξs) /

∑
i ϕ (ξi), Thus using

a single scenario where ξ1 = 0 is equivalent to a standard
MPC implementation, and increasing the number of scenarios
and/or values of ξi results in more conservative control.
Additionally, we note that for non-adaptive strategies, the
scenarios can be generated exactly as outlined above, expect
where S is the set of most probable scenarios generated by



sampling z ∼ N (0, I), i.e., the unconditioned prior.

Algorithm 1 τ -SMPC

Require: W0:t, Ĝθ, m, λ, and ξ = [ξ1, ..., ξns
]

for i in m do
Take random latent samples: zi ← N (0, 1)
Compute probabilities: Πi = π(zi|W0:t, c)
Generate uncertainty sequences: W̄i = Ĝθ(zi)

end for
Collect most probable sequences:

S = {W̄i | max
i∈1:λ

Πi}

Select scenarios for OCP: Ŵ (s)
t:T = E[S] + ξsσ(S),

Normalize probabilities: ω(s) = ϕ (ξs) /
∑ns

i ϕ (ξi)

Solve OCP with scenarios and weights {Ŵ (s)
t:T , ω

(s)}ns
s=1

The proposed forecasting strategy produces a set of scenar-
ios {Ŵt:T }ns

s=1, which is directly applicable for finite horizon
MPC strategies; to accommodate receding horizon problems,
we must extend the forecast Ŵt:T , to Ŵt:t+np

. This can
be accomplished similarly to the non-adaptive case, where
forecasts over np > T − t are generated by sampling the
unconditioned prior, W0:T (z ∼ N (0, I), c). The forecast we
use for the receding horizon problem can be written as

Ŵ
(s)
t:t+np

=
[
Ŵ

(s)
t:T (z, c0), Ŵ

(s)
0:T (z, c1), ..., Ŵ

(s)
0:nr

(z, cd)
]

(6)

where Ŵ
(s)
t:T (z, c0) is the forecast conditioned on W0:t,

with each forecast scenario beginning with the measured
disturbances at the current time t, i.e., Ŵ

(s)
t = Wt ∀s,

and Ŵ0:T (z, ci) and Ŵ0:nr
(z, ci) ∀i ∈ [1 : d] are forecasts

generated by sampling the unconditioned prior. Here, ci
represents environmental variables for day i, where i = 0
corresponds to the current day, and d ≥ 0, nr ∈ [0, T ] are
selected at each iteration to ensure the forecast spans the
prediction horizon; i.e., T−t+dT+nr = np. We summarize
the τ−SMPC framework in Algorithm 1.

IV. CASE STUDY

A. Simplified Model of Thermal Dynamics

For this study, we use the previously studied building
envelope model (see [11] for details and parameter values)

ẋ = Ax+

10
0

u+

K3/C1 1/C1 1/C1

0 1/C2 0
0 0 K4/C3

w, (7)

where

A =


−(K1+K2+K3+K5)

C1

K2

C1

K5

C1
K1+K2

C2

−(K1+K2

C2
0

K5

C3
0 −(K4+K5)

C3

 .

Note that x,w ∈ R3, and u ∈ R, and explicit time
dependence, e.g.: xt, wt has been dropped for convenience.

The parameters C and K denote heat capacities and
heat gain coefficients. The states of the system x include

room air temperature, interior wall surface temperature,
and exterior wall core temperatures, all in oC. The con-
trol input u is the net heating and cooling power of a
heat pump [kW ], while the disturbance input vector w is
comprised of outside air temperature [oC], solar radiation
[kW ], and internal heat loads [kW ]. We assume that the
initial conditions are sampled from the normal distribution
N ([22, 22, 23],diag[1.5, 1.5, 0.5]) in summer, and the normal
distribution N ([20, 20, 19],diag[1.5, 1.5, 0.5]) in winter.

We assume the net heating and cooling power of the
heat pump system is represented by box constraints on the
control input, given by −800 ≤ u ≤ 800. Additionally,
we assume that the power sourced to operate the HVAC
comes from a tiered grid, where the electricity price is
defined as pt = 0.025[$/kW ] from 6am to 10pm, and
0.010[$/kW ] otherwise. Finally, given the system is an
office building space, we assume that comfort constraints
should be tightened during business hours, and that violations
during work hours results in a greater economic impact. We
formulate the soft time-varying comfort constraints on the
room temperature x1, given by 20 ≤ x1 ≤ 24 from 8AM
to 6PM, and 17 ≤ x1 ≤ 27 otherwise; we refer to the
upper and lower time-varying bounds by x̄t and

¯
xt at time

t, respectively. The economic impact of comfort constraint
violations are defined as ρt = 1000 from 8AM to 6PM,
otherwise ρt = 0.1. Our objective is to design a control
policy that minimizes this economic cost while enforcing
temperature-based comfort, and heat-pump input, constraints.

B. Stochastic MPC Formulation

The scenario tree OCP is given by

min
u0|t,...,unp|t

ns∑
s=1

ω(s)

np∑
k=0

pk+t|uk|t|+ ρk+tζk|t (8a)

s.t. x̂
(s)
0|t = xt, (8b)

x̂
(s)
k+1|t = x̂

(s)
k|t +∆t · ẋ

(
x̂
(s)
k|t, uk|t, ŵ

(s)
k|t

)
, (8c)

ζk|t =
[
x̂
(s)
1,k|t − x̄k+t

]+
+

[
¯
xk+t − x̂

(s)
1,k|t

]+
, (8d)

−800 ≤ uk|t ≤ 800, ∀k = 0, ..., np, (8e)

where [α]+ = max(α, 0), and α(s) indicates values for the
s-th scenario in the tree. For computational efficiency, we
compute a single control action uk over the weighted average
across all scenarios; this can be extended to accommodate a
full scenario tree. We use ns = 3 for the scenarios used
in SMPC, generated using equation (5) for ξ = [0, 3,−3],
and weighted using the normalized probability of Ŵ

(s)
t+1:T .

For the standard MPC, we use ns = 1 generated using
(5) for ξ = [0]. Classically, SMPC uses offline disturbance
forecasts ŵ

(s)
t and weights ω(s), representing the uncertainty

which can result in conservative decision-making. Instead,
we aim to reduce conservativeness by online adaptation of
the scenarios and probabilities, under current conditions and
given the measurements. Next, we compare the adaptive, non-



adaptive, and perfect forecasting, and shows the τ−based
methods improve control performance.

C. Results

Here, we compare τ -SPMC performance to a non-adaptive
SMPC and to a MPC with perfect disturbance predictions.
We use a CVAE with conditioning on whether the day is in
summer (c1 = 1) or winter (c1 = 0), and if it’s a workday
(c2 = 1) or holiday (c2 = 0). In this preliminary study,
the disturbance forecasts ŵt are the only source of mismatch
between the building dynamics and the SMPC internal model.
As a result, the MPC with perfect disturbance predictions
serves as the best performance possible for the given system.

All simulations are done in Python3. The generative
models are built with the PyTorch machine-learning frame-
work, while the SMPC optimization problem is solved us-
ing CasADi and IPOPT. We use the CityLearn dataset [21]
to obtain one year’s worth of hourly disturbance inputs for a
medium office building in Peoria, IL, USA, which has wide
seasonal variation in temperature and solar radiation. Internal
heat loads are generated using a modified ASHRAE 90.1
occupancy load scheduale. Based on previous studies, we
use seasonal and workday/weekend as binary conditioning
inputs to the CVAE [3], [13]. Note that even though we
have given one year of measurements, some conditioning
inputs such as weekend/winter yields a much smaller subset
of data points for training; therefore, the learning problem
is posed in a limited-data setting. Both the encoder and
decoder have 5 layers, with hidden dimension 128-128-64-
64-32 for the encoder and in reverse order for the decoder.
The latent dimension is fixed to 4. The training of the CVAE
is performed using the Adamax solver with a learning rate
of 0.0001, and a batch-size of 64.

First, we provide an example how the adaptive method can
generate forecasts for nominal and anomalous scenarios. In
Figure 3, we show the three ambient temperature scenarios
used in the SMPC forecast at various times throughout the
day for the adaptive (in blue) and non-adaptive strategies
(in magenta) relative to the true disturbance sequence (in
black) for a normal summer day (top), and an unseasonably
cold summer day (bottom). In the normal day, the true
disturbances are captured in the forecasted scenarios for
both methods, however the heavily weighted trajectory (i.e.,
highest probability forecasted scenario) from the adaptive
method much more closely approximates the true distur-
bance. However, the true disturbance on the unseasonably
cold day closely resembles a low weighted scenario generated
by the non-adaptive forecaster, owing to the fact that the
day in question represents a low probability event. On the
other hand, the adaptive strategy strategy generates a heavily
weighted forecast in close agreement to the true trajectory.

We present the results for 10 closed loop experiments using
each for the three controllers over a three day simulation
horizon in both winter and summer in Table I. The reported
values consist of a mean and 2 standard deviation confi-
dence interval for the energy cost term Σ72

0 pt|ut|, and the
cumulative total degrees of peak-hour constraint violations

TABLE I: Closed-loop performance comparison for τ -SMPC
vs. non-adaptive SMPC. Improvement results are presented
using the mean and 95% confidence interval (CI) for ten 3-
day closed-loop simulations. Reported costs are the average
total energy spent on HVAC operations over three days,
and violations are the cumulative total degrees of constraint
violation during office hours over the three days.

METHOD
WINTER
COST

WINTER
VIOLATIONS

SUMMER
COST

SUMMER
VIOLATIONS

IDEAL
FORECAST

509 ± 185 .00 ± .00 445 ± 65 .00 ± .00

τ -MPC 514 ± 167 .05 ± .07 471 ± 64 .03 ± .05
τ -SMPC 509 ± 161 .00±.00 489±50 .00±.00

MPC 519 ± 157 .45 ± .52 457±51 .43 ± .31
SMPC 512 ± 147 .06 ± .10 458 ± 49 .03 ± .08

Σ72
0 ρ̂tζt, where ρ̂k = 1 from 8AM to 6PM, otherwise

ρ̂k = 0. The results show that, although the τ−MPC strategy
(ns = 1) does exhibit a minor degree of constraint violation,
it beats both the MPC and SMPC in terms of constraint
handling across both seasons. Moreover, the winter scenarios
for τ−SMPC performs similarly to the perfect forecast in
terms of constraint handling and average operational cost. In
the summer scenarios, the τ−MPC and τ−SMPC strategies
result in higher operational costs, however, incurs over 10-
fold reduction in constraint violation between the τ−MPC
and SMPC. In all cases, we see that τ−MPC results in less
constraint violations than the SMPC, and only the perfect
forecasting and τ−SMPC strategies are capable of robustly
controlling the system. Additionally, the computational cost
of implementing τ−SMPC over the non-adaptive SMPC
is only dependent on the number disturbance samples m.
The average time to implement the trajectory adaptation is
3.27 seconds, in addition to 0.34 and 2.45 seconds for the
standard SMPC using 1 and 3 scenarios respectively. These
computational details were generated using an i7-5500U with
two 2.4 GHz processors and 7.7 GB memory.

Lastly, we present the state profiles for the indoor temper-
ature and control actions for the closed loop experiments in
summer discussed above, along side the realized disturbance
profiles in Fig. 4. The state profile satisfies the comfort
constraints at all times for the perfect forecast and τ−SMPC
formulations, with the latter being notably more conservative,
due to forecast uncertainty. In all cases, we see the controllers
making use of the relaxed comfort constraints in the off-
peak hours to store thermal energy during off-peak pricing.
On the other hand, the non-adaptive forecasting strategy is
similarly conservative during peak-hours, but attempts to save
energy by aggressively cooling the system during the off-
peak hours, which results in constraint violations during the
early morning hours when comfort constraints are tightened.

V. CONCLUSIONS

In this paper, we develop an SMPC framework capable of
leveraging real-world disturbance inputs modeled using con-
ditioned variational autoencoders. Based on prior measure-
ments of disturbance inputs, we provide a tractable method
to forecast future disturbances based on Bayesian estimation



Fig. 3: Adaptive and non-adaptive scenario forecast examples for a normal (top) and cold (bottom) summer day.

Fig. 4: From left to right, control trajectories using a perfect forecast, non-adaptive, adaptive, and the disturbance profiles.

of conditional probabilities using the generative model. We
show that our methodology, while suitable for typical op-
erations, is also well-prepared for out-of-sample scenarios
such as unexpected climatic events, therefore demonstrating
its potential in combating climate change. In future work, we
will investigate alterations in the generative model training
procedure that can help the adaptation process, alternative
strategies for selecting forecast scenarios, and evaluate the
control scheme on high-fidelity simulators.
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