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Abstract—We propose a decentralized, multi-agent motion
planner that guarantees probabilistic safety of a team subject
to stochastic uncertainty in agent model and environment. Our
scalable approach generates safe motion plans in real-time using
off-the-shelf, single-agent reinforcement learning rendered safe
using distributionally-robust, convex optimization and buffered
Voronoi cells. We guarantee recursive feasibility of the mean
trajectories and mitigate the conservativeness using a temporal
discounting of safety. We show in simulation that our approach
generates safe and high performant trajectories as compared to
existing approaches, and further validate these observations in
physical experiments using drones.

Index Terms—Safe learning-based control, constrained control
under uncertainty, decentralized model predictive control, rein-
forcement learning, multi-agent systems, collision avoidance.

I. INTRODUCTION

MULTI-AGENT motion planning in a cluttered environ-
ment is a fundamental problem for robot autonomy in

transportation, inventory management, and monitoring [1]–[3].
These planning problems often require steering each agent to
accomplish pre-defined tasks like reaching a designated area,
while avoiding collisions with other agents and elements of
the environment. Existing strategies for multi-agent motion
planning are often based on optimization [3], [4], sampling [5],
[6], or geometric methods [7], [8]. Recently, approaches based
on reinforcement learning (RL) have been proposed to tackle
such planning problems, motivated by the ability of RL to
handle complex tasks and leverage data [1], [2], [9]–[12].
However, pure RL-based motion plans cannot guarantee safety
(collision avoidance between agents, and with the obstacles
in the environment), since RL typically incorporates safety
constraints as soft constraints and computes approximated con-
trol policies [1], [11]. Also, multi-agent RL-based approaches
often require long training and large amounts of data, since
they must contend with the ambiguous assignment of rewards
gained by the collective team due to an individual’s actions [1].

This paper builds on our recent approach of filtered rein-
forcement learning to achieve safe multi-agent motion plan-
ning [13], [14]. In [13], we proposed a two-stage approach
that combines off-the-shelf, single-agent RL policies with an
optimization-based safety filter. The RL policies are trained
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(offline) for a single agent for each reach-avoid task to enable
computation of reference motion plans online. The safety filter
is used (online) to compute corrections to guarantee safety. In
[14], we extended the approach in [13] to Gaussian-perturbed
agent dynamics as well as sensing uncertainties and provided
recursive feasibility guarantees. However, [13], [14] relied on
a centralized safety filter that prescribed corrections to all the
agents simultaneously, which may cause communication and
computation challenges for large teams.

In this paper, we focus on two key extensions of our
prior works. First, we propose a decentralized safety filter
that allows the computation of the safe corrections locally
for each agent, without relying on centralized computations.
The decentralized safety filters in optimal reciprocal collision
avoidance [7], [8] are restricted to uncertainty-free settings
and typically assume constant input corrections. Instead, we
leverage a convex model predictive control (MPC) framework
to accommodate a broader range of dynamics, constraints
on the state and input, and uncertainty. We mitigate the
conservativeness in the safety filter due to lacking access
to other agents’ future plans with a slack-based temporal
discounting of safety.

Second, we relax the Gaussian assumption on the uncertain-
ties in [13], [14] and require instead membership to moment-
based ambiguity sets, i.e., the only assumption is a pre-
specified mean and covariance. Thus, the uncertainty class is
broader, e.g., it includes multimodal uncertainties and heavy-
tailed distributions. Also, since the first two moments may
often be computed to sufficient accuracy from data, these sets
are often readily available in the practical applications.

Our proposed safety filter is inspired by recent works on
buffered Voronoi cells [15], [16], where decentralized collision
avoidance under Gaussian uncertainty is achieved by requiring
agents to stay inside appropriately shrunken Voronoi cells. We
derive similar chance constraint-based tightening for uncer-
tainties characterized by moment-based ambiguity sets. Also,
we guarantee recursive feasibility of the mean trajectories via
terminal constraints.

Summarizing, the main contribution of this work is a decen-
tralized multi-agent motion planner, where the agent dynamics
and the real-time measurements of the agent states and the
obstacles in the environment are subject to stochastic un-
certainty characterized by moment-based ambiguity sets. We
propose a filtered reinforcement learning-based planner that
locally corrects off-the-shelf RL-based motion plans for each
agent. We propose a novel temporal discounting of safety to
overcome the conservativeness arising from buffered Voronoi
cell-based decentralization, and include terminal constraints
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for recursive feasibility. We validate our approach in drone-
based experiments and analyze its performance in simulations.

Notation: [a : b] is the inclusive set of natural numbers
between a, b ∈ N. 0d, Id are the zero-vector in Rd, and
the d-dimensional identity matrix. For a vector v, ∥v∥ is the
Euclidean norm, diag(v) is the matrix with v in the diagonal,
v ·y is the dot product with vector y. For a convex compact set
C, the support function is SC(ν) ≜ supv∈C ν ·v for any ν ∈ Rd.
(Ω,F ,P) is a probability space where Ω is the sample space,
F = σ(Ω) is a σ-algebra of Ω, P is a probability measure on
F , and E is the expectation operator with respect to P.

We denote random vectors in bold w : Ω → Rn and for
an associated probability measure P, we denote mean and
covariance by w and Σw. An ambiguity set P(µ,Σ) is the set
of distributions with mean µ ∈ Rn and covariance Σ ∈ Rn×n:

P(µ,Σ) ≜ {P | w = µ, Σw = Σ}. (1)

Given ambiguity sets P1,P2 associated with
(Ω1,F1), (Ω2,F2), the ambiguity set couple over the
joint measurable space is (Ω1 × Ω2, σ(F1 ×F2)) as,

P1 × P2 =

P

∣∣∣∣∣∣
MarginalΩ1

(P) = P1 ∈ P1,
MarginalΩ2

(P) = P2 ∈ P2,
P1 and P2 are independent

 , (2)

where MarginalΩ(P) is the marginal probability over Ω.
For a random vector x(t), x(k|t) is the predicted value at

k ≥ t based on information at time t, and x(t|t) ≜ x(t), and
similarly for distributions of x(t).

II. MULTI-AGENT MOTION PLANNING PROBLEM

A. Model of the agents and the environment

Consider NA ∈ N homogeneous agents with discrete-time,
stochastic linear dynamics,

xi(k + 1|t) = Axi(k|t) +Bui(k|t) +wi(k), (3a)
yi(t) = xi(t) + ηi(t), (3b)
wi ∼ Pw ∈ Pwi = P(0n,Σwi), (3c)
ηi ∼ Pη ∈ Pηi = P(0n,Σηi). (3d)

Equation (3a) describes the stochastic dynamics of agent
i ∈ [1 : N ] based on the information up to time step t ∈ N.
At any k ≥ t, xi(k|t) ∈ Rn is the state, ui(k|t) ∈ U ⊂ Rm

is the control input, where U is a convex and compact set,
wi(k) ∈ Rn is an independent and identically distributed
process noise with some unknown distribution Pw ∈ Pwi

(3c). Equation (3b) models the noisy, full-state measurements
at time t, where the true state xi(t) is corrupted by an
independent and identically distributed measurement noise
ηi(t) ∈ Rn that follows an unknown distribution Pη ∈ Pηi

(3d). Thus, w accounts for actuation and/or modeling errors
(3a), and η accounts for estimation and/or sensor errors. The
state xi(k|t) includes position pi(k|t) ∈ Rd and velocity
vi(k|t) ∈ Rd,

pi(k|t) = Cposxi(k|t), vi(k|t) = Cvelxi(k|t), (4)

for Cpos, Cvel ∈ Rd×n with d ∈ {2, 3}, d ≤ m.

For simplicity of the exposition, we assume that w and η
have zero mean. Then, from the mean yi(t) and the covariance
matrix Σyi(t) of the measurement yi(t) at time t for agent i,
we obtain for any time k ≥ t

xi(t) = E[yi(t)− ηi(t)] = yi(t), (5a)
Σxi

(t) = Σyi
(t) + Σηi

(t), (5b)
xi(k + 1|t) = Axi(k|t) +Bui(k|t), (5c)

Σxi(k + 1|t) = AΣxi(k|t)AT +Σwi , (5d)
pi(k|t) = Cposxi(k|t), (5e)

Σpi
(k|t) = CposΣxi

(k|t)CT
pos. (5f)

Equation (5) characterizes the moment-based ambiguity sets
Pxi(k|t)(xi(k|t),Σxi

(k|t)) and Ppi(k|t)(pi(k|t),Σpi
(k|t))

corresponding to the state and position respectively, at any
time k ≥ t. In (5), we assume knowledge of the first two
moments of y, the ambiguity sets Pηi

,Pwi
(i.e., Σw and

Ση), and the matrices A, B, Cpos, Cvel.
We assume that every agent has an identical rigid-body

A ⊂ Rd that is a convex and compact set. Furthermore, we
consider translation-only motion for the agents and ignore
rotations, which is a typical assumption in motion planning
for holonomic robots [17].

Remark 1. We assumed homogeneity of all agents to simplify
the exposition. The proposed approach is straightforward to
extend to non-homogenous agents.

We assume that the environment is a compact polytope
K ⊂ Rd with NO obstacles, and that the obstacles are known,
convex, and compact rigid bodies Oj ⊂ Rd, j ∈ [1 : NO].
Thus, obstacle j ∈ [1 : NO] is described by the set {cj}⊕Oj

with a random position vector cj ∈ Rd to account for
limitations in obstacle sensing and (possibly time-varying) per-
turbations in its location. Again, we only assume knowledge
of mean and covariance of cj , i.e., cj ∼ Pcj ∈ Pcj (cj ,Σcj ).

The agents must eventually reach deterministic target re-
gions qℓ⊕Q with qℓ ∈ Rd, ℓ ∈ [1 : NT ] as the target position
and Q ⊂ Rd are acceptable deviations from it. Each agent i
has a pre-specified target ℓ.

B. Reinforcement learning-based single-agent motion planner

For motion planning of a single agent in a deterministic
setting with mean dynamics (5c), we can train a single-agent
RL-based motion planner for reach-avoid tasks. Specifically,
RL generates motion plans for agent i ∈ [1 : NA] to avoid
collisions with obstacles centered at their nominal positions
cj , ∀j ∈ [1 : NO], stay within the environment bounds K,
and eventually reach the corresponding target qi ⊕Q.

As in [14], we consider a feedforward-feedback controller
π : Rn × Rd → Rm with

u = π(x, r) = Kx+ Fr, (6)

such that (3) with (6) result in the asymptotically stable
nominal dynamics,

x(k + 1|t) = (A+BK)x(k|t) +BFr(k|t). (7)
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Next, we define an observation vector o ∈ O ⊆ Rn+(NO+1)d

that augments the agent state vector with additional infor-
mation regarding the displacement with respect to the target
position qℓ as well as the obstacle positions cj . We train a
neural policy ν : O → R that maps an observation vector
o ∈ O to a reference r ∈ R. Such neural policies can be easily
computed using off-the-shelf single-agent RL frameworks like
stable-baselines3 [18], see [14] for more details.

Finally, we can “rollout” the policy network ν to obtain
a trajectory based on the RL motion planner for a planning
horizon T ∈ N. Consider an agent i ∈ [1 : NA] with mean
measurement yi(t) at time t. We compute the RL motion plan
{xRL

i (k|t)}t+T
k=t , where xRL

i (t|t) = yi(t) by (5a), by alternating
between finding the control uRL

i (k|t) given the predicted RL
state xRL

i (k|t) and observation oi(k|t) by,

uRL
i (k|t) = π

(
xRL
i (k|t), qi + ν(oi(k|t)

)
, (8)

and predicting the next RL state xRL
i (k + 1|t) using (7) and

the corresponding observation vector oi(k + 1|t).
The motion plan {xRL

i (k|t)}t+T
k=t may not result in collision-

free trajectories because RL only penalizes collisions and is
subject to training errors. Furthermore, to shorten and simplify
the training, the generated RL motion plan ignores inter-
agent collisions and the effect of the process and measurement
noises. However, the single-agent RL motion plan is easy to
generate online, accommodates a variety of motion planning
tasks beyond reach-avoid [19], and does not suffer from the
non-stationarity or scalability issues of multi-agent RL.

C. Problem Statement
Next, we formalize the required features of safety in the

multi-agent motion planning problem by introducing the no-
tion of distributionally-robust, probabilistic collective safety,
inspired by existing literature [13], [14], [17].

Definition 1 (DISTRIBUTIONALLY ROBUST PROBABILIS-
TIC COLLECTIVE SAFETY). The agents are distributionally-
robust, probabilistically collectively safe (DRPC-safe) at time
t if the following conditions are met:

1) Static obstacle avoidance constraints: The probability of
collision of agent i ∈ [1 : NA] with obstacle j ∈ [1 :
NO] under the worst-case distribution in Ppi ×Pcj is
less than a pre-specified risk bound αi,j,t ∈ (0, 1),

P((pi(t)⊕A) ∩ (cj(t)⊕Oj) ̸= ∅) ≤ αi,j,t, (9)

for every P ∈ Ppi
× Pcj .

2) Inter-agent collision avoidance constraints: The proba-
bility of collision between agents i, i′ ∈ [1 : NA], i ̸= i′

under the worst-case distribution in Ppi
×Ppi′ is less

than a pre-specified risk bound βi,i′,t ∈ (0, 1),

P((pi(t)⊕A) ∩ (pi′(t)⊕A) ̸= ∅) ≤ βi,i′,t, (10)

for every P ∈ Ppi
× Ppi′ .

3) Keep-in constraints: The probability of agent i ∈ [1 :
NA] exiting the keep-in set K under the worst-case
distribution P ∈ Ppi

is less than a pre-specified risk
bound κi,t ∈ (0, 1),

P(pi(t)⊕A ⊈ K) ≤ κi,t, (11)

Fig. 1. Block diagram of the proposed motion planner that combines
reinforcement learning (RL) with a safety filter using convex, distributionally-
robust, stochastic model predictive control (MPC), and buffered Voronoi cells.

for every P ∈ Ppi
.

Observe that the distributionally-robust chance constraints
associated with DRPC-safety are infinite-dimensional and non-
convex. Consequently, we require characterization of convex
sufficient conditions for DRPC-safety for tractability.

Definition 2 (DECENTRALIZED MOTION PLANNING). A
multi-agent motion planner is decentralized, when each agent
can determine only the control affecting its own motion.

Problem 1 (DECENTRALIZED, SAFE MULTI-AGENT
MOTION PLANNING). Given user-specified risk bounds
αi,j,k, βi,i′,k, κi,k, for all i, i′ ∈ [1 : NA], i ̸= i′, j ∈ [1 :
NO], design a RL-based decentralized multi-agent motion
planner that navigates the agents to their respective targets
according to (3), while ensuring DRPC-safety at all times.

Compared to our prior work [13], [14], Problem 1 requires
the design of a decentralized motion planner that can ac-
commodate non-Gaussian uncertainties constrained in some
known moment-based ambiguity sets.

Remark 2. We focus the multi-agent motion planning problem
with drones since path planning for drones can be accom-
plished using linear dynamics as (3), see [14], [20], [21].
However, the proposed approach may also be applied to
similar problems with teams of different robots.

III. DECENTRALIZED FILTERED REINFORCEMENT
LEARNING

Fig. 1 describes the proposed approach for safe, RL-based
multi-agent motion planning (see Section II-B). Similarly
to [14], we use single-agent RL-based motion planning to
construct a motion plan for each agent that together may not
satisfy DRPC-safety. Then, we compute online corrections
to each motion plan individually using decentralized safety
filters. In contrast, our prior work [14] computed corrections in
a centralized infrastructure that may result in lower resiliency,
may incur higher communication costs, and may not scale
computationally to very large team sizes.
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Fig. 2. Convexified, distributionally-robust, inter-agent collision avoidance
constraints in Proposition 1. As in [15], we use optimal linear separation to
convexify the collision avoidance constraint (10), and then use Lemma 1 to
compute the distributionally-robust chance constraint tightening. The shrink-
age of the Voronoi cells depends on the moment-ambiguity sets associated
with each agent and can be time-varying (z

agt
ii′k, b

agt
ii′k) (see Proposition 1).

For each agent i ∈ [1 : N ] at time t ∈ N, the decentralized
safety filter computes corrections to the reference motion plan
{xRL

i (k|t)}t+T
k=t and control {uRL

i (k|t)}t+T−1
k=t by solving,

minimize
{rsafei (k|t)}t+T−1

k=t

∑
k∈[t:t+T−1]

λk∥uRL
i (k|t)− usafe

i (k|t)∥2 (12a)

subject to Dynamics (7) with rsafei , xi(t) = yi(t), (12b)

∀k∈[t:t+T−1], usafe
i (k|t) = Kxi(k|t) + Frsafe

i (k|t) (12c)

∀k∈[t:t+T−1], rsafe
i (k|t) ∈ R, (12d)

∀k∈[t:t+T ], Safety constraints on xi(k|t) at k, (12e)

Recursive feas. constraint on xi(t+ T |t),
(12f)

where λk ≥ 0 are pre-specified weights.
Next, we propose convex, agent-specific, sufficient con-

straints to guarantee DRPC-safety (12e), and terminal con-
straints (12f) to guarantee recursive feasibility of the mean
agent trajectories. We also discuss a temporal discounting of
safety to mitigate the conservativeness.

A. Decentralized, convexified enforcement of DRPC-safety

Recall the result in robust optimization [22].

Lemma 1 (CHANCE CONSTRAINT REFORMULATION
FOR MOMENT-BASED AMBIGUITY SETS). Consider a d-
dimensional random vector p ∼ Pp ∈ P(µ,Σ) and a
halfspace {p : a · p ≤ b}, a ∈ Rd, b ∈ R. For any δ ∈ (0, 1),

sup
P∈P(µ,Σ)

P(a · p ≥ b) ≤ δ ⇐⇒ a · µ ≥ b+ ∥Σ
1
2 a∥

√
1− δ

δ
.

We use Lemma 1 to derive convex sufficient constraints to
guarantee DRPC-safety (12e) in Proposition 1. The proof is
in Appendix A.

Proposition 1. (CONVEXIFIED DRPC CONSTRAINTS) Con-
sider a polytopic environment with NK ∈ N halfspaces

K = ∩i∈[1:NK]

{
p ∈ Rd : hi · p ≤ gi

}
for some {hi, gi}NK

i=1

with hi ∈ Rd and gi ∈ R. For any i, i′ ∈ [1 : N ], j ∈ [1 : NO],
and k ∈ [t+ 1 : t+ T ], let θ∗ii′k solve

zagt
ii′k(k|t)

⊤ (
θ2Σpi(k|t)− (1− θ)2Σpj (k|t)

)
zagt
ii′k(k|t) = 0, (13)

and define

zobs
ijk ≜

cj − pRL
i (k|t)

∥cj − pRL
i (k|t)∥

, zagt
ii′k ≜ Θ−1

ii′k

pRL
j (k|t)− pRL

i (k|t)
∥pRL

j (k|t)− pRL
i (k|t)∥

, (14)

bagt
ii′k ≜ zagt

ii′k(k|t) · p
RL
i (k|t) +

∥∥∥∥Σ 1
2
pi (k|t)z

agt
ii′k(k|t)

∥∥∥∥θ∗ii′k, (15)

where Θii′k = (θ∗ii′kΣpi(k|t) + (1− θ∗ii′k)Σpi(k|t)) ∈ Rd×d.
Then, for any k ∈ [t + 1 : t + T ], (9), (10), and (11) hold if
(16) holds.

Fig. 2 illustrates the inter-agent collision avoidance con-
straint (16b), where the constraint tightening depends on the
agents’ rigid body shape A, the associated ambiguity set, and
the risk bound β in (10). We obtain a 3-way separation by
solving for θ∗ii′k in the nonlinear equation (13), and then
computing (zagt

ii′k, b
agt
ii′k) using (14) and (15) for each pair

of agents (i, i′) and time k. We use these optimal linear
separations to convexify the non-convex collision avoidance
constraints between agents and between agents and obstacles.

Proposition 1 determines regions in which each agent can
be without violating the DRPC-safety. These regions can be
viewed as a collection of buffered Voronoi cells [15], [16],
where each agent’s cell boundaries are given by (14), (15), and
the moment-based ambiguity set corresponding to the agents.

Remark 3. In the presence of communication constraints
where only information about “nearby” agents are available
to each agent, (16b) only includes constraints for the nearby
agents. We briefly explore this in Section V-C.

B. Recursive feasibility constraint

Constraint (12f) aims at ensuring recursive feasibility, which
is an open area of research in stochastic MPC [23]. In our
prior work [14], the centralized nature of the safety filter
allowed us to guarantee recursive feasibility using reachability.
However, such an approach is not possible here since each
agent computes rsafei in (12) independently.

For sake of tractability, we focus on ensuring nominal
recursive feasibility using terminal equality constraints.

Proposition 2. (NOMINAL RECURSIVE FEASIBILITY) Let
(12f) be xi(t + T |t) ∈ Ii, where Ii ⊆ Rn for i ∈ [1 : NA]
is such that, for every xi ∈ I, there exists an input sequence
{urecurse

i (k|t)}k≥t+T with pi(k|t) = pi(T |t) for all k ≥ t+T .
Then, the mean trajectory of every agent obtained by solving
(12) is guaranteed to be collision-free for k ≥ t+ T .

The proof is in Appendix B. Using a 2D double integrator
dynamics [14], for every i ∈ [1 : NA],

Ii ≜ {x : Cvelxi(t+ T |t) = 0}. (17)

Equation (17) requires zero mean velocity at the end of the
planning horizon, and each drone hovering at the terminal
position Cposxi(t + T |t) with urecurse

i = 0. Equation (17)
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∀j ∈ [1 : NO], zobs
ijk · (pi(k|t)− cj) ≥ SOj (z

obs
ijk) + S(−A)(z

obs
ijk) + ∥(Σpi(k|t) + Σcj )

1/2zobs
ijk∥

√
(T − αi,j,t)/αi,j,t, (16a)

∀j ∈ [1 : i− 1], zagt
ii′k · (pi(k|t)− pj(k|t)) ≥ bagt

ii′k + SA(zagt
ii′k) + ∥(Σpi(k|t) + Σpj (k|t))

1/2zagt
ii′k∥

√
(T − βi,j,t)/βi,j,t, (16b)

∀j ∈ [1 : NK], hj · pi(k|t) ≤ gj − SA(hj)− ∥(Σpi(k|t))
1/2hj∥

√
(κi,t)/(NK − κi,t). (16c)

introduces conservativeness by requiring the agents to stop at
the end of the planning horizon. However, due to the receding
horizon nature of the framework, the observed conservative-
ness on the actuated command usafe

i (t|t) is low, especially for
longer planning horizons T .

C. Reducing conservativeness via temporal safety discounting

Sections III-A and III-B provide a convex, conservative
approximation of (12). Lemma 1 provides an exact refor-
mulation of the chance constraint, but the reformulation is
conservative since the distribution encountered in practice
may have fewer negative effects than the worst-case one.
The convexification of (12) via optimal linear separation and
chance constraint reformulations (Proposition 1), and the use
of buffered Voronoi cells achieve decentralization, but may add
additional conservativeness in practice. Hence, we propose a
temporal safety discounting to mitigate the conservativeness
via slack variables.

Consider the approximation of (12),

min.
∑

k∈[t:t+T−1]

λk∥uRL
i (k|t)− usafe

i (k|t)∥2

+ γ

NO∑
j=1

sobs
j +

NA∑
j=1

s
agt
j +

NK∑
j=1

senv
j

 (18a)

s. t. (12b) − (12d), (17)
∀k∈[t+1:t+T ],
∀j∈[1:NO ], LHS of (16a) + ∥(Σpi (k|t) + Σcj )

1/2zobs
ijk∥s

obs
jk

≥ RHS of (16a), (18b)
∀k∈[t+1:t+T ],
∀j∈[1:i−1], LHS of (16b) + ∥(Σpi (k|t) + Σpj (k|t))

1/2z
agt
ii′k∥s

agt
jk

≥ RHS of (16b), (18c)
∀k∈[t+1:t+T ],
∀j∈[1:NK], LHS of (16c) − ∥(Σpi (k|t))

1/2hj∥senv
jk

≤ RHS of (16c), (18d)
∀k∈[t+1:t+T−1]

∀ appropriate j , 0 ≤ sobs
jk ≤ sobs

j(k+1), 0 ≤ s
agt
jk ≤ s

agt
j(k+1)

,

0 ≤ senv
jk ≤ senv

j(k+1), (18e)

Here, (18b)–(18e) together enforce (16) after relaxing (16a)–
(16c) using non-negative slack variables sobs

jk , s
agt
jk , s

env
jk , and

(18e) requires the slack variables be non-decreasing over the
planning horizon, see Fig. 3. For a sufficiently large temporal
safety discounting penalty γ > 0, (18) will provide a feasible
solution to (12) when possible, due to its use of ℓ1-penalty [24,
Ch. 17]. Since (18) is a convex quadratic program, it that can
be efficiently solved using off-the-shelf solvers [25].

By construction, (18) is guaranteed to always be feasible
for a sufficiently long planning horizon T . Also, when all
slack variables are zero, the solution to (18) guarantees DRPC-
safety for all time steps k ∈ [t : t + T ], and Proposition 2
guarantees nominal recursive feasibility. Otherwise, we define
Tsafe as the furthest time step k into the future with slack

Fig. 3. Illustration of the proposed temporal safety discounting. We relax the
constraints associated with safety using slack variables, where the relaxation
of far-future constraints are preferred over near-future constraints. In certain
instants k ∈ {4, 6, 7}, the slack values relax safety for the feasibility of (18),
and may be higher than the minimum needed by the temporal requirement.
Tsafe is the furthest future time step with a zero slack variable, and the first
slack variable is forced to be zero to ensure safety Tsafe ≥ 1.

Fig. 4. Observed drone trajectories when using the motion plans generated
by the proposed approach (left) and a centralized safety filter [14] (right). See
https://youtu.be/Yy ukIXwqqE for the experiment videos.

variables sobs
jk , s

agt
jk , s

env
jk as zero for all corresponding j (see

Fig. 3), and the computed solution to (18) guarantees DRPC-
safety for all time steps k ∈ [t : t + Tsafe]. We recommend
imposing slack variables for k = 0 to zero to ensure Tsafe ≥ 1.

IV. EXPERIMENTS

As in [14], we validate the proposed approach using six
drones (NA = 6) in a 3m×3m workspace with seven circular
obstacles (NO = 7) and two goal regions. We depict the
obstacles by black circles and the goal regions by transparent
gray circles with a star at the center in Fig. 4.

We use the Crazyswarm platform [26] to communicate
with the Crazyflie drones, and localize the drones using an
OptiTrack motion capture system running at 120 Hz. We gen-
erate the motion plans and provide waypoints to the drones at
10 Hz over radio using Crazyswarm. The Crazyflies regulate
to these waypoints using standard on-board controllers. We
introduce a position estimation noise defined in (3b) to the
agent dynamics as well as the nominal obstacle locations.
Such measurement noises affect the safety filter, but are not
visualized in the plots.

https://youtu.be/Yy_ukIXwqqE
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Fig. 5. Satisfaction of DRPC-safety along the entire trajectory in a Monte-
Carlo simulation of 100 trials for the experiment set up used in Section IV
(Test Scenario) and 4 other randomly chosen problem instances by
various methods: Proposed approach using distributionally-robust chance
constraint tightening (Proposed), Gaussian-based chance constraint tightening
(Gaussian) [15], no constraint tightening (None), and different variants of
optimal reciprocal collision avoidance (ORCA) [8]. Due to the non-Gaussian
nature of the stochastic uncertainty in the agent model and the environment,
the proposed approach exhibits safer behavior than existing approaches.

For motion plan generation, we use 2D double integrator
models, similar to [14], [20], [21]. The on-board controller
regulates the attitude dynamics, where yaw is not relevant for
our problem, and compensates for the approximated model.

We use individual chance constraint risk thresholds κi,k =
αi,j,k = βi,i′,k = 0.1, temporal safety discounting penalty γ =
103, and λk = 1. Since in [26], the maximum position tracking
error of crazyflies was approximately 2.5 cm, we use Σw =
Ση = 6diag(10−5, 0, 10−5, 0) and Σcj = 6×10−5I2 for each
j ∈ [1 : NO] to ensure that Lemma 1 provides a sufficient
margin in the safety filter (≈ 2.5 cm with 0.9 probability). We
use the Laplace distribution, which is a non-Gaussian, heavy-
tailed distribution, to draw realizations of w,η, and cj .

We use an Ubuntu 20.04 LTS workstation with an AMD
Ryzen 9 9590X 16-core CPU, a Nvidia GeForce GTX TITAN
Black GPU, and 128GB of RAM for all training, simu-
lation, and experiments. We use Stable-Baselines3’s
implementation of the proximal policy optimization (PPO)
algorithm [18] to train the RL agents. We run two training
sessions, one for each goal, for 107 time steps each. Each
training session took just over 11 hours, see [14] for more
details. We model the quadratic program associated with (18)
in Python 3.7 using CVXPY [27], and solve it using ECOS [25].

Fig. 4 shows the generated motion plans using the proposed
decentralized approach and our prior centralized approach
in [14]. Both approaches successfully accomplish the task
while respecting the safety constraints. The centralized ap-
proach completes the task in 24.4 seconds, while the decen-
tralized approach took 39 seconds. However, at each time step,
the decentralized safety filter needs about less than 20% of
compute time than the centralized safety filter (0.017 seconds
for each agent vs 0.092 seconds for the team), and does not
need a centralized infrastructure.

V. SIMULATION-BASED PERFORMANCE ANALYSIS

For a more extensive assessment of the performance of the
proposed approach, we perform a simulation-based analysis.
First, we compare the performance and safety provided by

TABLE I
(0.05, 0.5, 0.95)-QUANTILES OF THE SAFETY HORIZON AS WELL AS THE
TIME UNTIL SUCCESS/TIME-OUT OR FAILURE, AND THE PERCENTAGE OF
TRIALS THAT SUCCEEDED, TIMED-OUT, OR FAILED AGGREGATED OVER

THE FIVE SCENARIOS CONSIDERED. THE PROPOSED APPROACH IS SAFER
THAN EXISTING APPROACHES WITHOUT COMPROMISING ON THE

PERFORMANCE OF THE TASK.

Constraint Safety Time until Time to % of 500 trials with
tightening horizon Tsafe success/timed-out failure Success Timed-out Collisions
Proposed 10 / 10 / 10 144 / 216 / 653 1 / 66 / 178 86.2 % 3.0 % 10.8 %
Gaussian 10 / 10 / 10 124 / 144 / 332 11 / 66 / 190 49.8 % 0.0 % 50.2 %

None 10 / 10 / 10 99 / 127 / 152 6 / 33 / 84 13.6 % 0.0 % 86.4 %
ORCA (f = 1.0) 118 / 139 / 194 7 / 34 / 115 9.0 % 0.0 % 91.0 %
ORCA (f = 1.3) Not 185 / 252 / 467 24 / 99 / 315 70.2 % 0.0 % 29.8 %
ORCA (f = 1.4) Applicable 175 / 279 / 603 42 / 142 / 399 76.0 % 0.8 % 23.2 %
ORCA (f = 1.5) 230 / 427 / 800 61 / 153 / 664 57.4 % 11.4 % 31.2 %

our proposed approach with those of some existing methods,
showing that we generate safer trajectories without significant
compromises in performance on several randomly chosen
motion planning problem instances. Second, we study the
effect of varying the temporal safety discounting penalty γ
in (18) on the safety guarantees of the proposed approach.
Finally, we empirically demonstrate that reasonable constraints
on communication do not significantly degrade safety and
performance of the proposed approach.

A. Comparison with existing approaches

We compared our proposed approach with several existing
methods: 1) the buffered Voronoi cell in [15] that assumes
Gaussian uncertainty, 2) a variant of [15] where no constraint
tightening was applied, i.e., the Voronoi cells are not shrunk,
and 3) several variants of optimal reciprocal collision avoid-
ance (ORCA) [7], [8] where the agent radii were artificially
inflated to (approximately) account for uncertainty, specifically
scaling by f ∈ {1, 1.3, 1.4, 1.5}. These inflations of the agent
geometry are heuristics, whereas our proposed approach uses
a systematic constraint tightening based on dynamics and
uncertainty models.

We study the performance of various approaches over four
randomly generated motion planning problem instances and
the Test Scenario used in the experiments in Section IV.
We perform a Monte-Carlo simulation of 100 trials for differ-
ent noise realizations on each of the scenarios.

Table I aggregates the performance of various approaches
under study over the 500 trials. Our proposed approach has a
significantly larger fraction of safe simulations than the other
methods due to the correct treatment of non-Gaussian uncer-
tainties, with 86.2% of the trials being safe and successful.
Including timed-out cases where the proposed approach kept
the team safe but was unsuccessful in steering all agents to
their targets within 800 time steps, the proposed approach is
safe in 89.2% of the trials.

Fig. 5 shows the safety of the various approaches considered
for each of the scenarios. Our proposed approach is safer than
existing approaches in all scenarios except in Random 3,
where ORCA with f = 1.4 is slightly safer.

Fig. 6 shows the utilization of the proposed temporal dis-
counting of safety by various safety filters. Since the existing
buffered Voronoi cell-based approach [15] underestimates the
effect of uncertainty, both the cases with Gaussian-based
chance constraint tightening and without constraint tightening
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Fig. 6. Variation of the safety horizon based on the temporal safety discounting over 500 simulations. Compared to the Gaussian-based constraint tightening [15],
the proposed distributionally-robust-based approach uses slack variables more effectively to recover feasibility.

Fig. 7. Effect of varying the temporal safety discounting penalty γ in (18) on the task failure (collision or timed-out) and time taken to complete the task
Tsim. Larger γ yields improved safety with limited performance degradation.

Fig. 8. Safety and performance for the proposed approach under varying communication ranges. Reasonable constraints on communication do not significantly
deteriorate the performance and safety of the proposed approach.

typically do not use the slack variables. On the other hand,
our approach uses the temporal safety discounting to mitigate
the conservativeness effectively with Tsafe ≥ 8 in most of the
time steps. While existing approaches complete the task faster
(lower Tsim), they may underestimate the effect of noise and
are typically unsafe, due to mismatch in the uncertainty model.

B. Trade-off between temporal discounting and correction
Fig. 7 shows the effect of varying the temporal safety

discounting penalty γ in (18) on the performance and safety
of the proposed approach. We perform the variation study on
the proposed approach on the Test Scenario for 100 sim-
ulations and varied γ ∈ {10−3, 10−2, 10−1, 1, 101, 102, 103}.

Increasing the penalty γ drastically reduces the percentage
of trials in the Monte-Carlo simulation that result in collision,
while moderately increasing the percentage of timed-out trials.
In other words, increasing the penalty γ significantly increased
the percentage of trials that are safe and successful. However,

the time Tsim taken by the agents to safely and successfully
reach the targets also increases with larger values of γ,
indicating a trade-off between performance and safety.

C. Enforcement of communication constraints
Fig. 8 shows the performance and safety of the proposed

approach when imposing a constraint on communication,
see Remark 3. Specifically, we consider a variant of the
proposed approach, where the information about other agents
are available to an ego agent only when they are within a
pre-defined distance characterized by a communication radius,
Rcomm ∈ {0.2, 0.5, 1,∞}. Under communication constraints,
we relax (18c) to only include agents that are “close” enough
to exchange information.

The proposed approach exhibits only moderate degrada-
tion of safety, i.e., higher failure rates, when imposing a
communication radius. The fractions of trials that were safe
and successful for Rcomm ∈ {0.5, 1,∞} are similar. This
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observation follows from the intuition that the information of
nearby agents are more pertinent to guarantee safety compared
to far-away agents. On the other hand, as expected, reducing
the communication radius further down to 0.2 resulted in
a breakdown of safety with no safe trials, since agents no
longer have the necessary information to prevent collisions in
time. Larger teams may also face degradation of safety due to
channel capacity, which was not observed in our experiments.

VI. CONCLUSION

This paper proposes a decentralized, multi-agent motion
planner that guarantees probabilistic safety of multi-agent
teams under uncertainty. The proposed planner uses a com-
bination of off-the-shelf, single-agent reinforcement learning,
distributionally-robust and convex optimization, and buffered
Voronoi cells to generate the motion plans in real-time. We
analyzed the performance of our approach in simulation and
demonstrated it in physical experiments using drones.
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APPENDIX

A. Proof of Proposition 1
(16a): First, we use the supporting hyperplane theorem to

convexify the collision constraint as follows,

zobs
ijk · (pi(k|t)− cj) ≥ SOj (z

obs
ijk) + S(−A)(z

obs
ijk), (19)

similarly to our prior work [14, Prop. 1]. Specifically, in a non-
stochastic setting, (19) is sufficient to ensure that (pi(k|t) ⊕
A)∩ (cj(t)⊕Oj) ̸= ∅. Then, we obtain (16a) using Lemma 1
to characterize a deterministic reformulation of (9).

(16b): For inter-agent collision avoidance, we first compute
an optimal linear separator by solving

min
a,b,δ

δ (20a)

s. t. supP∈Pi×Pj
P(a · pi(k|t) > b) ≤ δ, (20b)

supP∈Pi×Pj
P(a · pj(k|t) ≤ b) ≤ δ, (20c)

where Pi × Pj = Pi(p
RL
i (k|t),Σpi

(k|t)) ×
Pj(p

RL
j (k|t),Σpj

(k|t)). Since 1/(1 + x2) is monotonic
in x, (20) is equivalent to

min
a,b

max
i,j

 b− a · pRL
i (k|t)√

a · (Σpi(k|t)a)
,

a · pRL
j (k|t)− b√

a · (Σpj (k|t)a)

 . (21)

by the epigraph reformulation and Chebyshev-Cantelli in-
equality. Equation (21) is identical to the optimal linear separa-
tion problem for Gaussian distributions with the same specified
mean and covariance matrices [15]. Using the discussion in
[15], (a, b) may be obtained as in (13), (14), (15). We obtain
a convexification similar to (19) using a∗, b∗, and (16b) from
Lemma 1.

(16c): Follows from Boole’s inequality and Lemma 1.

B. Proof of Proposition 2
By definition, when xi(t + T |t) ∈ Ii, by applying urecurse

i ,
the mean positions of the agents remain constant beyond the
planning horizon. Thus, this is a particular case of guaran-
teeing recursive feasibility in MPC using terminal equality
constraints [28], and the recursive feasibility of (12) follows.
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