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Abstract
This paper proposes a task planning framework for collaborative Human-Robot scenarios,
specifically focused on assembling complex systems such as furniture. The human is charac-
terized as an uncontrollable agent, implying for example that the agent is not bound by a
pre-established sequence of actions and instead acts according to its own preferences. Mean-
while, the task planner computes reactively the optimal actions for the collaborative robot
to efficiently complete the entire assembly task in the least time possible. We formalize the
problem as a Discrete Event Markov Decision Problem (DE-MDP), a comprehensive frame-
work that incorporates a variety of asynchronous behaviors, human change of mind, and
failure recovery as stochastic events. Although the problem could theoretically be addressed
by constructing a graph of all possible actions, such an approach would be constrained by
computational limitations. The proposed formulation offers an alternative solution utilizing
Reinforcement Learning to derive an optimal policy for the robot. Experiments were con-
ducted both in simulation and on a real system with human subjects assembling a chair in
collaboration with a 7-DoF manipulator.
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DECAF: a Discrete-Event based Collaborative Human-Robot
Framework for Furniture Assembly
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Fig. 1: Schematic of a collaborative assembly workflow. The red highlighted components are the focus of this work.

Abstract— This paper proposes a task planning framework
for collaborative Human-Robot scenarios, specifically focused
on assembling complex systems such as furniture. The human is
characterized as an uncontrollable agent, implying for example
that the agent is not bound by a pre-established sequence
of actions and instead acts according to its own preferences.
Meanwhile, the task planner computes reactively the optimal
actions for the collaborative robot to efficiently complete the
entire assembly task in the least time possible.

We formalize the problem as a Discrete Event Markov
Decision Problem (DE-MDP), a comprehensive framework
that incorporates a variety of asynchronous behaviors, human
change of mind, and failure recovery as stochastic events.
Although the problem could theoretically be addressed by
constructing a graph of all possible actions, such an ap-
proach would be constrained by computational limitations. The
proposed formulation offers an alternative solution utilizing
Reinforcement Learning to derive an optimal policy for the
robot. Experiments were conducted both in simulation and
on a real system with human subjects assembling a chair in
collaboration with a 7-DoF manipulator.

I. INTRODUCTION

In recent years, the area of human-robot collaboration has
gained increasing attention because of the advancement of
robotics and artificial intelligence. The synergistic integration
of human dexterity and robotic precision holds great poten-
tial, especially for small- and medium-sized enterprises with
high-mix and low-volume productions. In this context, the
assembly of furniture represents a challenging yet promising
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test-bed application, since it involves long-term action se-
quences, dexterous manipulations, precise alignments, trans-
portation of cumbersome objects, and three-hand operations.
Reactive planners for robot actions play a crucial role
in promoting smooth collaboration, yet robust frameworks
for long-term tasks in unpredictable environments remain
challenging and warrant further investigation. For effective
collaboration, robots must adapt to human behavior while
maintaining coordination, although explicit coordination may
slow interaction. Additionally, unexpected events like task
failures or sudden human change of mind can hinder team
effectiveness and safety and thus need to be considered and
handled at planning time.

Most of the existing literature either proposes to assign
offline the tasks to the human and robot agents, which
then work separately sharing only the workspace [1], or
treat the collaboration as a multi-agent scheduling task [2],
[3], [4]. Despite being effective, these approaches typically
require the human to follow a prescribed plan. Single-agent
frameworks have been also proposed, mainly relying on a
leader-follower paradigm, where the robot actions are pas-
sively determined by the human leader through a dedicated
interface [5], or learned from demonstrations [6]. These
methods, generally, lack robustness against uncertainties like
task failures and human changes of mind, common in practi-
cal applications. Additionally, they seldom account for agents
collaborating on the same sub-task.

In this paper, we present a novel single-agent framework
for planning long-term collaborative assembly tasks, such
as furniture assembly, called Discrete-Event based Collab-
orative Human-Robot Assembly Framework for Furniture



(DECAF). In the proposed framework the robot agent ob-
serves the human and performs both joint and independent
actions maximizing the task efficiency while reacting to
unpredictable events. In detail, we rely on a Hierarchical
Task Model (HTM) to encode the interdependence between
the assembly sub-tasks, and on a Bayesian Inference module
to observe the human agent behavior. The collaborative
assembly is then modeled as a Discrete-Event Markov
Decision Process (DE-MDP), which allows one to easily
handle actions of different durations, as well as uncertain
contingencies such as failures and changes of mind. To solve
the DE-MDP and obtain a planning policy, we propose a
Reinforcement Learning (RL) method.

Our contribution can be summarized as follows: i) We pro-
pose a novel DE-MDP formulation to model long-term col-
laborative assembly tasks, which accounts for asynchronous
joint and independent actions with uncertain duration, and
unpredictable events such as task failures and changes of
mind. ii) We present DECAF, a complete planning frame-
work that comprises the DE-MDP model, an HTM descrip-
tion of the assembly, and a Bayesian Inference module to
discover human intention. iii) We assess our framework
in both simulated and real-world environments. DECAF is
validated through a real chair assembly task involving 10
human subjects. Results show decreased completion times
compared to a human solving the task alone, along with
reduced physical effort and an enhanced assembly experience
for the human operator.

II. RELATED WORKS

There exists extensive literature on planning, scheduling,
and task assignment for human-robot assembly tasks. Several
approaches model the assembly task using AND/OR graphs
and solve the planning as a search problem [7], [3], [4],
[8]. Similarly, Behavior Trees have been also considered as
task representation [9], [1], [10]. Despite they proved to be
effective, all these works require the human to follow the
specific plan prescribed by the scheduler. Moreover, all these
methods are not robust to uncertain and unpredictable events.

Robustness to task failures is considered in [2], where the
task is represented employing an HTM, and the cooperation
is modeled as a multi-agent concurrent MDP. The MDP
is solved by building a decision graph that also considers
sub-task failure probability and the optimal path is selected
defining a Mixed Integer Linear programming Optimization.
However, this framework requires the human to adhere to
pre-computed plans and does not consider joint actions.
Additionally, integrating contingencies different from task
failures proves challenging, as they should be manually
added to the graph construction.

Differently, in [11], a robust planning algorithm based
on a Partially Observable MDP is developed. The focus
is on deriving a realistic human policy by considering the
interplay between both agents’ decision-making processes,
which directly influences human intention. Their solution
enables both agents to execute individual and joint actions,
but overlooks actions of varying duration and uncertainty

robustness to uncertainty. In [12], an open-agent MDP is
introduced to minimize the human’s time in the task, but
human has to follow an optimal policy. More similarly to
our work, single-agent formulations have been explored in
[13], [14] and [15]. In [13] a Robust Plan Recognition
and Trajectory Prediction is proposed based on an HTM
representation, where the human’s intentions and plan are
recognized using a perception module. The robot recognizes
the human plan and performs its actions accordingly, but its
role is limited to assistive operations, without the possibility
to actively contribute to the task advancement. In [14] the
same authors propose a collaborative framework where the
HTM task scheduling is optimized to minimize the total task
completion time and promote workspace separation. How-
ever, within this framework, the possibility to collaborate on
the same joint task is not considered and the task is optimized
only over a limited time horizon. Similarly in [15], the
authors rely on a modified HTM task representation and their
goal is to provide an adaptive framework where the overall
assembly time is minimized. The robot observes the human’s
choice and selects its action to minimize the overall cost,
averaged across all possible human actions. However, their
graph-based approach is inadequate for handling failures and
stochastic events.

III. PROBLEM FORMULATION

In this section, we formalize the long-term collaborative
assembly planning problem we aim to solve, and we high-
light the requirements and assumptions of our framework.
Assembly tasks are defined as a hierarchical set of atomic
tasks, hereafter denoted as actions, which must be executed
complying with a set of ordering constraints. We assume
that two agents, a human and a robot, cooperate to solve the
task. Furthermore, we assume actions to be either individual
or joint. Individual actions can be executed by a single agent,
be it the human or the robot, while joint actions necessitate
simultaneous execution by both agents. The framework is
robust to actions of different durations, contingent upon the
specific action and the agent undertaking it.

Despite the aforementioned scenario includes two agents,
we assume the human to be inherently uncontrollable. The
robot observes the human actions and plan its actions based
on the state of the environment which comprises the assem-
bly state and behavior of the human partner. Consequently,
the problem is formulated as a single-agent planning task.

The setting depicted above introduces interesting chal-
lenges, which we aim to address within our framework.
Synchronization: The human and the robot can work in
parallel on different actions but have also to perform joint
actions together. Since actions have different duration, agent
synchronization is required to perform joint actions.
Human detection: As the human behaves uncontrolled and
the robot has to adapt its actions to the human choices, hu-
man action detection is required. This inevitably introduces
a delay into the robot action scheduling, which needs to be
considered by the planner.
Human change of mind: The human could begin a task,



and then suddenly change its mind and perform a new task.
In that case, the robot should reschedule its plan.
Failures: The actions performed by the agents could fail,
which requires the introduction of recovery strategies.

To address the aforementioned challenges, we consider
the following assumptions. i) Joint actions can be chosen
and initiated only by the human operator. In case the human
chooses a joint action, the robot joins them as soon as it
finishes the ongoing action. ii) We introduce an additional
action called idle, which can be performed by both agents.
When idle, the agent is waiting, without contributing to the
task advancement. We use the idle as a synchronization
mechanism before a joint action: when the human chooses a
joint action, they remain idle until the robot has completed its
action. When the robot finishes, the two agents perform the
joint action together. iii) If the human action is not detected,
the robot must remain idle. v) Failures are detected at the
end of an action, including those that fail before reaching
the goal or due to incorrect execution. We do not consider
failures that occur after an action is completed.

IV. DECAF FRAMEWORK

A. Hierarchical Task Model for Assembly task description

The DECAF framework relies on sequential/parallel Hier-
archical Task Model (HTM) for task representation [13]. A
HTM is a tree structure where the root node represents the
entire assembly, while all the other nodes represent assembly
subtasks. The leaves represent the actions to be executed.
Each node can be categorized as parallel (∥), sequential
(→) or independent (⊥). Children of parallel nodes can be
executed at the same time by the two agents, in any order.
Children of sequential nodes must be individually executed
in the specified order (from left to right). Finally, children of
independent nodes must be individually executed but can be
performed in any order. An example of HTM is in Fig. 3.

In our framework, the HTM is used to describe the se-
quential constraints on action executions, which are encoded
in the DE-MDP described in Section IV-C.

B. Bayesian Inference for Human Intent Recognition

To recognize human actions, DECAF relies on a Bayesian
Inference module. We assume each action to be related
to a specific object in the assembly scene. Then, we use
Bayesian Inference to detect the object of interest for the
human, which in the following will be denoted as goal.
The robot, during the assembly, task aims to infer the most
likely goal g∗ for the human from the set of possible goals
g, given a set of observations. Following [16], [17], we
formulate the intent inference problem as Bayesian filtering
in a Markov model, which allows us to model the uncertainty
over the candidate goals of the human agent as a probability
distribution over the goals. We integrated human hand pose
tracking through a deep learning model [18] finely-tuned
within the experimental setup. We represent the goal gt as
the query variable and the observed features Θ0,...,Θt as the
evidence variables, where Θt is a k-dimensional vector of k
observations θ i

t , i= 1 : k, at time t. The uncertainty over goals

is then represented as the probability of each goal hypothesis.
In particular, we compute proximity and alignment to a
goal as likelihood features, given the human hand pose
and goal poses. We assume the conditional independence of
observations, and thus, at time t, the belief bt(g) becomes,

bt = P(gt | Θ0:t) ∝ ∏
θt∈Θt

P(θt | gt) ∑
gt−1∈g

P(gt | gt−1)bt−1(gt−1)

The posterior distribution at time t, denoted bt , represents
the belief after taking the observations into account. The
set of prior probabilities P(gt=0), ∀g ∈ g, initially repre-
sents the robot’s belief over the goals. The beliefs then are
continuously updated, by computing the posteriors, as more
observations become available. Furthermore, P(gt | gt−1) is
the conditional transition distribution of changing to goal gt
at time t given that the goal was gt−1 at time t−1. Finally, to
predict the most likely goal g∗t ∈ g, we select the goal class
that is most probable according to the maximum a posteriori
decision g∗t = argmaxgt∈g P(gt | Θt).

C. Discrete-Event MDP

In this section, we describe the proposed method to model
and solve the collaborative assembly scheduling. Our method
models the system as a Discrete-Event Markov Decision
Process (DE-MDP). A DE-MDP is an MDP in which the
state transitions do not happen on a fixed time basis, but are
determined by the occurrence of relevant events. In the case
of collaborative assembly, the task advancement is related
to the completion of actions that have different, possibly
stochastic, durations. Moreover, the cooperation state is also
modified by events such as human action recognition or
human change of mind.

Consider an assembly task composed of N actions. The
collaborative scheduling problem is modeled as a DE-MDP
(S, A, E , Γ, ℓ, T , R, γ), where S is the state space of
the system; A is the action space; E represents the set of
possible events; Γ(s) is the set of feasible events at state
s ∈ S; ℓ(s,a,e) is the event lifespan function, which gives the
probability distribution over the time after which the event e
is likely to occur at the current state s ∈ S and robot action
a∈A; T (s,a,s′,e) is the transition probability function which
gives the probability of transitioning to state s′ given the
current state s, the current robot action a and the event e;
R(s,a,e) is the reward function and γ the discount factor.

Differing from the standard MDP framework where the
state update occurs at every time step, the DE-MDP state
transition happens only in the presence of an event. We
use the index variable k to represent the time instant of
the state evolution. Moreover, ∆tk denotes the time spent
by the system to transition from state sk to sk+1 and,
for convenience, it is multiple of a discrete-time step T̄ .
Therefore, the variable time step, ∆tk, at which the DE-MDP
state updates depends on the event lifespan ℓ(sk,ak,e), with e
being the event causing the system transition from sk to sk+1.
In the following, for notation simplicity, we will explicit the
dependence on the index k only when necessary.

In the following the elements of the DE-MDP are detailed.



a) Actions: the actions set A includes all the actions
that can be executed by the robot. Let Ā = {a1, . . . ,aN} be
the set of all possible actions to complete the task. Let us also
introduce the set Ar = {aN+1, . . . ,a2N} be the set of recovery
actions. These actions are not necessary to complete the task
but must be executed to recover from a failure. Finally, let
us denote with aidle the idle action. We model each action
as a tuple a j = (o j,δ j, p f

j ), where o j ∈ {0,1,2,3} denotes
if the action can be performed by the human (0), by the
robot (1), by both the agents (2) or is a joint action (3);
δ j = [δ h

j ,δ
r
j ] represents the action duration when performed

by the human (δ h
j ) or by the robot (δ r

j ). Regarding the action
duration modeling, we assume δ h

j and δ h
j to be normally

distributed around a nominal action duration value; p f
j ∈ [0,1]

denotes the action failure probability. Note that in the case
of joint actions, δ h

j and δ r
j are equal, while we assume the

idle action to last until the next triggering event happens.
With this formalism, we define the action space as A= {a j ∈
Ā|o j ̸= 0}∪{a j ∈ Ar|o j ̸= 0}∪{aidle}, which has cardinality
Nr. For future convenience, let us define also the set of human
actions Ah = {a j ∈ Ā|o j ̸= 1} ∪ {a j ∈ Ar|o j ̸= 1 ∪ {aidle},
which has cardinality Nh.
Feasible Actions: A f is the set of all feasible actions
for the two agents at the current state. The nonfeasible
actions are actions already completed, actions for which the
requirements are still not satisfied, recovery actions for which
the corresponding action is not failed, the current action
being executed by the other agent, and the idle action for the
robot if the human is already idle, to avoid infinite cycles.

b) States: the system state is s=(sa, ah, th, tr, d) where
sa ∈ {−1,0,1}N is the actions execution indicator, the i-th
component representing the i-th action being completed (1),
not attempted yet (0) or failed (-1); ah ∈ Ah ∪{unknown} is
the current human action, which is part of the state because
the agent cannot be controlled. Note that the human action
is considered unknown only in case it has not been detected
yet; th ∈N is the time elapsed since the current human action
started; tr ∈ N is the time since the current robot action
started; d ∈ {0,1} indicates if the current human action has
been detected or not.

c) Events: the set E = {H, R, D,C} contains the events
triggering the state transitions, where H represents the end
of a human action, R represents the end of a robot action,
D represents the human action detection and C represents a
human change of mind. As a modeling choice, we assume
the probability of an event happening p(e|s,a) can be fully
determined by the current state s ∈ S and robot action a ∈
A. In particular, if e = C, we denote with pc ∈ [0,1] the
probability of a human change of mind to happen. Then,
p(C|s,a) represents the probability of having a change of
mind before the next H or R event. The probability of having
a change of mind before the next H event is pc, as, if the
change of mind happens, it will for sure happen before the
end of the current human action. The probability of having
a change of mind before the next R event, instead, depends
on the time at which the next C and R will happen. Let ∆C

and ∆R be the time after which the next C and R events
will happen, respectively. Note that ∆C and ∆R are random
variables distributed as ℓ(s,a,C) and ℓ(s,a,R), respectively.
Then, C will happen before R with probability pc pcr, with
pcr being the probability p(∆C < ∆R). See the paragraph
regarding the lifespan function for the description of how
the lifespan distributions are defined. Note that pcr = 1 if
∆R > ∆H . We can in general conclude that p(C|s,a) = pc pcr.
Then, if e = H, the probability p(H|s,a) is 0 if the robot
finishes its action before the human i.e., δ r

a − tr < δ h
ah − th,

while it is 1− p(C|s,a) if the human finishes before the robot.
Analogous reasoning applies for the event e = R. Finally, if
e = D, p(D|s,a) = 1 if d = 0, otherwise p(D|s,a) = 0.

d) Feasible event set: Γ(s) : S →E ⊆ E provides the set
of feasible events given the current state s ∈ S. In particular,
we have: Γ(s|d = 0) = {D}, namely if the human action
has not been detected, the only feasible next event is the
detection, while if the human action has been detected all the
other events are feasible, namely Γ(s|d = 1) = {H ,R ,C}.

e) Event lifespan: the event lifespan function ℓ(s,a,e)
provides a probability distribution over the time spent by
the system in the current state s ∈ S with the current robot
action a ∈ A, before transitioning to the next state due to
the event e ∈ E , namely ℓ(s,a,e) = p(∆e|s,a), with ∆e being
the time after which the event e will occur given s and a.
In the assembly scenario we are considering, if e = D then
∆D = ∆̄D with probability 1, where ∆̄D represents the human
action detection time, which we assume to be deterministic
and known. If e = H, ∆H = δ h

ah − th. If e = R, ∆R = δ r
ar − tr,

where δah and δar represent the human’s and robot’s actions
duration, while th and tr represent the time elapsed from the
human and the robot started their current action. Note that, as
δah and δar are random variables, also ∆H and ∆R are random
variables with the same distribution as δah and δar , with mean
shifted by the elapsed times th and tr, respectively. Finally,
we model the lifespan ∆C of the event e =C as a discretized
truncated exponential distribution with support spanning the
time interval from detection to end of the human action.

f) Transition: The transition function T (s,a,s′,e) pro-
vides the probability of transitioning to the next state s′ ∈ S
given the current state s and the current robot action a due
to the occurrence of the event e. If e = D, namely the event
is a human action detection, the effect on the state is the
deterministic transition of d from 0 to 1 and the transition
of ah to the unknown state. If e = H, sa will transition to
s′a = sa ±1ah , with + if the action ends successfully and −
if it fails, where 1a j ∈ {0,1}N+1 is the vector containing all
zeros except for the component corresponding to a j. ah will
transit to the unknown state, while d′ = 0 and th′ = 0. If e=R,
the transition will affect sa and tr, in particular s′a = sa ±1a
and tr ′ = 0. Finally, a change of mind e =C will cause the
human and consequently the robot to change action, namely
ah′ will transit to the unknown state, d will transit to 0, while
th′ = 0 and tr ′ = 0.

g) Reward: as we aim to minimize the execution time,
we model the reward as the negative transition time, namely
R(sk,ak,e) = −∆k

t . Different rewards could be possible,



which for example consider human ergonomics or previous
action correlation.

D. DE-MDP Solution

The DE-MDP can be solved by RL1 that optimizes a robot
policy πθ (·) mapping the current state s to the next robot ac-
tion a. In particular, in the presence of predictable stochastic
events, RL can learn the stochastic dynamics and take actions
that consider also the possible future evolution. Moreover,
parametric function approximators can be exploited in the
presence of high dimensional state-action spaces to reduce
the computational and storage burden.

V. SIMULATED EXPERIMENTS

In this section, we assess the advantages of DECAF in
simulated collaborative assembly scenarios. Both toy exam-
ples and a real chair assembly are considered.

In all the following experiments, the RL policy is trained
with the Proximal Policy Optimization (PPO) algorithm [19].
To this aim, we implemented the DE-MDP described in
Section IV-C as a custom Gym environment [20] and used
the Stable Baselines library [21] for policy training. The
training process is sped up using action masking to limit
the action exploration only to A f , as explained in [22].
Tasks: We designed 4 toy assembly examples with num-
ber of actions varying from n = 8, to n = 32. For each
experiment, we generated a random HT M, composed of
n
4 joint actions and n

2 only robot actions. The remaining
actions can be performed by either the human and the robot.
The nominal action duration is randomly generated between
4T̄ and 16T̄ . Additionally, we considered the simplified but
realistic example of the IKEA Ivar chair assembly, whose
HTM is reported in Fig 3.
Baselines: DECAF’s performance is benchmarked against
that of two baselines policies: the first is a greedy policy
inspired to [1], which selects, among the feasible actions, the
one with the lowest nominal duration. The second, instead,
is a random policy which randomly selects the next robot
action from the feasible actions set with uniform probability.

A. Stochastic setting

In the stochastic setting, we introduce human change of
mind and action failures.

Tab. I shows the execution time at the increase of the
Human Change of Mind probability pc, with pc ranging from
0.1 to 0.4. For each value of pc, we trained a PPO policy and
tested it with a Monte Carlo experiment composed of 1000
simulations. The RL policy demonstrates its effectiveness in
addressing changes of mind by computing viable solutions
in all cases. As expected, at the increase of the change of
mind probability, the average completion time increases.

Similarly, Tab. II shows the execution time at the in-
crease of the action failure probability. For simplicity, we
considered each action to have the same probability of
failing, p f ∈ [0.1,0.4]. The occurrence of a failure introduces

1In the extended version of the paper we consider also a solution based
on a decision graph as a baseline TODO:Arxivlink

pc 8 Actions 16 Actions 24 Actions 32 Actions Chair

0.1 100.2 [3.2] 177.7 [4.4] 277.9 [5.8] 344.8 [6.2] 135.0 [6.0]
0.2 101.5 [4.8] 180.2 [6.0] 279.7 [7.5] 363.1 [6.2] 139.9 [9.5]
0.3 102.7 [6.0] 183.2 [7.6] 281.5 [11.1] 359.5 [15.2] 144.1 [12.9]
0.4 103.9 [6.8] 187.8 [10] 286.5 [15.1] 380.6 [17.5] 151.0 [16.8]

TABLE I: Completion time at the increase of change of mind
probability. The table reports mean and standard deviation
(between square brackets) in terms of number of time steps
T̄ , obtained after 1000 trials with the DECAF RL policy.

in the feasible action set a recovery action, which needs
to be performed to complete the previously failed action.
The DECAF framework with RL policy leads to a feasible
assembly plan also with failures and recovery actions. As
expected, also in this case the overall average assembly time
is increased at the increase of the failure probability.

Failure p 8 Actions 16 Actions 24 Actions 32 Actions Chair

0.1 111.3 [15.0] 196.8 [17.7] 327.6 [22.6] 511.2 [26.6] 149.4 [13.6]
0.2 125.4 [19.1] 222.7 [24.9] 400.5 [30.1] 556.7 [34.2] 174.0 [17.9]
0.3 137.6 [21.6] 295.7 [28.5] 453.1 [33.6] 602.9 [37.9] 184.2 [21.4]
0.4 153.0 [23.2] 400.5 [30.1] 485.5 [36.6] 649.7 [41.7] 209.6 [21.1]

TABLE II: Completion time at the increase of action failure
probability. The table reports mean and standard deviation
(between square brackets) in terms of the number of time
steps T̄ , obtained with 1000 trials and the DECAF RL policy.

VI. REAL USER STUDY

DECAF efficacy is validated in a real-world experiment
involving human subjects. The experiment consisted of the
human participants assembling an IKEA Ivar chair together
with a 7 Degrees of freedom Franka Emika Panda robotic
arm. As a baseline, participants undertook the assembly task
individually to gauge the enhancements in both performance
and work experience resulting from the introduction of the
robot equipped with the DECAF planner.

Fig. 2: Experimental setup for the Ivar chair assembly task.

A. Experimental Setup and Task Description

The experimental setup consists of the robotic work-
cell shown in Figure 2, including a Franka Emika Panda
manipulator and two tables: a warehouse table where the
components to be assembled are stored, and an assembly
table where the collaborative assembly process takes place.
The area of each table is monitored by an RGB-D camera



(i.e., Intel Realsense LiDAR Camera L515), using April-
Tag [23] fiducial markers to detect and localize all the chair
components. The chair is composed of several individual
parts: left and right sides, a wooden panel for the seat,
and rails connecting the two sides through dowel pins and
screws. To simplify rails insertion robot operations, the dowel
pins were replaced with neodymium magnets. The HTM
representing the chair assembly task is shown in Fig. 3.

Fig. 3: The HTM of the Ivar chair assembly task.

The task is composed of the following actions: (i) pick
and place of the rails, which can be assigned to either the
human or the robot (A1-A4); (ii) collaborative transportation
of the left side of the chair, where the robot helps the human
carrying the weight and assists in the precise positioning of
the side (A5); (iii) pick and place of the screws, a robot-
only operation due to the significant distance between the
human operator and the screws on the warehouse table (i.e.,
to promote a better ergonomics). The robot places the screws
based on the information provided by AprilTag markers. (A6-
A8); (iv) screwing, a human-only operation where the human
operator tightens the screws placed by the robots (A9); (v)
placement of the seat, a human-only action (A10).

The robot actions are implemented as pick and place
motion primitives using ROS and MoveIt. The cameras are
extrinsically calibrated wrt the robot base through hand-eye
calibration [24], allowing to express all the AprilTag poses
detected by the cameras in the robot reference frame.

B. Participants and Experiment Design
The experiments involved 10 volunteers (3 women and 7

men) aged between 24 and 46. The group consists of 3 non-
robotic experts and 7 experts in the general field of robotics.
Each participant performed 3 trials on the system: one trial
assembling the chair alone without any collaboration with
the robot, and two trials in collaboration with the robot arm.
Upon executing all trials, users completed two short surveys:
the NASA-TLX [25] to assess the workload and a custom 5-
point Likert scale questionnaire to evaluate user satisfaction
about the collaborative assembly with robot intervention.

C. Results
We assess collaboration by examining assembly comple-

tion time and the outcomes of the aforementioned question-
naires. Our objective is to determine whether introducing the

robot equipped with the DECAF planning framework not
only enhances execution time but also improves the quality
of the assembly experience from the user’s perspective.

Fig. 4: Completion time distribution obtained with the real
user experiments described in section VI.

Fig. 4 compares the completion time distribution obtain
by the 10 subjects when assembly the chair alone or with
the robot. It is important to note that integrating a robotic
collaborator into the assembly process has introduced cer-
tain delays. Understanding the robot’s intentions typically
requires the user to pause and observe it, while sharing the
workspace with a moving robot necessitates slower human
movements. Furthermore, since our primary focus is not
on implementing optimal robot movements, the robot did
not operate at maximum speed during testing. As a result,
joint actions like frame transportation were slower with the
human-robot team compared to a solo human. However, the
overall average assembly time was still lower with the robot,
highlighting its efficiency benefits. Despite minor drawbacks
in human-robot collaboration, the reduced assembly times
indicate a positive impact on productivity.

Fig. 5: Nasa TLX questionnaire. Q1: How mentally demand-
ing was the task? Q2: How physically demanding was the
task? Q3: How hurried or rush was the pace of the task?
Q4: How successfully were you in accomplishing the task?
Q5: How hard did you have to work to accomplish the
task? Q6: How insecure, discouraged, irritated, stressed, or
annoyed were you?

Fig. 5 shows the distribution of responses to the NASA-
TLX questionnaire. Overall, participants found working with
the robot less physically demanding and easier. However,
some participants reported that working with the robot was
more mentally demanding than working alone (see Q1 and
Q4). As expected, we attribute this to the challenges of shar-
ing the workspace with a moving robot and understanding
the robot’s intention, which could be counter-intuitive.



Fig. 6: Robot experience questionnaire. Q1: The robot and I
collaborated fluently together to accomplish the task. Q2: I
feel the robot had a good understanding of the task. Q3: I
was never surprised by the robot actions. Q4: I feel satisfied
with the performance of the system.

Finally, the results of the custom questionnaire reported
in Fig 6 show that the collaboration with the robot has
been appreciated by all the participants. Some of them felt
surprised by the robot’s action choice. We attribute this to
the fact that the robot plan is optimized only considering the
nominal action duration. This result in a process of action
choice that is very different from the decision process of
the human, which in turn expects the robot to reason in
a human-like fashion. Some users, for example, expected
the robot to perform all similar actions consecutively (e.g.
position all the screws, then position all the rails) and also
would prefer the robot to perform actions uncomfortable for
them (e.g. involving objects difficult to reach). A possible
way to mitigate this discordance is to add metrics measuring
ergonomics or action correlation into the reward function.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed the DECAF framework for task
planning in human-robot collaborative assembly. The frame-
work relies on an HTM description of the task alongside
a Bayesian inference module for human intent recognition.
We have formalized the collaborative assembly between a
Human and a Robot as a Discrete Event Markov Decision
Problem, which models at the same time all the properties
of Parallel-, Sequential-, Joint- Independent-, Asynchronous-
and with Variable Duration- actions, and includes Human
intent detection change of mind and handling of failures.
We validated the framework through simulations on both toy
problems and a real IKEA Ivar Chair. Additionally, an exten-
sive evaluation with real human users confirmed DECAF’s
benefits in both collaboration efficiency and quality.
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