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Spatial-Domain Mutual Interference Mitigation
for MIMO-FMCW Automotive Radar

Sian Jin, Pu (Perry) Wang, Petros Boufounos, Philip V. Orlik, Ryuhei Takahashi, and Sumit Roy

Abstract—This paper considers mutual interference mitigation
among automotive radars using frequency-modulated continu-
ous wave (FMCW) signal and multiple-input multiple-output
(MIMO) virtual arrays. For the first time, we derive a spatial-
domain interference signal model that accounts for not only the
time-frequency incoherence (e.g., different FMCW parameters
and time offsets) but also the slow-time MIMO code incoherence
and array configuration differences between the victim and
interfering radars. Using the explicit interference signal model
with the standard MIMO-FMCW object signal model, we turn
the interference mitigation into a spatial-domain object detection
under incoherent MIMO-FMCW interference. By exploiting the
structural property of the derived interference model at both
transmit and receive steering vector space, we derive a detector via
beamforming optimization to achieve good detection performance
and further propose an adaptive version of this detector to
enhance its practical applicability. Performance evaluation using
analytical closed-form expressions, synthetic-level simulation and
system-level simulation confirms the effectiveness of our proposed
detectors over selected baseline methods.

Index Terms—Automotive radar, FMCW, MIMO, interference
mitigation, detection, beamforming, adaptive processing.

I. INTRODUCTION

Advanced driver assistance systems (ADAS) and au-
tonomous driving require high-resolution environment percep-
tion systems capable of detecting and identifying stationary
(e.g., buildings, trees) and dynamic (e.g., vehicles and pedestri-
ans) objects reliably in all weather conditions. Compared with
other perception sensors such as cameras and LiDAR, radar
offers the potential for operating in adverse weather and night-
time conditions at lower cost and processing overhead [2].

Current automotive radars widely adopt frequency-
modulated continuous wave (FMCW) techniques [1]–[9], since
it enables receivers with low sampling rates while harnessing
large sweep frequency bands for high resolution in range. On
the other hand, they are limited in use for high-resolution per-
ception tasks due to poor angular resolution, particularly in the
elevation domain. To increase the angular resolution, automo-
tive radar chip vendors take various approaches to form a large
aperture for highly directional beams. Mechanically scanned
FMCW radars, e.g., Navtech CTS350-X, have been used to
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Fig. 1. Illustration for mutual interference for MIMO-FMCW automotive
radar, where both victim and interfering vehicles use MIMO arrays to transmit
and receive waveform.

collect 360◦ bird’s-eye view (BEV) radar images in the range-
azimuth domain but without the Doppler velocity [10]. Syn-
thetic aperture radar (SAR) techniques create high-resolution
two-dimensional images of the scene by coherently combining
returned radar waveforms with the assumption of known ego
vehicle motion [11]. Multiple-input multiple-output (MIMO)
radar is another cost-efficient approach to form a large virtual
array with a reduced number of transmit (Tx) and receive (Rx)
antennas and radio frequency (RF) chains. To achieve this,
the transmitted waveforms from different Tx antennas need
to be orthogonal. Orthogonal MIMO signaling schemes can
be realized in time-division multiplexing (TDM), frequency-
division multiplexing (FDM), and Doppler-division multiplex-
ing (DDM) modes [9], [12], [13]. As of today, the combined
MIMO-FMCW automotive radar has been commercialized by
chip vendors to achieve tens of and even hundreds of virtual
channels in the azimuth and elevation domains [14]–[19].

With the increasing adoption of MIMO-FMCW automotive
radars (e.g., TI’s AWR chipsets [15]), co-channel interfer-
ence in regulated frequency bands (e.g. 76 − 81 GHz) is
anticipated to become of increasing concern, as shown in
Fig. 1. Such mutual interference between multiple radars
can be coherent or incoherent [20]–[22], depending on the
nature of the waveforms between interfering and victim radars.
Coherent interference arises when the received waveform and
array parameters at the victim radar are identical to its own,
leading to ghost targets and false object detection. In contrast,
incoherent interference occurs when the waveform and array
parameters differ, resulting in elevated noise floors at the
victim radar, which is more frequently encountered [22] than
the coherent interference.

Mutual radar interference mitigation can be achieved by
borrowing ideas from multiple access scheduling used in
wireless networking. Transmit-side scheduling techniques such



2

as time-division multiple access (TDMA) [23] and chirp slope
and frequency offset scheduling [24] have been proposed
in this direction. However, scheduling typically requires co-
ordination among the radars (for example, TDMA implies
timing synchronization among the radars) and consumes side-
channel communication bandwidth. A simpler approach to
coherent interference mitigation is transmitter-side waveform
randomization [25], [26]. An alternative to transmit-side meth-
ods for combating incoherent interference are receiver-side
processing. Such approaches can be classified as follows:

1) Fast-time (range) domain: interference-zeroing [27],
[28], sparse reconstruction [29], [30], adaptive noise
cancellers [31], signal separation [32], [33], wavelet
denoising [34], fast-time-frequency mode retrieval [35],
fast-time neural network (NN) [36], [37], and fast-time-
frequency NN [38];

2) Slow-time (Doppler) domain: ramp filtering [39] and
slow-time NN [40];

3) Range-Doppler domain: range-Doppler NN [41]–[45].

For MIMO-FMCW automotive radar, interference mitiga-
tion can be done in the MIMO code domain [46], but it
requires additional communication and coordination between
the victim and interfering radars. On the other hand, spatial-
domain mitigation approaches were considered to make use
of additional degrees of freedom in the antenna or beamspace
domain. Initial efforts include receiver beamforming-based
approaches [47]–[51], null steering [52], and linear constraints
minimum variance (LCMV) beamforming [53]. However,
these previous efforts lack an explicit spatial-domain inter-
ference signal model. As a result, they have been unable to
fully exploit the spatial structure of interference signals for
effective mitigation.

Distinct from previous efforts, we explicitly model the in-
terference signal to formulate a spatial-domain target detection
problem under interference, analyze the limitations of exist-
ing detectors, and propose new detectors to account for the
structure of interferences. While object detection approaches
under mutual radar interference are widely studied using time-
frequency representation [35], waveform randomization [25],
and NN [36]–[38], [40]–[45], they are conducted in the fast-
time, slow-time, and range-Doppler domains. There is no
formulation of object detection under mutual MIMO-FMCW
interference in the spatial domain. Our unique contributions
in this work are summarized below:

• We derive a Kronecker-structured signal model for the
spatial-domain MIMO-FMCW interference under the
time-frequency incoherence, the MIMO code incoher-
ence, and the array difference between the victim and
interfering radars. This interference signal model provides
a foundation for deriving and analyzing spatial-domain
interference mitigation schemes.

• Based on the derived interference signal model and
insights from the clairvoyant detector, we propose a non-
adaptive generalized subspace-based (GS) detector that
exploits the structure of both Tx and Rx steering vec-
tors of the interference provided that some interference
statistics are given. We derive closed-form analytical

Fig. 2. MIMO-FMCW waveforms with slow-time Tx-pulse code {cm,k}
applied to the same FMCW waveform. The Tx-pulse codes can vary depend-
ing on the operation mode: DDM-MIMO (e.g., Hadamard or Chu sequences),
TDM-MIMO (one-hot vectors), and phased array (all-one vectors).

expressions of probabilities of false alarm of the GS
detector and show that it outperforms the existing non-
adaptive receiver subspace detector (RS [3] or null-
steering detector [52]) that only exploits the structure of
the Rx steering vector of the interference.

• We propose an adaptive version of the GS detector
(AGS detector) via adaptively estimating the interference
statistics of the GS detector. Compared to the adaptive
LCMV [53] detector with sample matrix inversion (SMI)
method [54], the proposed AGS detector is novel as it ex-
ploits the interference structure. Synthetic-level and more
realistic system-level simulation show that the adaptive
AGS detector outperforms the LCMV-SMI detector.

Throughout this paper, we use the following notations:
The transpose is denoted by (·)T , the conjugate by (·)∗, the
conjugate transpose by (·)H , a set by {·}, the Kronecker
product by ⊗, the indicator function by 1[·], and the gen-
eralized Marcum Q-function of order 1 [55] by Q1(a, b). We
use PH , H(HHH)−1HH to denote the projection matrix
projecting to the column space of H. We use P⊥H , I−PH to
denote the projection matrix projecting to the space orthogonal
to the column space of H. All indices are counted from 0.

II. SIGNAL MODEL

In the following, we overview the object signal model, and
derive the interference signal model in more detail, assuming
the victim radar operates with Tx and Rx uniform linear arrays
(ULAs) in the far-field 1. We also show the convergence of
the derived interference model in some special cases.

1When the interference distance is larger than the Fraunhofer distance dF =
2(Dt +Dr)2/λ [56], the interference is considered to be in the far-field,
where Dt is the interfering array aperture, Dr is the victim array aperture, and
λ is the wavelength. In the 77 GHz radar band, for an interference of 5 m to be
in the far-field, the sum interfering and victim array aperture Dt +Dr < 98
mm, which is about 50 half-wavelength. Two examples of such radars include
the mainstream commercial chipsets [14], [15] with Dt = 16 half-wavelength
and Dr = 4 half-wavelength.
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Fig. 3. The receiver architecture (right) of a victim MIMO-FMCW automotive radar that captures both transmitted waveforms from its transmitter (upper
left) and an incoherent MIMO-FMCW interfering radar (lower left) with different FMCW configuration parameters, time offset, slow-time Tx-pulse codes,
and transmit array configurations.

A. MIMO-FMCW Waveform

As shown in Fig. 2, we consider a victim radar equipped
with M Tx antennas over K pulses of a coherent processing
interval (CPI). The FMCW waveform of the victim radar is

s(t) = ejπβt
2

D0,T (t), (1)

where β is the chirp rate, T is the chirp duration, and
Da,b(t) = 1 if a ≤ t ≤ b and Da,b(t) = 0 otherwise. The
RF waveform on Tx antenna m over K pulses is [9]

sm(t) =

K−1∑
k=0

ck,ms(t− kTPRI)e
j2πfc(t−kTPRI), (2)

where ck,m is the slow-time Tx-pulse code on m-th Tx antenna
and k-th pulse, TPRI is the pulse repetition interval (PRI) of the
victim radar and fc is the carrier frequency. In (2), the slow-
time Tx-pulse codes may vary depending on the operation
mode [13], [57]:
• DDM-MIMO mode: the code at Tx antenna m achieves

zero/low cross-correlation to codes at other Tx antennas.
One example is the binary Hadamard code ck,m, k =
0, 1, . . . ,K − 1 taken from the columns of a Hadamard
matrix (K > M ), where 1

K

∑
k ck,mck,m′ equals to 1 if

m = m′ and equals to 0 otherwise. Other choices include
the Chu sequence and phase codes that spread the inter-
antenna interference in the Doppler domain.

• TDM-MIMO mode: the code at Tx antenna m is a one-
hot vector with ck,m = 1 and ck,m′ = 0,m′ 6= m if m =

mod (k,M). That is, only 1 Tx antenna is active during
one pulse and each Tx antenna takes turns transmitting.

• Phased array mode: the code at Tx antenna m is an all-
one vector, i.e., ck,m = 1 for all k. The Tx angle is
controlled by an additional beamforming process which
is omitted here.

B. Object Signal Model

Following the receiver processing at the victim radar of
Fig. 3, we provide a quick overview of the object signal model
in the spatial domain, e.g., Tx and Rx angles. We assume the
victim radar adopts a Tx ULA of M elements and an Rx ULA
of N elements. Similar derivation of the object signal model
can be found in [9], [58].

For an object of range R and relative radial velocity v,
the round-trip propagation delay from victim radar’s m-th Tx
antenna to its n-th Rx antenna at time t is τm,n(t) = 2R+vt

c +

mdt sin(φt)
c + ndr sin(φr)

c , where dt and dr are the Tx and Rx
element spacings, φt and φr are the Tx and Rx angle for the
object, and c is the speed of propagation. As the object is in
the far-field, we have the approximation φt = φr.

As shown in the upper right (victim Rx) of Fig. 3, the
received signal goes through processing blocks such as lo-
cal oscillator (LO), low-pass filtering (LPF), analog-to-digital
converter (ADC), fast-time/range fast Fourier transform (FFT),
slow-time/Doppler FFT, and MIMO waveform separation at
each Rx antenna chain. A step-by-step derivation of the object
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signal model is included in Appendix A. At the output of the
MIMO waveform separation, one can form an MN×1 virtual
array signal for an object at a given pair of range bin l′ and
Doppler bin k′ as

ys(l′, k′) = b(l′, k′)at ⊗ ar. (3)

where at , [1, e−j2πfφt , . . . , e−j2πfφt (M−1)]T is the ob-
ject Tx steering vector with a spatial frequency of fφt ,
dtsin(φt)/λ, ar , [1, e−j2πfφr , . . . , e−j2πfφr (N−1)]T is the
object Rx steering vector with a spatial frequency of fφr ,
drsin(φr)/λ, λ = c/fc represents the wavelength, and b(l′, k′)
is the complex amplitude. Thus, the spatial-domain object
signal has a Kronecker structure between the object Tx and
Rx steering vectors.

C. Interference Signal Model

In the lower left (blue shaded) of Fig. 3, a MIMO-FMCW
interfering radar possibly employs different array configu-
rations such as the number of Tx antennas M̃ with Tx
element spacing d̃t, slow-time Tx-pulse codes c̃k̃,m̃, FMCW
parameters, time offsets, center frequency f̃c (or wavelength
λ̃), and bandwidth. The bands of the interference may partially
or totally overlap with the band of the victim radar.

Transmitted MIMO-FMCW Waveform at Interfering Tx: The
m̃-th interfering Tx antenna sends coded K̃ pulses

s̃m̃(t) =

K̃−1∑
k̃=0

c̃k̃,m̃s̃(t− k̃T̃PRI − τ̃syn)ej2πf̃c(t−k̃T̃PRI−τ̃syn),

(4)

where the source FMCM waveform s̃(t) shares the same
expression as (1) but with different chirp rate β̃ and pulse
duration T̃ , τ̃syn is the transmit synchronization delay (initial
time offset) between the reference antennas of the victim radar
and the interfering radar, c̃k̃,m̃ is the slow-time Tx-pulse code
of the interfering radar that likely are different from those used
at the victim Tx, and T̃PRI is the PRI at the interfering radar.

Interference at Receiving Antennas of Victim Rx: For an
interfering radar at range R̃ and radial velocity ṽ relative to
the victim radar, the one-way propagation delay from its m̃-th
Tx antenna to the n-th Rx antenna of victim radar is τ̃m̃,n(t) =
R̃+ṽt
c + m̃ d̃t sin(φ̃t)

c +ndr sin(φ̃r)
c , where and φ̃t and φ̃r are the

interference Tx and Rx angles with respect to the boresight of
the interfering radar and the victim radar. At the victim Rx of
Fig. 3, the n-th Rx antenna observes the RF signal from the
interferer sin(t) = α̃

∑M̃−1
m̃=0 s̃m̃(t − τ̃m̃,n(t)), where α̃ is the

received complex amplitude of the interference.
Interference after Dechirping, Sampling, Range-Doppler

FFT and Waveform Separation at Victim Rx: Applying
dechirping, sampling, range-Doppler FFT and waveform sep-
aration to the received interference signal sin(t), we obtain its
range-Doppler spectrum at the n-th Rx antenna, l′-th range
bin and k′-th Doppler bin as yim,n(l′, k′) = ã′t,me

−j2πf̃φrn,
where f̃φr = drsin(φ̃r)/λ̃ is the normalized spatial frequency
of interference at victim Rx antennas, ã′t,m is the complex
interference amplitude at its (l′, k′)-th range-Doppler bin de-
coded using ck,m, the victim radar’s slow-time Tx-pulse code

at the m-th Tx antenna. The derivation of yim,n(l′, k′) and the
expression of ã′t,m is given in Appendix B.

Spatial-Domain Interference Steering Vector at Victim Rx:
Stacking {yim,n(l′, k′)} into a vector, we obtain the interfer-
ence range-Doppler spectrum on an MN × 1 virtual array

yi(l′, k′) = ã′t ⊗ ãr. (5)

where

ã′t , [ã′t,0, ã
′
t,1, . . . , ã

′
t,M−1]T , (6)

is the M × 1 decoded interference Tx steering signal seen at
the victim Rx, and

ãr , [1, e−j2πf̃φr , . . . , e−j2πf̃φr (N−1)]T (7)

is the N × 1 interference Rx steering vector.
From (5), it is seen that the spatial-domain interference

steering vector also has the Kronecker structure between the
Tx and Rx steering vectors, like the spatial-domain object
steering vector in (3). The main difference lies in the decoded
interference Tx steering vector of (6), which is a function
of the transmitting power of the interfering radar, interfering-
victim relative distance and Doppler frequency, FMCW time-
frequency incoherence (e.g., chirp rate, pulse duration, pulse
repetition interval), MIMO incoherence (e.g., slow-time Tx-
pulse code and Tx array configuration), and timing offset
between the interfering and victim radars. In other words, the
object Tx/Rx steering vector and interference Rx steering vec-
tor are fully determined by the object-victim and interfering-
victim directions due to their Fourier vector structure, while
the decoded interference Tx steering vector is almost unknown
because its direction in the M -dimensional subspace is not
only determined by the relative interfering-victim direction but
also the mentioned incoherence.

D. Examples of MIMO-FMCW Interference Signal Model

In the following, we discuss how the MIMO-FMCW inter-
ference model in (5) can be applied to two special interference
scenarios widely used in the existing literature when certain
conditions are met. The detailed derivation in each of the
following examples is in Appendix C.

1) Phased Array Radar Interference: When all radars are
phased array radar [59] with the slow-time Tx-pulse code
({ck,m = 1}), the spatial-domain interference signal has
a Fourier structure. That is, the interference range-Doppler
spectrum on a N × 1 Rx array is

yi(l′, k′) = ã′tãr. (8)

Note that this interference structure also applies in the special
case where all radars adopt a single Tx antenna.

2) TDM-MIMO Radar Interference: When all radars are
TDM-MIMO radars [12], the spatial-domain interference sig-
nal has the same structure as in (5), i.e.,

yi(l′, k′) = ã′t ⊗ ãr, (9)

since the TDM-MIMO codes can be regarded as a special case
of slow-time Tx-pulse codes, as presented in Section II-A.
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III. PROBLEM FORMULATION

In this section, we formulate object detection as a composite
hypothesis testing problem and review existing detectors.

A. Spatial-domain Detection Problem under Interference
Given the target and interference signal models over a given

range-Doppler bin, the spatial-domain object detection under
mutual interference is formulated as a composite hypothesis
testing problem{

H0, y =
∑Q
q=1 ã′t,q ⊗ ãr,q + z

H1, y = bat ⊗ ar +
∑Q
q=1 ã′t,q ⊗ ãr,q + z,

(10)

where y is the complex-valued range-Doppler spectrum at a
given range-Doppler bin, b is the complex-valued unknown
object amplitude, Q is the number of interference, at and
ar are object Tx and Rx steering vectors defined below (3),
ã′t,q and ãr,q are the q-th decoded interference Tx and Rx
steering vectors given in the form of (6) and (7), and the
noise z ∼ CN (0, σ2IMN ) with σ2 representing the noise
variance for spatial-domain signal and IMN representing the
identity matrix of size MN . The null hypothesis H0 consists
of interference and noise, and the alternative hypothesis H1

consists of the object signal plus interference and noise. Note
that the looking angle of at ⊗ ar can be swept over different
angle bins for the hypothesis testing and can therefore be
considered as known.

B. Existing Spatial-Domain Detectors
1) Clairvoyant Detector: Assuming the perfect knowledge

of the decoded interference Tx steering vector {ã′t,q}, the
clairvoyant detector is given by

TC(y) =
2

σ2

∣∣∣(at ⊗ ar)
H(y −

∑Q
q=1 ã′t,q ⊗ ãr,q)

∣∣∣2
||at ⊗ ar||2

. (11)

It cancels all interference components
∑Q
q=1 ã′t,q⊗ ãr,q before

matched filtering to the object steering vector. The probabili-
ties of false alarm and detection of (11) can be derived as

PCFA = e−
1
2γ , PCD = Q1

(√
λC ,
√
γ
)
, (12)

where γ is the threshold used for detection, and the parameter
λC is given as

λC =
2|b|2

σ2
||at ⊗ ar||2 =

2MN |b|2

σ2
. (13)

It is worth noting that the clairvoyant detector of (11) cannot
be implemented in practice due to the strong assumption about
the knowledge of {ã′t,q}.

2) Receiver Subspace (RS) Detector of [3]: Assuming per-
fect knowledge of the interference Rx steering vector {ãr,q},
we can treat {ã′t,q} as a nuisance parameter in (10) and
estimate it under both hypotheses. The resulting detector based
on the generalized likelihood ratio test (GLRT) is given by [3]

TRS(y) =
2

σ2

∣∣∣∣(at ⊗
(
P⊥

Ãr
ar

))H
y

∣∣∣∣2∣∣∣∣∣∣at ⊗ (P⊥
Ãr

ar

)∣∣∣∣∣∣2 , (14)

where Ãr , [ãr,1, ãr,2, . . . , ãr,Q] is a stack of Q interference
Rx steering vectors. The RS detector suggests using a null-

steering beamformer wRS =
at⊗

(
P⊥

Ãr
ar
)

∣∣∣∣∣∣at⊗(P⊥
Ãr

ar
)∣∣∣∣∣∣2 that exploits the

interference Rx subspace of Ãr for interference mitigation.
The probabilities of false alarm probability and detection of
the RS detector are given by

PRSFA = e−
1
2γ , PRSD = Q1

(√
λRS ,

√
γ
)
, (15)

where

λRS =
2|b|2

σ2

∣∣∣∣∣∣at ⊗ (P⊥
Ãr

ar

)∣∣∣∣∣∣2 . (16)

3) LCMV Detector of [53]: In [53], a conventional linear
constraint minimum variance (LCMV) beamformer is adopted.
It models the combined interference and noise as a zero-mean
colored Gaussian vector

Q∑
q=1

ã′t,q ⊗ ãr,q + z ∼ CN (0, σ2R̃), (17)

where R̃ is a normalized covariance matrix. Assuming the
perfect knowledge of R̃, the LCMV solves the following
beamforming optimization problem [60]:

min
w

wHR̃w

s.t. (at ⊗ ar)
Hw = 1, (18)

where w denotes a beamformer to be optimized. Prob-
lem (18) leads to the LCMV beamformer wLCMV =

R̃−1(at⊗ar)∣∣∣∣R̃− 1
2 (at⊗ar)

∣∣∣∣2 [60], and the corresponding LCMV detector

TLCMV (y) =
2

σ2

∣∣∣∣(R̃−1(at ⊗ ar)
)H

y

∣∣∣∣2∣∣∣∣∣∣R̃− 1
2 (at ⊗ ar)

∣∣∣∣∣∣2 . (19)

Given the knowledge of R̃, the probabilities of false alarm
and detection of the LCMV detector are given by

PLCMV
FA = e−

1
2γ , PLCMV

D = Q1

(√
λLCMV ,

√
γ
)
, (20)

where

λLCMV =
2|b|2

σ2

∥∥∥R̃− 1
2 (at ⊗ ar)

∥∥∥2

. (21)

IV. SPATIAL-DOMAIN NON-ADAPTIVE DETECTOR

In the following, we first demonstrate limitations inherited
in the RS [3] and LCMV [53] detectors and gain insights
through a reformulation of the clairvoyant detector. Then, we
propose a generalized subspace (GS) detector that leverages
both the Tx and Rx steering vectors of the interference,
followed by a comprehensive theoretical performance analysis
of its detection performance under mutual interference.
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A. Observations from Existing Detectors

For the RS detector of (14), it projects each interference
signal ã′t,q ⊗ ãr,q, q = 1, 2, . . . , Q to 0, i.e.,

(at ⊗ (P⊥
Ãr

ar))
H(ã′t,q ⊗ ãr,q) = 0, (22)

because the interference Rx steering vector ãr,q is projected
to its orthogonal subspace, i.e., (P⊥

Ãr
ar)

H ãr,q = 0. However,
this operation fails to maintain the matched filtering gain for
the object as

(at ⊗ (P⊥
Ãr

ar))
H(at ⊗ ar) = MaHr P⊥

Ãr
ar < MN, (23)

where MN is the coherent matched filtering gain that can
be achieved by the clairvoyant detector. This is undesirable,
particularly when the interference power is small, as the RS
detector may mitigate low-power interference at the price of
losing object detection gain.

For the LCMV detector of (19), R̃ is difficult to known
a priori and σ2R̃ is estimated using the sample covariance
matrix [54]

R̃S =
1

|χ|
∑

(l′,k′)∈χ

ỹ(l′, k′)ỹH(l′, k′), (24)

where ỹ(l′, k′) is the spatial-domain sample at range-Doppler
bin (l′, k′), and χ is the set of sample range-Doppler bins.
As the LCMV detector in (19) inverses the covariance matrix,
using R̃S

σ2 as the covariance is also known as the sample matrix
inversion (SMI) method. The performance of the LCMV
detector is sensitive to the estimation error of R̃S . However,
obtaining an accurate estimate of R̃S requires excessive ho-
mogeneous samples, which may not be available in practice.

Finally, for the clairvoyant detector of (11), one can de-
compose the q-th decoded interference Tx steering vector
along with the object Tx steering vector and its orthogonal
complement direction

ã′t,q = b̃qat + P⊥at ã
′
t,q (25)

as shown in Fig. 4, where the resulting complex amplitude
along at is given as

b̃q =
aHt ã′t,q
||at||2

. (26)

With (25), the clairvoyant detector of (11) can be rewritten as

TC(y) =
2

σ2

∣∣∣(at ⊗ ar)
H(y −

∑Q
q=1 b̃qat ⊗ ãr,q)

∣∣∣2
||at ⊗ ar||2

, (27)

which implies that the essential interference to cancel given
{ãr,q} is a rank-Q interference with known directions at ⊗
ãr,q, q = 1, 2, . . . , Q, and the unknown parameters sufficient
for interference cancellation are b̃q, q = 1, 2, . . . , Q. Thus,
we call b̃q, q = 1, 2, . . . , Q the essential interference complex
amplitudes.

Fig. 4. Decomposition of ã′t,q into b̃qat and P⊥at ã
′
t,q in a 3-D

example, where the plane is the orthogonal subspace of at.

B. Proposed Generalized Subspace (GS) Detector

The exact knowledge of b̃q in the clairvoyant detector in
(27) is difficult to determine. However, its power, denoted by
h2
q , is easier to estimate. To overcome the drawback of the

RS detector in Section IV-A, we propose a new detector that
mitigates interference based on the interference power. We
first assume perfect knowledge of {h2

q} and then relax this
assumption in Section V.

We model b̃q ∼ CN (0, h2
q) with variance h2

q and b̃q is
independent of the noise z. Similar to the RS detector, we
assume perfect knowledge of the interference Rx steering
vector {ãr,q}. Then, the essential interference plus noise is

z̃ ,
Q∑
q=1

b̃qat ⊗ ãr,q + z ∼ CN (0, σ2R), (28)

and the normalized covariance of z̃ is

R =

Q∑
q=1

h2
q

σ2
(at ⊗ ãr,q)(at ⊗ ãr,q)

H + IMN . (29)

To obtain a detector that leverages the statistics R, we first
design an Rx beamformer w to satisfy the following criterion:

1) minimize the variance of interference-plus-noise with
known covariance after beamforming, i.e., wHRw;

2) maintain a fixed gain at the object direction, i.e., (at ⊗
ar)

Hw = 1;
3) force the unknown interference

∑Q
q=1(P⊥at ã

′
t,q) ⊗ ãr,q

to zero for any ã′t, i.e.,

Q∑
q=1

((P⊥at ã
′
t,q)⊗ ãr,q)

Hw = 0, (30)

for any ã′t,q, q = 1, 2, . . . , Q, which is equivalent to
force (P⊥at ⊗ ãr,q)

Hw = 0M , q = 1, 2, . . . , Q, where
0M denotes the M -dimensional column vector with all
0 elements.

As a result, one needs to solve the following beamforming
optimization problem:

min
w

wHRw

s.t. (at ⊗ ar)
Hw = 1,

(P⊥at ⊗ ãr,q)
Hw = 0M , q = 1, 2, . . . , Q. (31)

Compared to the LCMV beamforming optimization problem
in (18), the objective function of the problem in (31) is
different in that it uses the essential interference plus noise
covariance matrix R instead of the total interference plus noise
covariance matrix R̃.
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Theorem 1: The optimal solution of problem (31) is

wGS =
R−1(at ⊗ ar)∣∣∣∣∣∣R− 1

2 (at ⊗ ar)
∣∣∣∣∣∣2 =

at ⊗ (P̃⊥
Ãr,Λ

ar)

MaHr P̃⊥
Ãr,Λ

ar
, (32)

where P̃⊥
Ãr,Λ

, IN − P̃Ãr,Λ
with

P̃Ãr,Λ
,MÃr(Λ

−1 +MÃH
r Ãr)

−1ÃH
r (33)

representing the regularized projection matrix, and

Λ , diag

[
h2

1

σ2
,
h2

2

σ2
, . . . ,

h2
Q

σ2

]
, (34)

is the essential-interference-to-noise-ratio (EINR) matrix with
diagonal elements reflecting the power values of Q essential
interferences over the noise.

Proof: This proof is based on the following observation:

R−1 = IMN −Pat ⊗ P̃Ãr,Λ
. (35)

For more details, refer to Appendix D.
The beamformer wGS suggests the following detector

TGS(y) =
2

σ2

∣∣∣(R−1(at ⊗ ar)
)H

y
∣∣∣2∣∣∣∣∣∣R− 1

2 (at ⊗ ar)
∣∣∣∣∣∣2

=
2

σ2

∣∣∣∣(at ⊗ (P̃⊥
Ãr,Λ

ar)
)H

y

∣∣∣∣2
MaHr P̃⊥

Ãr,Λ
ar

. (36)

Because TGS(y) uses the Rx-side interference information
Ãr and the Tx-side interference information Λ, we call
the detector TGS(y) as the generalized subspace-based (GS)
detector. From (36), the interference is mitigated using the Rx
array, which is the same as the RS detector. Thus, the GS
detector works when the number of interference Q ≤ N .

C. Theoretical Performance Analysis

Theorem 2: Based on the assumption b̃q ∼ CN (0, h2
q) with

known h2
q, q = 1, 2, . . . , Q, the probabilities of false alarm and

detection for the GS detector under problem (10) are given as

PGSFA = e−
1
2γ , PGSD = Q1

(√
λGS ,

√
γ
)
, (37)

where γ is the detection threshold and

λGS =
2|b|2

σ2
MaHr P̃⊥

Ãr,Λ
ar. (38)

Proof: See Appendix E.
From the above closed-form expressions of probabilities of

false alarm, we have the following Corollary:
Corollary 1: From (37), the proposed GS detector is a

constant false alarm rate (CFAR) detector in the existence of
MIMO-FMCW mutual interference.

Remark 1: This CFAR property is ensured by zero-forcing
the unknown interference in the last condition in problem (31),
i.e., (P⊥at⊗ãr,q)

Hw = 0M , q = 1, 2, . . . , Q, and the whitening
of the essential interference plus noise using knowledge of R.

Corollary 2: The proposed GS detector reduces to the
clairvoyant detector of (11) when the decoded interference Tx
steering vectors {ã′t,q} are orthogonal to the object Tx steering
vector at, i.e., the EINR matrix Λ = 0.

Proof: Λ = 0 implies that P̃⊥
Ãr,Λ

= IN . Thus,

TGS(y) = TC(y) =
2| (at ⊗ ar)

H
y|2

σ2MN
(39)

with λGS = λC = 2MN |b|2/σ2.
Corollary 3: The proposed GS detector reduces to the RS

detector of (14) when the projected interference power along
the object Tx steering vector approaches infinity, i.e., the EINR
matrix Λ→ diag [∞,∞, . . . ,∞].

Proof: In this case, we have P̃Ãr,Λ
= P̃Ãr

=

Ãr(Ã
H
r Ãr)

−1ÃH
r and P̃⊥

Ãr,Λ
= P̃⊥

Ãr
. As a result, the

proposed GS detector of (36) reduces to the RS detector of
(14) with λGS = λRS = 2M |b|2(aHr P⊥

Ãr
ar)/σ

2.
Corollary 4: From the probabilities of false alarm and de-

tection of the clairvoyant in (12), RS in (15) and the proposed
GS detectors in Theorem 2, the detection performance is in
the order of

PRSD ≤ PGSD ≤ PCD (40)

for a given probability of false alarm.
Proof: It is first noted that, for a given probability of false

alarm, the detection threshold γ holds the same for all three
detectors. Then, from Corollary 2 and Corollary 3, we

0 < λRS ≤ λGS ≤ λC , (41)

when the diagonal elements of EINR matrix Λ is no smaller
than 0 and finite. Finally, the probability of detection or,
equivalently, the generalized Marcum Q-functionQ1(

√
λ,
√
γ)

of order 1 monotonically increases with
√
λ [55].

Remark 2: For the GS detector of (36), the projected q-th
interference residual is(

at ⊗ (P̃⊥
Ãr,Λ

ar)
)H

(ã′t,q ⊗ ãr,q) = b̃qMaHr P̃⊥
Ãr,Λ

ãr,q,

(42)

and the object correlation gain is(
at ⊗ (P̃⊥

Ãr,Λ
ar)
)H

(at ⊗ ar) = MaHr P̃⊥
Ãr,Λ

ar. (43)

Compared to the results of the RS detector in (22) and (23), the
proposed GS detector achieves a balance between interference
mitigation gain and object correction gain.

Remark 3: With perfect knowledge of {ãr,q} and Λ, the
GS detector is equivalent to the LCMV detector with perfect
knowledge of R̃ in (17). This equivalence can be demonstrated
by showing that wGS in (32) is also the optimal solution
to the LCMV beamforming optimization problem (18). Thus,
according to (40), the ideal LCMV detector outperforms the
RS detector. However, as we will show later, when the LCMV
detector is used with the SMI method (LCMV-SMI), its
performance can degrade significantly due to the estimation
error of R̃ in (17).
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V. SPATIAL-DOMAIN ADAPTIVE DETECTOR

In the previous section, the proposed GS detector is shown
to rely on the knowledge of essential interference plus noise
covariance matrix R in (29). However, R depends on the
power of essential interference {h2

q}, the interference Rx steer-
ing vector {ãr,q}, and the number of interferences Q, which
are difficult to estimate accurately in practice. If the estimated
number of interference is smaller than the actual number Q,
the performance of interference mitigation degrades signifi-
cantly. Thus, instead of explicitly estimating these parameters,
we propose a novel variation of the interference covariance
matrix reconstruction method [61]. This method reconstructs
R over a broad interference region of interest based on the
knowledge of R̃S in (24) and the interference structure. We
refer to the GS detector with the reconstructed R as the
adaptive GS (AGS) detector.

A. Capon Spatial Power of Essential Interference
Before introducing the AGS detector, we present the follow-

ing preliminary result. We first obtain spatial-domain samples
{ỹ(l′, k′), (l′, k′) ∈ χ} from adjacent range-Doppler bins,
where χ and the range-Doppler bin of y are separated by guard
bins to avoid including the sidelobe of target-of-interest [54].
This leads to

ỹ = z̃ +

Q∑
q=1

(P⊥at ã
′
t,q)⊗ ãr,q, (44)

where the notation (l′, k′) is omitted for convenience and
z̃ ∼ CN (0, σ2R) is given in (28). Similar to the one in (31),
we can design a Rx beamformer to find the q-th essential
interference as follows:

min
w

wHRw

s.t. (at ⊗ ãr,q)
Hw = 1,

(P⊥at ⊗ ãr,q)
Hw = 0M , q = 1, 2, . . . , Q, (45)

where the first constraint ensures a fixed gain at the direction
at ⊗ ãr,q , and the last constraint forces the unknown interfer-
ence to be zero. The solution to (45) is given by

wGS
q =

R−1(at ⊗ ãr,q)

‖R− 1
2 (at ⊗ ãr,q)‖2

. (46)

Then, we define the normalized Capon spatial power of the
q-th essential interference as

Pq ,
(
wGS
q

)H
R
(
wGS
q

)
, (47)

which is an estimate of h2
q/σ

2 in (29).
Lemma 1: The normalized Capon spatial power of the q-th

essential interference is equivalent to

Pq =
1

(at ⊗ ãr,q)HR̃−1(at ⊗ ãr,q)
, (48)

where R̃ is the normalized covariance matrix of the entire
interference plus noise defined in (17).

Proof: See Appendix F.
Lemma 1 reveals the important connection between the nor-
malized Capon spatial power Pq and R̃, which inspires the
design of the following adaptive GS detector.

B. Proposed Adaptive Generalized Subspace (AGS) Detector

Inspired by Lemma 1, we estimate the essential interference
power spectrum using a Capon spatial spectrum estimator

P̂ (θ) =
1

(at ⊗ ãr(θ))
H
(
R̃S
)−1

(at ⊗ ãr(θ))
. (49)

By (29), we reconstruct the normalized essential interference
plus noise covariance matrix as:

R̂ =
∑
θ∈Θ̃

%P̂ (θ) (at ⊗ ãr(θ)) (at ⊗ ãr(θ))
H

+ IMN , (50)

where Θ̃ is a set of potential interference angles of arrival and
% is a scaling factor. One can form Θ̃ as a uniform grid by
sampling from a coarse interference region Θ̃I ⊂ [−π/2, π/2]
with a grid size ∆θ. The coarse interference region Θ̃I can
be determined by identifying all θ such that P̂ (θ) is above
the minimum eigenvalue of R̃S [62]. By replacing R in (32)
and (36) by R̂, we obtain the AGS beamformer as

wAGS =
R̂−1(at ⊗ ar)

‖R̂− 1
2 (at ⊗ ar)‖2

, (51)

and the corresponding AGS detector as

TAGS(y) =
2

σ2

|(R̂−1(at ⊗ ar))
Hy|2

‖R̂− 1
2 (at ⊗ ar)‖2

. (52)

Note that the performance of the proposed AGS scheme
depends on the choice of scaling factor %. The larger the %,
the deeper null of the angle spectrum (defined as σ2

2 T
AGS(y))

at the angles in Θ̃. When Θ̃ is exactly the set of interference
angles (an ideal case), we can set % = 1

σ2 such that R̂ is a
good estimate of R. However, in more typical scenarios where
Θ̃ contains more angles than the set of interference angles, %
can be adjusted to balance interference mitigation and object
correlation gain.

The AGS scheme is summarized in Algorithm 1. The AGS
scheme combines the benefits of the non-adaptive GS scheme
and the adaptive LCMV-SMI scheme, as it uses the sample
covariance matrix to eliminate the requirement of the knowl-
edge of {h2

q}, {ãr,q} and Q and also exploits the structure of
the essential interference plus noise matrix via (50).

Remark 4: The angle of at and ar is swept over different
angle bins to check the presence of targets. When the angle
corresponds to an interference angle, we set Θ̃I to include the
current angle to suppress the interference. Therefore, we do
not further exclude the angle from Θ̃I as in [61]. When the
angle is swept at the true target angle and the interference is in
a different direction, Θ̃I typically does not contain the target
angle due to the coarse interference region detection step in
Algorithm 1, thus avoiding target self-suppression.

VI. PERFORMANCE EVALUATION

In this section, simulation results are provided to demon-
strate the performance of different spatial-domain schemes
under incoherent MIMO-FMCW mutual interference. We
compare the GS and AGS schemes with other spatial-domain
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Fig. 5. Receiver operating characteristic (ROC) curves when M = 4, N = 4, and SNR = −5 dB in the presence of an object at 30◦ and two interferences at
40◦ and 10◦: (a) Comparison of theoretical (lines) and empirical Monte Carlo (markers) ROC curves of the proposed GS detector when INR= {−15,−10,−5}
dB; (b) Empirical Monte Carlo comparison between the proposed GS detector, the proposed AGS detector, and baseline methods.

Algorithm 1 Proposed AGS Beamformer & Detector
Input: Spatial-domain signal of interest y, Capon spatial spectrum

grid size ∆θ, Capon spatial spectrum scaling factors %, spatial-
domain samples {ỹ(l′, k′), (l′, k′) ∈ χ}

Output: Proposed AGS beamformer wAGS , proposed AGS
detector TAGS(y)

1: Calculate sample matrix R̃S in (24)
2: Obtain Capon spatial spectrum estimator P̂ (θ) in (49)
3: Detect coarse interference region Θ̃I ⊂ [−π/2, π/2] from P̂ (θ)

using the minimum eigenvalue of R̃S as the threshold
4: Obtain Θ̃ via sampling Θ̃I with grid size ∆θ
5: Calculate R̂ in (50)
6: Obtain wAGS in (51) and TAGS(y) in (52)

schemes including clairvoyant scheme, RS scheme [3], and
LCMV scheme [53] with SMI, in two simulation scenarios2:
• Synthetic data: the spatial-domain object and interference

signal models are directly synthesized according to the
model derived in Section II. Specifically, the object
signal model is generated according to (3), while the
interference signal model is directly generated using (5).

• System-level simulation data: the received object and
interference waveforms go through all necessary steps
(LO, LPF, ADC, Rang/Doppler FFT, MIMO waveform
separation) at the victim Rx of Fig. 3 with the help of
MATLAB Phased Array System ToolboxTM. The simula-
tion accounts for waveform generation, Tx/Rx antenna
beampatterns, residuals due to the LPF and imperfect
MIMO waveform separation, and spectrum leakage due
to the presence of other objects and interferences.

A. Performance Evaluation using Synthetic Data
We consider a victim MIMO-FMCW radar with M = 4 Tx

antennas and N = 4 Rx antennas. The inter-element spacing

2The simulation package is available at https://github.com/merlresearch/
mimo-fmcw-mim for the RS detector and https://github.com/sianjin/
MIMO-FMCW-Radar-Spatial-Interference-Mitigation for the GS and AGS
detectors.

values at the victim Rx and Tx are dr = 0.5λ and dt = Ndr,
respectively. We generate the spatial-domain object signal in
(3) by feeding an object angle at φt = φr = 30◦ to the object
Tx and Rx steering vectors, respectively.

We consider two mutually independent MIMO-FMCW in-
terferences located at 40◦ and 10◦. We first construct the
interference Rx steering vectors {ãr,q} according to (7) using
the two interference angles. For the interference Tx steering
vector, since it is incoherent and we have no prior knowledge
about interference Tx, we generate it as a random M×1 vector
pointing to an unknown direction in the M -dim subspace
ã′t,q ∼ CN (0, σ̃2

qR̃t,q), where σ̃2
q is the power of the q-th

interference and R̃t,q is the covariance matrix with diagonal
of 1. Note that the direct and random generation of ã′t,q ig-
nores the interference Tx configurations and relative geometry
between the interference and victim Rx. It provides a simple
and computationally efficient way to emulate the interference
Tx steering vector in all possible configurations (FMCW, array
configurations, and relative interference-victim geometry) and
verify our theoretical performance analysis. In our simulation,
we set R̃t,q , [R̃q,i,j ]

M−1
i,j=0 = [ρ

|i−j|
q ]M−1

i,j=0 with ρ1 = 0.6 and
ρ2 = 0.5 for the two interferences. We define the signal-to-
noise-ratio (SNR) as SNR = |b|2/σ2 and set it as −5 dB, while
the interference-to-noise-ratio (INR) is set as INR = σ̃2

q/σ
2,

where σ2 is the noise variance.
The performance is evaluated in terms of the receiver op-

erating characteristic (ROC) by using 106 Monte Carlo trials.
For each Monte Carlo run, the interference Tx steering vector
and noise are randomly generated as specified above, while
the interference Rx steering vector and object Tx/Rx steering
vectors are fixed according to the specified interference and
object angles. We compute TC(y) with the knowledge of
{ã′t,q} and {ãr,q}, compute TRS(y) with the knowledge of
{ãr,q}, and compute TGS(y) with the knowledge of {ãr,q}
and {h2

q}. On the other hand, the LCMV-SMI detector and the
AGS detector require the knowledge of the sample matrix R̃S .
We generate MN and 2MN of independently and identically

https://github.com/merlresearch/mimo-fmcw-mim
https://github.com/merlresearch/mimo-fmcw-mim
https://github.com/sianjin/MIMO-FMCW-Radar-Spatial-Interference-Mitigation
https://github.com/sianjin/MIMO-FMCW-Radar-Spatial-Interference-Mitigation
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TABLE I
VICTIM AND INTERFERING MIMO-FMCW RADAR CONFIGURATION FOR

SYSTEM-LEVEL SIMULATION

Setup Explanations
RF wavelength 3.9 mm

Tx (Rx) array structure Uniform linear array
MIMO Tx-pulse code Chu sequence

Chirp bandwidth 460 MHz
IF bandwidth (ADC complex sample rate) 15 MHz (16.7 MHz)

Number of chirps in a CPI 256
Range, velocity, angle FFT sizes 1024, 256, 32

Object RCS model Non-fluctuating 20dBsm

Object (interference) channel Free-space two-way
(one-way) channel

Victim radar chirp slope 15 MHz/us
Victim radar chirp (idle) duration 30.7 us (7 us)
Victim Tx (Rx) element spacing 15.6 mm (1.95 mm)
Victim Tx (Rx) antenna number 4 (8)

Interfering Tx (Rx) element spacing 3.9 mm (1.95 mm)
Interfering Tx (Rx) antenna number 8 (2)

distributed ỹ samples to calculate the two resulting R̃S and
show their impact on the detection performance of the LCMV-
SMI detector and the AGS detector.

Fig. 5 (a) verifies the derived theoretical performance (de-
noted by lines) in Theorem 1 of Section IV-B for the proposed
GS detector and compares it with empirical ROC curves
(denoted by markers) when the INR = {−15,−10,−5} dB.
A good agreement between the theoretical and empirical ROC
curves is observed in Fig. 5 (a). When the INR decreases
or, equivalently, the interference is weaker, the probability of
detection increases for a given probability of a false alarm.

Fig. 5 (b) further compares the proposed GS detector and
AGS detector (realized in Algorithm 1 at ∆θ = 1◦, % = 10)
with the three baseline detectors in terms of ROC curves when
the INR of the two interference is fixed to −10 dB. The
clairvoyant detector, although not practical, gives the detection
performance upper bound for all detectors. Compared with
the RS detector, the proposed GS detector shows a significant
improvement. For instance, when the probability of false alarm
is 0.1, the probability detection is boosted from 0.2 of the RS
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Fig. 6. Qualitative comparison of the angle spectrums at a given range-
Doppler bin.

detector to about 0.65 of the proposed GS detector. Compared
to the GS detector and the LCMV-SMI detector, the proposed
AGS detector achieves the performance in between and can
approach the performance of the GS detector when the number
of samples for calculating the sample matrix is large. When
the number of samples drops to MN , the performance of the
LCMV-SMI detector drops significantly and is even worse than
the RS detector, while the performance of the proposed AGS
detector is more robust.

B. Performance Evaluation using System-level Simulation

We now consider a system-level simulation by generating
the source MIMO-FMCW waveforms with all signal pro-
cessing steps at the victim Rx sides using MATLAB Phased
Array System ToolboxTM. In Table I, we specify the MIMO-
FMCW radar configuration for both victim and interfering
radar. We model the interference channel as a free-space one-
way propagation channel and the object channel as a two-way
channel. This makes the power of the received interference
stronger than the power of the received object signal.

For the LCMV-SMI and AGS detectors, we choose the
sample range-Doppler bin set χ as a set around the target-
of-interest with the number of range (Doppler) guard bins on
each side to be 8 (4) and the number of training range/Doppler
bins on each side to be 4. This lead to |χ| = 64 (equivalent
to 2MN ) range-Doppler bins for obtaining the sample matrix
R̃S . The parameters of the AGS detector are ∆θ = 1◦, % = 10.

We first provide qualitative results for all considered meth-
ods using the angle spectrum, which is defined as σ2

2 T (y)
given the detection statistics T (y) of a scheme. We consider
a scenario of 2 objects and 2 incoherent interfering radars. The
two objects are at 35.5 m, −2.9 m/s, −1.2◦ and, respectively,
81.0 m, 4.2 m/s, 11.2◦. The two interfering radar are at 1.8 m,
1.3 m/s, −54.0◦ and, respectively, 2.3 m, −12.8 m/s, −48.1◦.
Fig. 6 shows the angle spectrum of different detectors at the
object 1’s range-Doppler bin. As a baseline, we include the
angle FFT. It is seen that the interference-ignoring angle FFT
yields strong sidelobes around the vicinity of the two interfer-
ence angles. All other detectors show interference mitigation
capability at the two interference angles. The LCMV-SMI
detector shows a stronger sidelobes around these angles due
to its sensitivity to the sample matrix estimation error. The
RS, GS and AGS detectors show better interference mitigation
performance at the region of interference angles, while the
clairvoyant detector shows smaller sidelobes over all angles.

Fig. 7 shows range-angle spectrum of all detectors by
varying both angle and range bins while fixing the Doppler
bin at the object 1’s Doppler bin, under the same setup of
Fig. 6. Fig. 7 (a) shows that when the angle FFT is used, the
interference is a wideband signal over the range bins, because
the dechirped incoherent interference is a chirp-like signal and
it significantly raises the noise level in the range-angle do-
main [35]. On the other hand, the clairvoyant detector in Fig. 7
(b) provides the best benchmark performance and cancels two
interferences completely. Fig. 7 (c) to (f) show the range-angle
spectrum of the RS, GS, LCMV-SMI, and AGS detectors.
Compared to the angle FFT, the detectors in Fig. 7 (c) to
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(a) FFT (b) Clairvoyant (c) RS

(d) Proposed GS (e) LCMV-SMI (f) Proposed AGS
Fig. 7. Qualitative comparison of the range-angle spectra (at the Doppler bin of object 1) with 2 objects and 2 interferences.

(f) show improved spectrum with smaller sidelobes, lower
noise floors, and suppressed interference around their angles.
The proposed GS detector achieves approximately the same
performance as the RS detector under strong interference, as
stated in Corollary 3. The proposed AGS detector achieves
deeper null at the interference angle and smaller interference
residuals compared to the LCMV-SMI detector.

We further provide quantitative performance evaluation of
all considered methods using the system-level simulation data
with the Monte Carlo simulation of 1000 runs. For each
Monte Carlo run, we consider one interference; we randomly
select the interference angle in the interval of [−80◦, 80◦] and
randomly select the interference range between [2, 4] m (strong
interference), while specifying other parameters in Table I. We
define the interference angle region as 5 angle bins covering
the true interference angle bin with the true interference angle
bin at the center, and define the output interference power
(OIP) as the averaged range-angle spectrum over all range
bins at the interference angle region. It is expected that the
better the interference mitigation performance, the lower the
OIP over the interference angle region. Fig. 8 shows the
cumulative distribution functions (CDFs) of the OIPs of all
detectors. It is seen that in most regions of the CDFs of the
OIPs, the clairvoyant detector is better than other detectors;
the proposed GS detector, the RS detector, and the proposed
AGS detector have similar performance in the middle OIP
region; the proposed AGS detector outperforms the LCMV-
SMI detector in all OIP regions; the AGS detector achieves
37.5 dB gain over the LCMV-SMI detector in terms of the
medium of the OIP (the point where its CDF is 0.5).
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Fig. 8. CDF of output interference power (OIP) at the interference angle
region over 1000 Monte Carlo runs.

VII. CONCLUSION

We investigated mutual radar interference mitigation for
incoherent MIMO-FMCW automotive radar. By deriving an
explicit incoherent MIMO-FMCW interference signal model,
we formulated the mutual interference mitigation as a spatial-
domain object detection problem. We proposed a non-adaptive
GS detector by exploiting the Tx-side information and an
adaptive version, the AGS detector, by leveraging the structure
of the interference. Using synthetic and system-level simu-
lation data, analytical and empirical performance evaluations
confirmed the effectiveness of the proposed detectors com-
pared to a range of baseline methods.
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APPENDIX A
DERIVATION OF OBJECT SIGNAL MODEL

In the following, we show the derivation of the object signal
model following the steps in the upper right of Fig. 3.

Local Oscillator (LO): At the n-th Rx antenna of the victim
radar, the backscattered object signal α

∑M−1
m=0 sm(t−τm,n(t))

is mixed with the conjugate of the LO signal
∑K−1
k=0 s∗(t −

kTPRI)e
−j2πfc(t−kTPRI), leading to the dechirped baseband ana-

log signal

asn(t) =ατ

M−1∑
m=0

e−j2πfc
2vt
c e−j2π(fφtm+fφrn)

×
K−1∑
k=0

ck,me
−j2πβ(t−kTPRI)τDτ,T (t− kTPRI), (53)

where ατ , αe−j2πfcτejπβτ
2

with α denoting the complex
object amplitude, fφt = dtsin(φt)/λ and fφr = drsin(φr)/λ
are the Tx and Rx normalized spatial frequencies at wave-
length λ = c/fc, and τ = 2R/c is the round-trip propagation
delay at the 0-th Rx antenna (reference antenna).

Analog-to-Digital Converter (ADC) and Low-Pass Filter
(LPF): Suppose the object beat frequency βτ is smaller than
the cutoff frequency fL of the anti-aliasing LPF. By passing
asn(t) into the LPF and sampling it at t = kTPRI + l∆T with
∆T denoting the fast-time interval, we have the sampled object
signal on fast-time sample l and pulse k, i.e.,

asn(l, k) =ατe
−j2πfrl1[l ∈ Ls]

×
M−1∑
m=0

ck,me
−j2π(fdk+fφtm+fφrn), (54)

where Ls , {dτ/∆T e, . . . , bT/∆T c} is the integer sample
index set, and fr , (βτ +2v/λ)∆T and fd , 2fcTPRIv/c are
the normalized range and Doppler frequencies, respectively.

Fast-Time/Range FFT: Applying the L-length fast-time fast
Fourier transform (FFT) or range FFT to asn(l, k), we can
obtain the range-domain spectrum as

xsn(l′, k) = αl′
M−1∑
m=0

ck,me
−j2πfdke−j2π(fφtm+fφrn), (55)

where αl′ ,
∑L−1
l=0 ατ1[l ∈ Ls]e−j2π(fr+l′/L)l is the complex

amplitude of the object on range bin l′.
Slow-Time/Doppler FFT and Waveform Separation:

From (55), each Rx antenna combines the M coded
transmitting waveforms via the weighted summation.
To separate xsn(l′, k) into object signals from M Tx
signals, a slow-time MIMO decoding is applied. To
obtain the signal from the m-th Tx antenna, the complex
conjugate of the code sequence c∗k,m, k = 0, 1, . . . ,K − 1
are multiplied on the range-domain response over
K slow-time pulses. For a MIMO code sequence
with orthogonal property

∑K−1
k=0 ck,mc

∗
k,m = K and∑K−1

k=0 ck,mc
∗
k,m′ = 0,∀ m′ 6= m, summing the decoded

signal over K pulses
∑K−1
k=0 xsn(l′, k)c∗k,m can well reconstruct

the object signal with zero Doppler from m-th Tx antenna.
For a general case where the slow-time phase is shifted

Fig. 9. Two necessary conditions for the k̃-th pulse of the interfering
radar to be dechirped by the k-th pulse of the victim radar with a
counterexample for each condition shown in the figure.

by the non-zero object Doppler, the Doppler needs to be
compensated. To reconstruct the object signal from the
m-th Tx antenna, we can compensate the Doppler using a
slow-time FFT (Doppler FFT) on the slow-time decoded
signal xsn(l′, k)c∗k,m, k = 0, 1, . . . ,K − 1:

ysm,n(l′, k′) =

K−1∑
k=0

xsn(l′, k)c∗k,me
−j2π k′K k (56)

=b(l′, k′)e−j2π(fφtm+fφrn) + yrm,n(l′, k′),

where b(l′, k′) , αl′
∑K−1
k=0 e−j2π(fd+ k′

K )k is the amplitude of
the object signal from the m-th Tx antenna, and

yrm,n(l′, k′) = αl′
∑
m′ 6=m

(
K−1∑
k=0

ck,m′c
∗
k,me

−j2π(fd+ k′
K )k

)
× e−j2π(fφtm

′+fφrn), (57)

is the waveform separation residual from other Tx antennas. At
the Doppler bin k′ closest to the object Doppler frequency fd,
i.e., fd+k′/K ≈ 0, the amplitude b(l′, k′) ≈ Kαl′ approaches
to a coherent gain of K due to the Doppler FFT in (56). Using
the near-orthogonality of MIMO codes [13]

max
f

∣∣∣∣∣
K−1∑
k=0

ck,mc
∗
k,m′e

−j2πfk

∣∣∣∣∣� K,∀ m′ 6= m, (58)

the waveform separation residual in (56) can be ignored. It is
worth noting that object detection under imperfect waveform
separation for MIMO radar was considered in [9]. By stacking
{ysm,n(l′, k′)} into a vector,we have (3).

APPENDIX B
DERIVATION OF INTERFERENCE SIGNAL MODEL

Since our goal is to derive the interference signal model seen
at the victim radar, we need to convert the interference time,
i.e., k̃T̃PRI + τ̃syn, k̃ = 0, 1, . . . , K̃ − 1 to the reference time
of the victim radar. Define τ̃ ′

k,k̃
as the time offset between the

k̃-th pulse of the interfering radar relative to the k-th pulse at
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the victim radar. As shown in Fig. 9, the necessary condition
for the k̃-th pulse of the interfering radar to be dechirped by
the k-th pulse of victim radar is −T̃PRI < τ̃ ′

k,k̃
< TPRI. Define

Kk̃ ,
{
k : k̃T̃PRI + τ̃syn = kTPRI + τ̃ ′

k,k̃
,−T̃PRI < τ̃ ′

k,k̃
< TPRI,

k = 0, 1, . . . ,K − 1
}
, k̃ = 0, 1, . . . , K̃ − 1, (59)

as a set that groups all pulses of the victim radar that intercept
with the k̃ pulse by checking whether any time instant of the
victim pulse falls within the k̃ interfering pulse. Denote the
slow-time code of the interfering radar’s k̃ pulse and m̃-th Tx
antenna observed at k-th victim radar pulse as c̃k̃k,m̃ = c̃k̃,m̃ if

k ∈ Kk̃ and c̃k̃k,m̃ = 0 otherwise. Then, we rewrite sin(t) as

sin(t) = α̃e−j2πf̃cτ̃
M̃−1∑
m̃=0

K̃−1∑
k̃=0

∑
k∈K

k̃

c̃k̃k,m̃s̃(t− kTPRI − τ̃ ′k,k̃ − τ̃)

× ej2πf̃c(t−kTPRI−τ̃ ′k,k̃)
e−j2π(f̃φtm̃+f̃φrn)e−j2πf̃c

ṽt
c , (60)

where τ̃ = R̃/c is the one-way propagation delay from
interferer to the victim radar’s reference antenna, and f̃φt =

d̃tsin(φ̃t)/λ̃ and f̃φr = drsin(φ̃r)/λ̃ are the normalized spatial
frequency at the interferer transmitting antennas and victim
receiving antennas. The victim radar mixes sin(t) with the
conjugate of its LO signal

∑K−1
k=0 s∗(t−kTPRI)e

−j2πfc(t−kTPRI)

and passes the analog beat signal from the n-th Rx antenna
into the LPF of bandwidth fL. The resulting low-pass filtered
IF interference signal is

ai,lown (t) =

M̃−1∑
m̃=0

K̃−1∑
k̃=0

∑
k∈K

k̃

α̃k̃k,m̃e
jπ(β̃−β)(t−kTPRI)

2

× ej2π(f̃c−fc)(t−kTPRI)e
−j2πβ̃(t−kTPRI)(τ̃

′
k,k̃

+τ̃)

× e−j2π(f̃φtm̃+f̃φrn)e−j2πf̃c
ṽt
c 1
[
0 < f̃k,k̃ < fL

]
×D

τ̃ ′
k,k̃

+τ̃ ,min
{
T,τ̃ ′

k,k̃
+τ̃+T̃

}(t− kTPRI). (61)

where α̃k̃k,m̃ = α̃e−j2πf̃cτ̃ c̃k̃k,m̃e
jπβ̃(τ̃ ′

k,k̃
+τ̃)2

e
−j2πf̃cτ̃ ′k,k̃ is the

pulse-dependent amplitude, and f̃k,k̃ , β̃(τ̃ ′
k,k̃

+ τ̃) − (β̃ −
β)(t − kTPRI) − (f̃c − fc) is the instantaneous frequency of
interference at pulse k shown in Fig. 10. Notice that we moved
the Doppler term in (61) (i.e., e−j2πf̃c

ṽt
c ) out of the definition

of the instantaneous frequency as the Doppler frequency is
typically small and can be neglected.

The low-pass filtered interference signal as,lown (t) sampled
at t = kTPRI + l∆T is

ain(l, k) = ai,lown (kTPRI + l∆T )

=

M̃−1∑
m̃=0

K̃−1∑
k̃=0

α̃k̃k,m̃e
−j2πf̃dke−j2π(f̃φtm̃+f̃φrn)

× ejπ(β̃−β)(l∆T )2e−j2πf̃r,k,k̃l1
[
l ∈ Li

k,k̃

]
(62)

Fig. 10. Interference at victim radar’s pulse k.

where f̃r,k,k̃ , (β̃(τ̃ ′
k,k̃

+ τ̃) + ṽ
λ )∆T is the normalized

interference initial fast-time frequency, f̃d = f̃cṽTPRI/c is the
normalized interference Doppler frequency, and

Li
k,k̃

,
{
l : (τ̃ ′

k,k̃
+ τ̃) < l∆T < min

{
T, τ̃ ′

k,k̃
+ τ̃ + T̃

}
,

0 < β̃(τ̃ ′
k,k̃

+ τ̃)− (β̃ − β)l∆T − (f̃c − fc) < fL

}
(63)

is the set of interference contaminated sample indices.
Applying the range FFT, waveform separation and Doppler

FFT to the sampled interference signal ain(l, k), we obtain its
spectrum at the m-th Tx antenna, n-th Rx antenna, l′-th range
bin and k-th pulse as

yim,n(l′, k′) =

K−1∑
k=0

L−1∑
l=0

ain(l, k)e−j2π
l′
L lc∗k,me

−j2π k′K k

=ã′t,me
−j2πf̃φrn, (64)

where

ã′t,m =

M̃−1∑
m̃=0

K̃−1∑
k̃=0

K−1∑
k=0

α̃k̃k,m̃c
∗
k,me

−j2π(f̃d+ k′
K )ke−j2πf̃φtm̃

×
L−1∑
l=0

ejπ(β̃−β)(l∆T )21
[
l ∈ Li

k,k̃

]
e−j2π(f̃

r,k,k̃
+ l′
L )l. (65)

APPENDIX C
DERIVATION FOR EXAMPLES IN SECTION II-D

A. Phased Array Radar Interference

Under the phased array radar setup, {ck,m = 1} implies
that {c̃k̃k,m̃ = 1} and {c∗k,m = 1}. Then, ã′t,m is inde-
pendent of m̃ and m. Rewriting ã′t,m as ã′t and rewriting
yim,n(l′, k′) as yin(l′, k′), the range-Doppler interference spec-
trum in (64) reduces to yin(l′, k′) = ã′te

−j2πf̃φrn, where
ã′t =

∑K−1
k=0 α̃l′,ke

−j2π(f̃d+ k′
K )k

(∑M̃−1
m̃=0 w̃m̃e

−j2πf̃φtm̃
)

, and
w̃m̃ is the beamforming weights on m̃-th interference Tx
antenna. Stacking {yin(l′, k′)} into a vector, we obtain (8).
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B. TDM-MIMO Interference
The modification in the above derivation is in two folds.

First, the slow-time Tx-pulse code ck,m is replaced as the
slow-time Tx-pulse code with ck,m = 1 if m = mod (k,M)
and ck,m = 0 otherwise, for k = 0, 1, . . . ,K − 1 and
m = 0, 1, . . . ,M−1. Second, in (64), e−j2π

k′
K k is replaced by

e−j2π
k′

bK/Mck because only bK/Mc pulses are used in TDM-
MIMO for each antenna. These two modifications do not affect
the interference structure in (5).

APPENDIX D
PROOF OF THEOREM 1

By [60], the beamformer w∗ = R−1(at⊗ar)

‖R−
1
2 (at⊗ar)‖2

is the

optimal solution of the relaxed version of problem (31):

min
w

wHRw, s.t. (at ⊗ ar)
Hw = 1, (66)

which is an LCMV beamforming optimization problem with
covariance matrix R [60]. Next, we show that special structure
of R−1 implies that w∗ satisfies the last condition of prob-
lem (31). Denoting Ã , [at ⊗ ãr,1,at ⊗ ãr,2, . . . ,at ⊗ ãr,Q]
as the stack of Q essential interference virtual steering vectors,
we write R of (29) in matrix form as R = IMN + ÃΛÃH .
Using the Woodbury matrix identity, we have

R−1 =IMN − Ã(Λ−1 + ÃHÃ)−1ÃH

=IMN −Pat ⊗ P̃Ãr,Λ
. (67)

Substituting (67) into w∗, we can find w∗ satisfies the last
condition of problem (31). Thus, wGS = w∗.

APPENDIX E
PROOF OF THEOREM 2

The following derivation is based on the form TGS(y) =

2
σ2

∣∣∣(R−1(at⊗ar))
H

y
∣∣∣2

‖R−
1
2 (at⊗ar)‖2

suggested by wGS in (32).

Under H0, we have (at ⊗ ar)
HR−1y = (at ⊗ ar)

HR−1z̃,
using the last condition in (31). As z̃ ∼ CN (0, σ2R) by (28),

we have (at⊗ar)
HR−1y ∼ CN

(
0, σ2

∣∣∣∣∣∣R− 1
2 (at ⊗ ar)

∣∣∣∣∣∣2).

Thus, TGS(y) under H0 follows chi-squared distribution with
2 degrees of freedom (DoF) [63], i.e.,

TGS(y) ∼ χ2
2, under H0. (68)

Under H1, we have (at ⊗ ar)
HR−1y ∼

CN
(
b
∣∣∣∣∣∣R− 1

2 (at ⊗ ar)
∣∣∣∣∣∣2, σ2

∣∣∣∣∣∣R− 1
2 (at ⊗ ar)

∣∣∣∣∣∣2). Thus,

TGS(y) under H1 follows noncentral chi-squared distribution
with 2 DoF and noncentrality parameter λGS [63], i.e.,

TGS(y) ∼ χ′22(λGS), under H1, (69)

where λGS = 2|b|2
σ2

∣∣∣∣∣∣R− 1
2 (at ⊗ ar)

∣∣∣∣∣∣2 = 2|b|2
σ2 MaHr P̃⊥

Ãr,Λ
ar.

Then, given a detection threshold γ, the probability of
false alarm PGSFA , Pr

[
TGS(y) ≥ γ|H0

]
is the comple-

mentary CDF (CCDF) of exponential distribution with rate
parameter 1

2 [63]; the probability of detection PGSD ,
Pr
[
TGS(y) ≥ γ|H1

]
is the CCDF of the noncentral chi-

squared distribution with 2 DoF and noncentrality parameter
λGS , which is equivalent to Q1

(√
λGS ,

√
γ
)

[55].

APPENDIX F
PROOF OF LEMMA 1

Substituting (46) into (47), we have

Pq =
1

(at ⊗ ãr,q)HR−1(at ⊗ ãr,q)
. (70)

Next, we prove (at ⊗ ãr,q)
HR−1(at ⊗ ãr,q) = (at ⊗

ãr,q)
HR̃−1(at ⊗ ãr,q). For any q ∈ {0, 1, . . . , Q}, define

ỹq = z̃ +
∑q
q′=1 ãv,q′ with ãv,q′ , (P⊥at ã

′
t,q′) ⊗ ãr,q′ and

define the normalized covariance matrix of ỹq as Rq . Then,
Rq = Rq−1 + 1

σ2 ãv,q′ ã
H
v,q′ , R0 = R, and RQ = R̃. By the

Woodbury matrix identity, we have

R−1
q = R−1

q−1 −
R−1
q−1ãv,q′ ã

H
v,q′R

−1
q−1

σ2 + ãHv,q′R
−1
q−1ãv,q′

. (71)

By (35) and (71), via induction, we can prove that

ãHv,q′R
−1
q (at ⊗ ãr,q′′) = 0 (72)

holds for any q, q′, q′′ ∈ {0, 1, . . . , Q}. Then, by (71) and (72),
we can iteratively prove (at⊗ ãr,q)

HR−1(at⊗ ãr,q) = (at⊗
ãr,q)

HR−1
1 (at⊗ ãr,q) = (at⊗ ãr,q)

HR−1
2 (at⊗ ãr,q) = . . . =

(at ⊗ ãr,q)
HR−1

Q (at ⊗ ãr,q) = (at ⊗ ãr,q)
HR̃−1(at ⊗ ãr,q).
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[48] J. Bechter, A. Demirlika, P. Hügler, F. Roos, and C. Waldschmidt, “Blind
adaptive beamforming for automotive radar interference suppression,” in
2018 19th International Radar Symposium (IRS), 2018, pp. 1–10.

[49] M. Rameez, M. Dahl, and M. I. Pettersson, “Adaptive digital beamform-
ing for interference suppression in automotive FMCW radars,” in 2018
IEEE Radar Conference (RadarConf18), 2018, pp. 0252–0256.
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