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Abstract—Motors are typically operating at varying speed
conditions, especially when they are driven by inverters for high
efficiency. However, it is challenging to detect motor faults under
varying operating conditions due to the frequency variation of
fault signatures, spectrum distortion, and other interference.
Even the fault signature is extracted, the fault severity is often
underestimated and not robust. To address these issues, we
propose a sparsity-driven method to iteratively extract speed-
dependent fault frequency components from the stator current,
considering frequency variation due to varying speed. Experi-
ments show that our method can extract frequency signatures
of different faults with significantly better results compared
to other state-of-the-art methods. The proposed method can
be applied to inverter-fed motor drive system for robust fault
detection.

Index Terms—Motor fault, Fault signature, Varying speed
operation, Sparse signal

I. INTRODUCTION

Induction motors are important drive machines for indus-
tries because they are cost-effective, endurable for various
environmental conditions, and relatively efficient. However,
after long-time (like years) of operations, induction motors
may develop mechanical and electrical faults, such as bearing
fault, broken bar fault, eccentricity, insulation deterioration,
and short circuit, etc. These faults degrade the performance
of motors in general. For example, mechanical faults may
cause vibration, torque ripple, and sound noise, resulting a
lower efficiency. If the faulty motor is not well maintained
or repaired in time, it may even lead to sudden catastrophic
failure. Therefore, it is important to detect faults, estimate
their severity, and perform timely maintenance to minimize
potential loss.

To detect motor faults, the most popular way is to ex-
tract fault signatures by analyzing the stator current fre-
quency spectrum, or so-called motor current signature anal-
ysis (MCSA) [1]. In healthy conditions, the stator current
of a three-phase induction motor includes the operating
frequency component, which is typically 50Hz (or 60Hz), and
its higher-order harmonics. The operating frequency current
generates a symmetric and rotating magnetic field in the
air gap between the stator and the rotor. When a motor
fault occurs, the magnetic field generated by the three-phase
stator current is not symmetric any more. Consequently, extra
frequency components are induced in the stator current, with
different faults corresponding to different frequency compo-
nents. Therefore, motor faults can be detected by extracting
the corresponding fault signature in the frequency domain.

Furthermore, the fault severity is estimated according to
the ratio between the fault frequency magnitude and the
operating frequency magnitude. A larger ratio indicates a
bigger asymmetry of magnetic field, and therefore a more
severe fault. Since the MCSA-based method does not need
other sensor data but the stator current for detection, it is
non-invasive and cost-effective for health monitoring.

However, motors are typically operating at varying-speed
conditions, which fact makes fault detection a challenging
problem [2]–[4]. First, fault signatures in the frequency
domain are typically speed-dependent. Varying-speed op-
eration means varying fault frequency. Second, the factor
between the fault frequency and the speed is fault-dependent.
Under the same speed variation, different fault signatures
may have different frequency variation ranges. Therefore,
it is also not suitable to extract fault frequency within a
fixed frequency range. Third, under varying-speed operations,
the fault frequency component energy is spread out in a
frequency range, depending on the speed profile pattern.
The spread fault frequency energy lowers down the ratio
between the magnitude of fault frequency and the magnitude
of operating frequency. Consequently, a fault may not be
detected according to a preset threshold suitable for steady
operation conditions. Even if the fault is detected, its severity
level may be underestimated.

It is an essential problem to extract proper fault signatures
that is robust to speed variations for further analysis. To
deal with the fault signature extraction problem, a blind
deconvolution demodulation method [5] is proposed to deblur
the fault signature for motors operating at varying speed and
varying load conditions. However, it is only valid for one
specific fault type where the corresponding fault frequency
components have the same variation pattern, but not for a
mix of multiple fault types. Other methods such as graph
based method [6] considers the smoothness and sparsity of
the fault signature, purely from signal processing, not from
the physical model point of view. In recent years, artificial
intelligence (AI) and machine learning has been extensively
applied in many areas including motor fault detection and
diagnosis, where physical model-based features, such as
motor current signature, play an important role [2], [7], [8].
Fault features that are robust to operating conditions are
preferred to facilitate the complexity of machine learning
algorithms and improve the overall performance.

In this paper, a robust method is proposed to analyze stator
current of motor operating at varying speed conditions with



a mix of multiple faults. The main contributions of this paper
are summarized as follows.

• A physical model-based, sparsity-driven method is pro-
posed to iteratively extract the operating frequency com-
ponent and its harmonics, speed-dependent slot harmon-
ics related to eccentricity fault and bearing fault, and
speed-dependent broken-bar fault frequency components
from noisy stator current.

• Analysis on speed-dependent fault signatures is per-
formed to achieve a speed-independent and load-
independent fault feature such that different faults can
be detected and their severity can be properly estimated.

• With the proposed sparsity-driven method, small fault
signatures are extracted from noisy measurements. This
is helpful to detect early-stage faults for predictive
maintenance.

II. MOTOR CURRENT SIGNATURE

A. Constant-speed operation

We consider an inverter-fed motor operating at a constant
speed with a fixed load. In general, the motor current in-
cludes the fundamental operating frequency component and
its harmonics at healthy condition. The time-domain stator
current can be formulated as

ih(t) = Is,1 cos(2πfst+ ϕs) +
∑
n

Is,n cos(2πfs,nt+ ϕs,n),

(1)
where fs is the operating frequency, Is,1 is the current
amplitude of operating frequency, ϕs is the initial phase of the
operating frequency component, and subscript n represents
the order of harmonics.

When a motor fault occurs, additional fault frequency
components will be induced in the stator current

if (t) = ih(t) +
∑
l

If,l cos(2πff,lt+ ϕf,l), (2)

where If,l represents the amplitude of the lth fault frequency
component ff,l, and ϕf,l is the initial phase of the lth fault
frequency component.

Extensive research work has been done in identifying
the fault frequency based on different physical models. For
example, when there exists a broken-bar fault in a squirrel-
cage induction motor, the fault frequency can be expressed
as [9]

fbar = (1± 2τs)fs, (3)

where τ = 1, 2, . . ., and s is the motor slip, which can be
calculated using the motor nr and the synchronous speed ns

as s = 1− nr

ns
.

For bearing fault, depending on the fault location in the
bearing and the bearing size, the characteristic fault frequency
induced in the stator current is proportional to the mechanical
frequency of the rotor fr = 1−s

p fs, i.e. [10]

fb ∝
1− s

p
fs. (4)

For eccentricity fault in most induction machines, it can
be identified using slot harmonics in the current [11], [12]

fslt = ((κZ ± nd)
1− s

p
+ ν)fs, (5)

where Z is the number of rotor slots; p is number of pole
pairs; κ = 1, 2, 3, ...; nd is the eccentricity order (nd = 0
in case of static eccentricity and nd = 1, 2, 3, ..., in case of
dynamic eccentricity); and ν = ±1,±3,±5, ... is the order
of stator time harmonics.

When the motor is operating at a constant speed and
a constant load, all these fault frequencies are of fixed
values. Therefore, for most motor fault detection problems,
the objective of MCSA-based methods is to extract the
corresponding fault signature components via effectively fre-
quency spectral analysis. Once a fault frequency component
over a certain threshold is detected, its corresponding fault is
claimed. The fault severity can be further estimated according
to the ratio between the magnitude of the fault frequency
component and that of the operating frequency component.

Let is(t) represent the time-domain stator current of a
motor in an ideal steady-state operation. Note that the current
could be a single-phase current or a combination of three
phase current after proper phase alignment such as Park
transform.

The frequency spectrum of the stator current is (ih for
healthy condition or if for faulty condition) can be achieved
by the Fourier transform as

Is(ω) =

∫
is(t)e

−jωtdt. (6)

For periodic signals, a discrete Fourier transform (DFT)
is typically used to compute the Fourier spectrum based
on discrete time samplings is(n). We ignore the detailed
correspondence between the frequency and the sampling rate,
and simplify the expression of Fourier spectrum as

[I(nf )] = DFT [is(nt)], (7)

where nt and nf represent discrete time and frequency
respectively.

B. Varying-speed operations

From Sec.II-A we observe that all aforementioned motor
fault signatures are related to the motor slip s. When the
motor is operating at varying-speed conditions, the fault
frequency changes accordingly.

To demonstrate the impact of varying speed to motor fault
detection, we show two examples of stator current spectra
of a faulty motor operating at a varying speed in Fig.1.
When 2.5 second length current is collected, its Fourier
spectrum is shown in Fig. 1 (a). The spectrum magnitude
is normalized by the operating frequency magnitude. We ob-
serve a frequency component around 46Hz with a normalized
magnitude of -39.3dB. With normalized noise spectrum floor
around -45dB, it is uncertain whether this 46Hz component
is a broken-bar fault signature or just noise. When we collect
longer-time current of about 50 seconds, the corresponding
Fourier spectrum is shown in Fig. 1 (b). It is clear that the



noise spectrum floor reduces to -60dB due to longer-time
measurements. However, the maximum sideband component
also reduces to a lower level, at frequency 42.7Hz with
magnitude of -49.2dB, almost 10dB lower than that shown
in Fig. 1 (a) of a short-time window. Clearly, if a preset
threshold is used for this fault detection, different detection
results or different severity levels will be claimed for the
same motor but with different lengths of measurements.
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Fig. 1. Frequency spectra of stator current in varying operating condition
using Fourier transform with (a) 2.5 second time window measurement and
(b) 50 second time window measurement.

Further investigation shows that due to the varying speed
operation, the fault frequency changes in a small range
accordingly. According to Parseval’s theorem, the sum (or
integral) of the square of a time-domain signal is equal to
the sum (or integral) of the square of its Fourier transform.
Therefore, as more measurements are collected in the time-
domain, the operating frequency energy accumulates at a
fixed operating frequency point in the Fourier domain, while
the fault frequency energy is distributed in a frequency range
depending on the speed change. Ultimately, the ratio between
the fault frequency component and the operating frequency
component decreases to a lower level depending on the motor
speed range. Similar phenomena happen to other faults.

Although the Fourier spectrum of a short-time window
may provide the right ratio, the spectrum is very noisy,
and may be influenced by other interference. In practice, an

empirical threshold is set to detect the fault, but the fault
severity may be underestimated. Therefore, a proper way to
deal with this issue is to adaptively align the fault frequency
of short-time windows such that the overall fault frequency
energy can be added up. Following this idea, we proposed
a physical-model based, sparsity-driven method to iteratively
extract fault signatures.

III. PROPOSED METHOD

To capture the frequency variation of fault signatures,
short-time Fourier transform (STFT) is used for spectral
analysis, with N overlapped sliding time windows on the
time-domain current. Assume that the motor speed can be
treated as a constant in a short-time window used for spectral
analysis. Given the STFT spectrum, we further exploit fre-
quency variations of different time windows using advanced
sparsity-driven signal processing techniques. The detail of
our proposed method is described in the following section.

For fault frequency detection at varying speed conditions,
an essential task is to align the fault frequency component in
the frequency domain such that those formula for constant
speed operations can be used to extract the fault frequency
component. Note that fault signature magnitudes are typically
much smaller than that of the operating frequency signal.
Besides that, measurement noise and interference from other
equipment such as inverters also makes the fault frequency
alignment more challenging. To improve the robustness, we
exploit the relationship of frequency variations of different
time windows and iteratively extract signals according to
their physical property such that fault signals can be well
estimated.

A. Frequency variation Estimation

For those fault signals of varying frequency due to speed
variation, we propose the following robust method to estimate
the frequency variation such that the fault frequency of
different time windows can be well aligned.

For example, according to (5), slot harmonic frequency
variation due to speed variation can be represented as

∆fslt = (κZ ± nd)
fs
pns

∆nr =
κZ ± nd

60
∆nr. (8)

Note that the frequency variation in (8) is independent of
the order of stator time harmonics, meaning that all orders
of slot harmonics will have the same frequency variation
given a speed change. Without loss of generality, let hk =
[∆fk,1, ...,∆fk,i, ...,∆fk,N ]⊤ be a column vector of the kth
fault frequency variation across all time windows, in which
the ith entry hk(i) = ∆fk,i is the frequency variation of kth
fault frequency in the ith time window. It is clear that hk = 0
for steady constant-speed operations. The fault frequency
difference between the ith and the jth time windows due
to speed variation is

Lk(i, j) =hk(i)− hk(j),

for i, j = 1, 2, · · · , N ; k = 1, 2, · · · ,K. (9)

In many applications such as speed sensorless drive, the
speed is not directly measured and needs to be estimated.



Here we aim to extract the fault frequency without any
information about the varying speed.

Let [Ii(nf )] be the frequency spectrum of the ith (i =
1, ..., N ) time window stator current and [Ik,i(nf )] be a
cropped spectrum covering the kth fault signature frequency
variation range based on its physical model. In theory, it is
straightforward to find the frequency difference by computing
the cross correlation between the frequency spectrum of the
ith time window signal [Ik,i(nf )] and that of the jth time
window signal [Ik,j(nf )] as

L̂k(i, j) = argmaxnd

∑
nf

|Ik,i(nf )| · |Ik,j(nf + nd)|. (10)

In practice, since the fault signal is very weak and sensitive
to noise interference, the solution of (10) may be not accurate
or even far away from the true value. Here we use L̂k

to represent the estimated frequency variation from noisy
measurements according to (10), and Lk to represent the
underlying true frequency variation. Our objective is then to
recover hk from a set of all estimations {L̂k}.

To improve the robustness, we further define a matrix
Lk = [Lk(i, j)] ∈ RN×N and its concatenated vector
lk = [Lk(1, 1), ..., Lk(i, j), ..., Lk(N,N)]⊤ ∈ RN2×1. We
rewrite the matrix as

Lk = hk1
⊤ − 1h⊤

k ∈ RN×N , (11)

where 1 is an N -dimensional vector with all entries equal to
1. For any real vector hk, we have

rank(Lk) ≤ rank(hk1
⊤) + rank(1h⊤

k ) = 2. (12)

From (12) we conclude that in theory the matrix of frequency
variation is a low-rank (rank≤ 2) matrix. However, in practice
the estimated matrix L̂ using (10) is not low-rank due to
estimation errors. An effective way to recover h from noisy
L̂ is to use the well-known robust PCA method [13], which
decomposes the observation matrix L̂ into a low-rank matrix
and a sparse noise matrix. However, it is not guaranteed that
the low-rank matrix decomposed by the robust PCA method
is in the form of (11). Here instead of using the robust PCA,
we implicitly impose low rankness.

We can express lk as

lk = Ahk, (13)

with
A = [· · · , αi,j , · · · ]⊤ ∈ RN2×N , (14)

where vector αi,j ∈ R1×N has all-zero entries except that
αi,j(i) = 1 and αi,j(j) = −1. Consequently, the frequency
variation estimation problem is formulated as

min
e,hk

1

2
∥̂lk −Ahk − e∥22 + λ|e|1, (15)

where λ is the regularization parameter and vector e repre-
sents large frequency variation error cause by interference.
It is clear that when λ = 0 and e = 0, (15) is reduced to
the least-squares method. When the interference is Gaussian
noise, the least-squares method works well. In our case,

where there exists other interference introduced by the in-
verter, sparsity-inspired optimization in (15) improves the
robustness.

To solve (15), we utilize the alternating minimization
method by iteratively updating e and hk until its stopping
criteria is satisfied. The sub-problem with respect to hk is a
standard least-squares problem, which can be solved by

h
(t)
k =A+(̂lk − e(t−1)), (16)

where A+ denotes the pseudo-inverse of A, and superscripts
(t) and (t− 1) represent the number of iterations during the
process.

The sub-problem of e can be solved by a soft-thresholding
process as [14]

e(t) = max(0, |̂lk −Ah
(t)
k | − λ)⊙ sign(̂lk −Ah

(t)
k ). (17)

Once the kth fault frequency variation vector ĥk = h
(T )
k

is properly estimated, we can align the spectrum by shifting
the frequency spectrum of the ith time window by −ĥk(i)
circularly, i.e.,

[Īk,i(nf )] = circshift([Ii(nf )],−ĥk(i)), (18)

and form a matrix of aligned spectra as

Īk = [[Īk,1(nf )], ..., [Īk,i(nf )], ..., [Īk,N (nf )]], (19)

where the kth fault frequency is aligned.

B. Frequency component Extraction

After compensating the frequency variation of the kth fault
signature, the kth fault signature apprears in a row of the
spectrogram matrix Īk. Therefore, the kth fault frequency
should be included in the left principal singular vector of Īk.
Following this idea, we perform singular value decomposition
(SVD) on Īk

Īk = UkΣkV
⊤
k =

∑
j

σk,juk,jv
⊤
k,j . (20)

The kth speed-independent frequency component of stator
current is then achieved by simply thresholding the magni-
tude of uk,1 to keep the largest frequency component, i.e.,

ûk,1 = threshold(uk,1). (21)

Note that ûk,1 is independent to the operating speed due to
the fault frequency alignment, and therefore it equivalent to
the spectrum at constant-speed operation. The fault signature
extraction process does not require information of the speed
and suitable for any varying speed patterns. Therefore it is
robust for varying speed operations.

For comparison, the denoised kth speed-dependent fre-
quency component is achieved by shifting ûk,1 to its original
speed-dependent frequency as

[Îk,i(nf )] = circshift{[σk,1ûk,1v
⊤
k,1(i)], ĥk(i)}. (22)



C. Iterative frequency component extraction
Based on the frequency variation estimation method in Sec.

III-A, we iteratively align frequency components in frequency
spectra of short-time windows and extract them as equivalent
frequency components of steady operations.

Considering the fundamental operating frequency is typi-
cally the strongest frequency component, we first extract the
fundamental frequency and its harmonics. For fixed operating
frequency, the fundamental frequency and its harmonics can
be detected by examining the average magnitude. If the
average magnitude is greater than a preset threshold with
small variance, we treat the corresponding frequency as
the operating frequency harmonics. For varying frequency
operations, the fundamental frequency and its harmonics can
be aligned by the method illustrated in Sec. III-A.

For slot harmonics which are related to eccentricity and
other faults, we employ the proposed frequency variation
estimation method to align slot harmonics and extract them
from the aligned frequency spectra. Recalling that all slot
harmonics are evenly separated by fs according to (5), we
can align and extract all slot harmonics simultaneously. Given
the dominant slot harmonic of static eccentricity nd = 0,
motor speed can also be estimated as [15]

nr =
60

Z
(fslt − νfs). (23)

Similarly, for other speed-dependent fault signatures, we
can align the fault frequency using the proposed sparsity-
driven method and extract the frequency component using
SVD decomposition. Since they are all related to the speed,
an alternative way to the proposed method is to make use of
the estimated frequency variation vector for slot harmonics.
For example, it is straightforward to infer the broken-bar
fault frequency variation in terms of slot harmonic frequency
variation according to (3) and (5), i.e.,

hkb
= ±2p

Z
hks , (24)

where the subscript integers ks and kb represent the serial
numbers of slot harmonics and broken-bar fault frequency
respectively. Given hkb

, two characteristic broken-bar fault
frequency components indicated by (3) with τ = 1 can be
aligned and extracted respectively.

Once we have extracted all frequency components of
interests, for comparison we can achieve the denoised STFT
spectrum by adding all denoised speed-dependent frequency
components in (22) as

[Îi(nf )] = [
∑
k

[Îk,i(nf )]]. (25)

The final equivalent Fourier spectrum of the whole time-
domain measurement can be synthesized by combining all
extracted speed-independent frequency components as

Îs =
∑
k

σk,1ûk,1. (26)

Since this spectrum is speed-independent and with a fixed
fault frequency component to operating frequency component
ratio, it is robust for motor fault detection and severity
estimation.

IV. EXPERIMENTS

A. Setup

To validate our method, we perform experiments on a 1HP
three-phase squirrel-cage induction motor. The experimental
setup is shown in Fig. 2. The motor is driven by a three-
phase inverter. A servo-motor, whose speed and torque can be
controlled precisely, is mounted on the induction motor shaft
and well aligned with the induction motor to work as a load
for the experiment. During operations, we fix the fundamental
operating frequency and manually adjust the load torque
(servo-motor) with an arbitrary pattern such that the motor
speed changes accordingly with time. The three-phase stator
currents are measured using current sensors and recorded via
a dSPACE® Scalexio Labbox platform for further analysis.

Fig. 2. Experimental setup.

B. Results

An example of the time-domain stator current of the motor
operating at a varying-load and varying-speed condition is
shown in Fig. 3, where we record about 53 second time-
domain data with a sampling rate of 2kHz. It is clear that
due to the varying load, the stator current amplitude also
changes from time to time to meet the load requirement. We
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Fig. 3. Time-domain stator current.

perform STFT on stator current using a 2.5 second sliding
time window, with 2 second overlap from window to window.
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Fig. 4. Spectra of stator current in short-time windows. (a) Noisy spectrum in the frequency range of interest, (b) Extracted operating frequency component
and its harmonics, (c)Noisy spectrum in the frequency range of slot harmonics, (d)Extracted slot harmonics, (e) Noisy spectrum in the frequency range of
broken bar fault frequency, and (f) Extracted broken-bar fault frequency components.

The results are summarized in Fig. 4 with details described
as follows. Fig. 4 (a) shows the STFT spectrum in the fre-
quency range of interest. To improve detection performance,
a minimum variance-based spectral analysis method [16] is
considered in the post-process to suppress the noise and re-
duce the influence of varying load in the STFT spectrum. We
then iteratively extract operating frequency and its harmonics,
slot harmonics, and broken-bar fault frequencies. In Fig. 4 (b)
we plot the extracted operating frequency and its harmonics.

For comparison, in Fig. 4 (c) we plot a zoomed-in version
of the STFT spectrum in the range of slot harmonics, and
in Fig. 4 (d) we plot the extracted slot harmonics according
to (22). We observe that all slot harmonics are very well
extracted, even those very weak slot harmonics under strong
interference indicated by the straight line in Fig. 4 (c) in
the frequency range of 500− 600Hz. Similarly, in Fig. 4 (e)
we plot a zoomed-in version of the STFT spectrum in the
range of broken-bar fault frequencies, and plot the extracted



broken-bar fault frequencies in Fig. 4 (f), respectively. Again,
both the characteristic fault frequency component and the
secondary fault frequency component are extracted in the
noisy measurement.

For MCSA-based fault detection, we typically consider the
Fourier spectrum of stator current. Fig. 5 presents frequency
spectra of the whole measurement of a large time window
when the motor is operating at varying speed. For compar-
ison, in Fig. 5 (a) we show the Fourier spectrum, where
the operating frequency component magnitude is normalized,
while in Fig. 5 (b) we show the equivalent spectrum using
(26), where frequency components with different frequency
variations are coded using different colors. We observe
that the equivalent spectrum shows accurate fault signature
magnitude, which agrees with that in the short-time Fourier
spectrum shown in Fig. 5, but without noise interference. Due
to varying speed operation, the broken-bar fault frequency
magnitude and slot harmonic magnitude are all about 10dB
lower than that of the equivalent spectrum at constant speed,
which may cause mis-detection (false negative) in practice.
Experimental results demonstrate that our proposed method
can improve the performance of detection and severity esti-
mation for motors operating at varying-speed and varying-
load conditions.
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(a) Fourier spectrum at varying speed
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(b) Equivalent spectrum at a constant speed

Fig. 5. Frequency spectrum of stator current.

V. CONCLUSION

In this paper, we proposed a sparsity-driven method to
iteratively extract frequency components from the stator
current of a motor operating at varying speed conditions. We
evaluated our method on experimental data for motor current
signature analysis-based fault detection. Experimental results
demonstrate that our method can effectively extract fault sig-
natures of different types of faults under arbitrary unknown
speed, with robust fault signature magnitude indicating the
severity level. The denoising performance is significantly
better than other existing methods.

REFERENCES

[1] W. T. Thomson and M. Fenger, “Current signature analysis to detect
induction motor faults,” IEEE Industry Applications Magazine, vol. 7,
no. 4, pp. 26–34, 2001.

[2] I. Martin-Diaz, D. Morinigo-Sotelo, O. Duque-Perez, and R. J.
Romero-Troncoso, “An experimental comparative evaluation of ma-
chine learning techniques for motor fault diagnosis under various
operating conditions,” IEEE Transactions on Industry Applications,
vol. 54, no. 3, pp. 2215–2224, 2018.

[3] M. Z. Ali, M. N. S. K. Shabbir, S. M. K. Zaman, and X. Liang,
“Single-and multi-fault diagnosis using machine learning for variable
frequency drive-fed induction motors,” IEEE Transactions on Industry
Applications, vol. 56, no. 3, pp. 2324–2337, 2020.

[4] A. Stefani, A. Bellini, and F. Filippetti, “Diagnosis of induction
machines’ rotor faults in time-varying conditions,” IEEE Transactions
on Industrial Electronics, vol. 56, no. 11, pp. 4548–4556, 2009.

[5] V. A. Kelkar, D. Liu, H. Inoue, and M. Kanemaru, “Sparsity-driven
joint blind deconvolution-demodulation with application to motor fault
detection,” in ICASSP 2023-2023 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023.

[6] D. Liu, V. Anantaram, and A. Goldsmith, “Extracting broken-rotor-bar
fault signature of varying-speed induction motors,” in PHM Society
Asia-Pacific Conference, vol. 4, no. 1, 2023.

[7] J. E. Garcia-Bracamonte, J. M. Ramirez-Cortes, J. de Jesus Rangel-
Magdaleno, P. Gomez-Gil, H. Peregrina-Barreto, and V. Alarcon-
Aquino, “An approach on MCSA-based fault detection using inde-
pendent component analysis and neural networks,” IEEE Transactions
on Instrumentation and Measurement, vol. 68, no. 5, pp. 1353–1361,
2019.

[8] X. Zheng, H. Inoue, M. Kanemaru, and D. Liu, “Eccentricity severity
estimation of induction machines using a sparsity-driven regression
model,” in 2022 IEEE Energy Conversion Congress and Exposition
(ECCE), 2022, pp. 1–6.

[9] F. Filippetti, G. Franceschini, C. Tassoni, and P. Vas, “AI techniques
in induction machines diagnosis including the speed ripple effect,”
IEEE Transactions on Industry Applications, vol. 34, no. 1, pp. 98–
108, 1998.

[10] S. Zhang, B. Wang, M. Kanemaru, C. Lin, D. Liu, M. Miyoshi, K. H.
Teo, and T. G. Habetler, “Model-based analysis and quantification of
bearing faults in induction machines,” IEEE Transactions on Industry
Applications, vol. 56, no. 3, pp. 2158–2170, 2020.

[11] P. Vas, Parameter estimation, condition monitoring, and diagnosis of
electrical machines. Oxford University Press, 1993, vol. 27.

[12] K. D. Hurst and T. G. Habetler, “Sensorless speed measurement using
current harmonic spectral estimation in induction machine drives,”
IEEE Transactions on Power Electronics, vol. 11, no. 1, pp. 66–73,
1996.

[13] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component
analysis?” Journal of the ACM (JACM), vol. 58, no. 3, pp. 1–37, 2011.

[14] D. L. Donoho, “De-noising by soft-thresholding,” IEEE transactions
on information theory, vol. 41, no. 3, pp. 613–627, 1995.

[15] W. L. Silva, A. M. N. Lima, and A. Oliveira, “Speed estimation of an
induction motor operating in the nonstationary mode by using rotor slot
harmonics,” IEEE Transactions on Instrumentation and Measurement,
vol. 64, no. 4, pp. 984–994, 2014.

[16] D. Liu, H. Inoue, and M. Kanemaru, “Robust motor current signature
analysis (MCSA)-based fault detection under varying operating condi-
tions,” in 2022 25th International Conference on Electrical Machines
and Systems (ICEMS). IEEE, 2022, pp. 1–5.


	Title Page
	page 2

	
	Introduction
	Motor current signature
	Constant-speed operation
	Varying-speed operations 

	Proposed Method
	Frequency variation Estimation
	Frequency component Extraction
	Iterative frequency component extraction

	Experiments
	Setup
	Results

	Conclusion
	References


