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Abstract
This paper presents a modeling framework for joint estimation of a host vehicle state and a
map of the road based on global navigation satellite system (GNSS) and camera measure-
ments. We model the road using a spline representation based on lower-dimensional Bézier
curves parametrized in generalized endpoints (GEPs) with implicit guarantees of continu-
ous lane boundaries. We model the GEPs by a parameter vector having a Gaussian prior
representing the uncertainty of the prior map, and provide a systematic way of defining
this prior from generic map representations. Both GNSS and camera measurements, such as
lane-mark measurements, have noise characteristics that vary in time. To adapt to the chang-
ing noise levels and hence improve positioning performance, we formulate the problem as a
joint vehicle state, map parameter, and noise covariance estimation problem and present two
noise-adaptive linear-regression Kalman filters (LRKFs); (i) an interacting multiple-model
(IMM) LRKF and (ii) a variational-Bayes (VB) LRKF. We conduct a Monte-Carlo study
and compare the two approaches in terms of estimation precision and computation times.
Embedded implementations in an automotive-grade dSpace Micro Autobox-II indicate the
real-time validity of both approaches, with turn-around times of between 2–80ms, depending
on the problem size and if the map is updated. The results indicate that while the IMM-
LRKF shows marginally better estimation accuracy, the VB-LRKF is at least a factor of 2
faster.
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Abstract

This paper presents a modeling framework for joint estimation of a host vehicle state and a map of the road based on
global navigation satellite system (GNSS) and camera measurements. We model the road using a spline representation
based on lower-dimensional Bézier curves parametrized in generalized endpoints (GEPs) with implicit guarantees of
continuous lane boundaries. We model the GEPs by a parameter vector having a Gaussian prior representing the
uncertainty of the prior map, and provide a systematic way of defining this prior from generic map representations.
Both GNSS and camera measurements, such as lane-mark measurements, have noise characteristics that vary in time.
To adapt to the changing noise levels and hence improve positioning performance, we formulate the problem as a joint
vehicle state, map parameter, and noise covariance estimation problem and present two noise-adaptive linear-regression
Kalman filters (LRKFs); (i) an interacting multiple-model (IMM) LRKF and (ii) a variational-Bayes (VB) LRKF. We
conduct a Monte-Carlo study and compare the two approaches in terms of estimation precision and computation times.
Embedded implementations in an automotive-grade dSpace Micro Autobox-II indicate the real-time validity of both
approaches, with turn-around times of between 2–80ms, depending on the problem size and if the map is updated. The
results indicate that while the IMM-LRKF shows marginally better estimation accuracy, the VB-LRKF is at least a
factor of 2 faster.
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1. Introduction

High-precision vehicle positioning is becoming increas-
ingly important as vehicles equipped with sophisticated
advanced driver assistance systems (ADASs) and even au-
tonomous driving (AD) features are becoming widespread.
For such applications, high positioning accuracy is needed
for safety-critical obstacle and lane-change maneuvering,
and to provide comfortable autonomous vehicle control.
While several production ADASs either focus on the lon-
gitudinal motion, such as in automated emergency braking
(AEB) and adaptive cruise control (ACC), or the ego vehi-
cle differential states, such as in electronic stability control
(ESC), knowing the vehicle position with centimeter accu-
racy on a road with known geometry becomes important,
particularly for AD [28].

Because of robustness and redundancy considerations,
road-vehicle positioning is usually approached by fusion
of multiple sensor modalities [26]. Several works perform
vehicle localization using maps either determined a pri-
ori (e.g., using a mobile mapping system, MMS) or on-
line jointly with the vehicle estimation. Using a prede-
termined map reduces the complexity of the positioning
problem, but comes with drawbacks because maps from
MMSs are updated infrequently, while higher-frequency
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changes to the map (e.g., road construction, lane repaint-
ing, temporary road rerouting) are not captured by an
MMS-generated prior map. Hence, even a predetermined
map needs to be updated regularly. For road estimation,
many previous works model the road by clothoidal seg-
ments, sometimes in a spline setting (e.g., [22, 21, 31]).
While this often works well, it has some limitations, as
all road types are not designed according to the clothoidal
assumption.

In this paper we present a framework for joint global
vehicle positioning and map estimation where we repre-
sent the map using a spline representation, with implicit
continuity by leveraging Bézier curves [18] and introduc-
ing generalized endpoints (GEPs). This results in a more
expressive representation in terms of the types of roads the
modeling framework can handle, as we are not restricted
to the clothoidal assumption. As prior map information is
typically given in the form of Cartesian or geodetic coor-
dinates, we propose a systematic method to fit the prior
map information to a collection of Bézier curves, where
we assign Gaussian priors to the GEPs based on the un-
certainty of the original map information. In addition,
we fuse position measurements from a global navigation
satellite system (GNSS) with a forward-looking camera,
steering-wheel sensing, wheel-speed sensing, (optionally)
an inertial measurement unit (IMU), and prior map infor-
mation to update the map along with the vehicle state.
In combination with a computer-vision (CV) algorithm,
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the camera provides measurements of the distance between
the lane markings and the vehicle, in addition to measure-
ments of the road geometry [20]. However, the quality of
these measurements is time varying, for example, because
of erroneous detection in the CV algorithm or because of
other environmental effects, such as rain or lighting condi-
tions that degrade the camera reliability. GNSS measure-
ments provide global position information by estimating a
receiver’s (e.g., located in the vehicle) states from a set of
code and carrier-phase measurements, acquired from one
or several constellations of satellites and transmitted over
one or more frequency bands [42, 35]. While being reliable
most of the time, GNSS measurements are prone to occa-
sional errors, which means that both camera and GNSS
generate measurements with time-varying reliability.

The time-varying reliability of the measurements is hard
to model and subsequently predict, because it depends
on numerous external, partially unknown, factors. We
account for the time-varying measurement reliability by
letting the measurement-noise statistics be time varying.
We pose the resulting nonlinear estimation problem in
an adaptive Kalman-filter (KF) framework using linear-
regression KFs (LRKFs), as the measurement model is
not differentiable and therefore makes an extended KF
impractical. We present two different approaches to han-
dle time-varying sensor characteristics within the modeling
framework. The first approach is based on the interac-
tive multiple-model (IMM) methodology [14], where the
noise variability is modeled by having a set of interacting
LRKFs, each with a different measurement-noise covari-
ance in a Gaussian-assumed noise distribution. The second
approach is based on the variational-Bayes (VB) method-
ology [3], where the measurement covariance is explicitly
estimated within a single LRKF. The methods come with
their own set of benefits and drawbacks, and in a sim-
ulation study as well as in a hardware-in-the-loop (HIL)
validation in an embedded implementation on a dSpace
MicroAutobox-II we compare the two approaches and ver-
ify the real-time feasibility.

1.1. Relation to Previous Work
Joint vehicle state and road-map estimation has been

researched using various sensor constellations and different
estimation techniques. For instance, [21] fuses information
from several (local) sensors to perform joint road geometry
estimation and vehicle tracking. This work was extended
in [31], where a forward looking camera and radar, to-
gether with an IMU, a steering wheel sensor, wheel speed
sensors, and a new road-geometry model are leveraged in
an extended KF. A similar work is [22], which in addi-
tion to the sensors in [31] develop a novel road model with
claimed higher prediction accuracy compared to other es-
tablished road models. However, none of these methods
employ GNSS in the estimation formulation, nor do they
perform global road-geometry estimation. Hence, they
do not provide global positioning, which is important for

several AD features, such as route planning and sophisti-
cated motion-planning methods. Also, the cited prior work
uses curvature-based road-map representations, whereas
we employ a spline-based approach with implicit continu-
ity enforcement. A curvature-based road representation is
convenient because it needs few parameters, several text-
book vehicle-control algorithms employ such representa-
tion [34], and nonurban roads can often be approximated
well by a clothoidal representation [1]. However, a spline
representation based on Bézier curves is more general, as
we can also model roads in urban scenarios and quickly
changing curvatures. The clothoidal approximation is vi-
olated in some situations, for example, when a part of the
road is a straight line followed by a clothoidal stretch. In
many situations (e.g., for highway or suburban driving) it
is a good local approximation but it is unclear how to ap-
ply to global map estimation. Also, with our approach we
can easily extract the estimated curvature from the esti-
mated map should such quantity be sought, for example,
for control purposes.

There are other vehicle state-estimation methods that
rely on GNSS information. Three examples are: [6], which
uses inertial sensors, wheel-speed sensors, and the steering-
wheel angle sensor in combination with GNSS position
measurements to perform vehicle-state estimation; [30],
which performs tire radii estimation for improving vehicle
odometry using GNSS measurements; and [43], which uses
GNSS measurements in combination with camera, IMU,
and range measurements. Both [6, 30] use GNSS to make
related vehicle estimation problems observable and their
focus is not on high-precision positioning, while [43] con-
cerns multi-agent estimation.

Our prior work in this area includes [9], where we devel-
oped an IMM method for vehicle localization using GNSS
measurements, wheel-speed sensors, a steering-wheel en-
coder, a prior map of the road, a camera that measures
the distance to the left and right lanes, and optionally an
IMU. That work did not include map estimation, as the
map was assumed known. In [10] we relaxed this assump-
tion, and introduced road-map estimation and a forward-
looking camera into the problem formulation. In this arti-
cle, compared to [9, 10], we generalize the framework and
show that it is not limited to application of IMM-LRKFs.
Specifically, compared to [10] we

• present an additional approach based on the VB
methodology, which shows that our framework gen-
eralizes to different nonlinear filters, and we compare
the two approaches in terms of estimation accuracy
and computational demands;

• formalize the road-map modeling and its properties:
we sketch the proof of the implicit continuity en-
forced by the introduction of GEPs, and we present
a method that converts point-wise maps to our pro-
posed map representation with continuous lane bound-
aries;



• provide a more extensive simulation study that in-
cludes comparisons between the two methods on a
road segment corresponding to a real road; and

• we implement the proposed methods on an automotive-
grade dSPACE MicroAutobox-II and throughly as-
sess the computational demands.

1.2. Notation:
Throughout, x ∼ N (µ,Σ) indicates that the vector

x ∈ Rnx is Gaussian distributed with mean µ and covari-
ance Σ. We write

Σ ∼ IW(ν,V ) ∝ |Σ|− 1
2 (ν+ny+1)e(−

1
2 tr(V Σ−1)

to imply that Σ is inverse-Wishart (IW) distributed with
degree of freedom ν and scale matrix V , where tr(·) is
the trace operator. The ith element of x is denoted with
[x]i, matrices are written in capital bold font as X, and
the element on row i and column j of X is denoted with
[X]ij . Similarly, the mth row of a matrix X is denoted
with [X]m,: We let x̂m denote the mean estimate of x
at time step m given the measurement sequence y0:m =
{y0, . . .ym}. With p(xk|y0:k), we mean the posterior den-
sity function of the state xk from time step 0 to time step
k given y0:k and x̂−

k is the one-step prediction of x̂k−1.
The concatenation of two vectors x ∈ Rnx and y ∈ Rny is
[x;y] = [x⊤,y⊤]⊤ ∈ Rn+m. Furthermore, In denotes the
n×n identity matrix, 1n is a column vector of n elements
equal to one, (a)(⋆)⊤ = (a)(a)⊤ for an expression a, vec(·)
is the vectorization operator, and blkdiag(A,B) denotes
a block-diagonal matrix composed of A and B. We let
f ∈ Cn(A,B) denote functions f : A 7→ B whose first n
derivatives are continuous. The notation R(ϕ) means the
2D rotation matrix of angle ϕ. Finally, Sn denotes the
n-sphere.

1.3. Outline:
Sec. 2 outlines the assumptions, the sensors, the dy-

namic models, the associated measurement models, and
the spline-map representation. Sec. 3 presents the two
proposed noise-adaptive LRKFs, with Sec. 3.2 detailing
the IMM method and Sec. 3.3 outlining the VB method.
In Sec. 4 we evaluate and compare these methods in terms
of estimation accuracy, as well as assessing the real-time
feasibility of the approaches using an automotive-grade
dSpace MicroAutoBox-II rapid prototyping unit. Finally,
Sec. 5 closes the paper.

2. Modeling

Fig. 1 shows the different coordinate frames used in
this paper. The vehicle’s coordinate frame OE is located
at the vehicle center of gravity. The vehicle yaw angle
ψ describes the rotation of the vehicle frame OE relative
to the world frame OW by the standard planar rotation

OE

ψ
OC

lL

lC

OW

1
c

ψ − ψr

OR,l

Figure 1: The relation between the vehicle frame OE , the camera
frame OC , the road frame OR,l, and the world frame OW . The
distance between the vehicle’s longitudinal x-axis and the left lane
boundary is lR,l, and the shaded circle depicts the road curvature
c (here exaggerated) at the origin of OR,l. The lines in red dashed
indicate measurements that can be obtained by the camera, which
is located in OC , for a given lookahead. The definition of OR,r is
analogous to that of OR,l.
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Figure 2: A schematic of the single-track model and related notation.

matrix R(ψ). The road-aligned frame OR,l is located on
the left lane boundary, separated with a distance lR,l from
the camera frame OC , which is rigidly connected to OE

with distance lC . The road-aligned frame OR,r is located
on the right lane boundary, separated with a distance lR,r

from the camera frame OC .

2.1. Vehicle Models
We focus on normal driving maneuvers where it is ap-

propriate to approximate the vehicle dynamics by a single-
track (bicycle) model [16, 19, 34, 23]). For instance, as a
rule of thumb, on dry asphalt the linear dynamic single-
track model is valid for lateral accelerations up to 0.4g,
where g is the gravitational acceleration [4, 29, 39]. While
a dynamic model based on force balances is generally more
accurate than a kinematic model, the differences are small
for regular driving [17]. Furthermore, a dynamic model
depends on more parameters, such as the wheel radii, tire
stiffness, and vehicle mass and inertia, which typically are
unknown/uncertain and can be difficult to estimate in real
time [7]. We introduce two assumptions that allows to
model the vehicle dynamics by a single-track (i.e., bicycle)
model.

Assumption 1 The steering angles of the front left and
right wheels are the same, here denoted by δ (see Fig. 2).

Assumption 2 The steering and acceleration commands
are small, such that the vehicle operates in the linear region
of the tire-force curve, with negligible inclination, roll, and
road-bank angles.



Remark 1 Both of these assumptions can be relaxed but
will cause higher complexity in the estimators to a limited
benefit. While it is possible to incorporate more complex
vehicle models than what we consider here, numerous pa-
pers have studied the validity of the approach we take in
this paper, see [11, 7, 40, 17, 8, 12, 4] for a subset of such
papers. For instance, [4] uses a dynamic linear single-track
model applied to electronic stability control of an articu-
lated bus and shows in a high-fidelity simulation that such
simplified model is sufficient to represent the behavior of
the substantially more complex dynamics of an articulated
vehicle. The work [17] compares the kinematic and dy-
namic single-track model and concludes that a kinematic
model is sufficient for normal driving (as considered in this
paper), and [7, 12] show that a linear estimation model is
sufficient for both estimation and control purposes in mul-
tiple real vehicle experiments, with scenarios resembling
the ones considered in this paper.

2.1.1. Dynamic Single-Track Model
In the following, F x, F y are the longitudinal and lat-

eral tire forces, respectively, α is the wheel-slip angle, v =
[vX , vY ]⊤ is the velocity vector, and subscripts f, r denote
front and rear, respectively. The state x ∈5 consists of the
Cartesian global vehicle position pX , pY , the longitudinal
and lateral velocity of the vehicle in OE vX , vY m , and the
yaw rate ψ̇. The equations of motion are

m(v̇X − vY ψ̇) = F x
f cos(δ) + F x

r − F
y
f sin(δ), (1a)

m(v̇Y + vX ψ̇) = F y
f cos(δ) + F y

r + F x
f sin(δ), (1b)

Iψ̈ = lf (F
y
f cos(δ) + F x

f sin(δ))− lrF y
r , (1c)

where m is the vehicle mass and I is the inertia. From
Assumption 2, the longitudinal and lateral tire forces can
be approximated as linear functions of the wheel slip ratio
κ and the slip angle α,

F x
i ≈ Cx

i κi, F y
i ≈ C

y
i αi, i = f, r, (2)

where Cx
i , C

y
i are the longitudinal and lateral stiffness, re-

spectively. The wheel slip is defined as in [39],

κi =
vxi −Rwωi

max(vxi , Rwωi)
, (3)

where ωi is the wheel rotation rate, Rw is the effective
wheel radius, and vxi is the wheel forward velocity in the
wheel coordinate system. The slip angles are approxi-
mated as

αf ≈ δ −
vyf + lf ψ̇

vxf
, αr ≈

lrψ̇ − vyr
vxr

. (4)

To connect the global position with the velocity in OE , let

[
ṗX ṗY

]⊤
= R(ψ)

[
vX vY

]⊤
, (5)

The resulting model consisting of (1)–(5) is nonlinear, and
after a discretization with a sampling period Ts, the dy-
namic single-track model can be written in shorthand as

xk+1 = f(xk,uk) +wx
k , (6)

with input u = [δ;ωf ;ωr] and additive Gaussian zero-
mean noise wx

k ∼ N (0,Qx), accounting for general model
mismatches.

2.1.2. Kinematic Single-Track Model
While the kinematic single-track model is also based on

the geometry in Fig. 2 but it needs fewer parameters, as
it does not incorporate the mass, inertia, and friction pa-
rameters. The kinematic single-track model only uses the
position andorientation as states, z = [pX ; pY ;ψ] ∈ R3,
and therefore has lower complexity than the five-state dy-
namic single-track model (6). In this model, the wheel-
speed measurements directly provide the vehicle velocity
by vX = Rw

2 (ωf + ωr) instead of affecting the motion
through the slip κi and αi. In continuous time, the model
is

ż =



vX cos (ψ + β)/ cos(β)
vX sin (ψ + β)/ cos(β)

vX tan (δf )/L


 , (7)

where L = lf + lr and β = arctan(lr tan(δ)/L) is the kine-
matic body-slip angle, which leads to

zk+1 = g(zk,uk) +wz
k , (8)

after time discretization of (7), with Gaussian zero-mean
process noise, wz

k ∼ N (0,Qz).

2.2. Road Model
We consider M−1 Bézier curves resulting in a spline S

to represent the map [18]. In this section, we start by defin-
ing a spline-map representation of the road in Sec. 2.2.1.
We then discuss how such representations can be projected
to a space of maps with continuous lane boundaries in
Sec. 2.2.2 and define an implicitly continuous map rep-
resentation. Finally, in Sec. 2.2.3, we show how these
maps can be generated from point-wise measurements of
the road.

2.2.1. Linear Discontinuous Representation
We consider Bézier curves to build a distribution of the

road map.

Definition 1 (Bézier curve) A Bézier curve of degree n
denoted by b : [0, 1] 7→ Rd is defined by n+1 control points
Pm = {cm,i ∈ Rd : d > 1, i ∈ [0, ..., n]} as an interpolation

b(λ,Pm) =

n∑

i=0

(
n

i

)
(1− λ)(n−i)λi

︸ ︷︷ ︸
ζi,n(λ)

cm,i, (9)

where λ ∈ [0, 1]. We build the maps using two such curves:



• One of degree n = 3, dimension d = 2, with points
Pm = {cm,0, cm,1, cm,2, cm,3}. This curve is denoted
by cm(λ) = b(λ,Pm) and represents the center lane;

• The other curve represents the half-width of the lane.
This curve is denoted by wm(λ) = b(λ,Wm), is of de-
gree n = 1, d = 1, and Wm = {wm,0, wm,1}. If there
are multiple lanes, the dimension d can be increased.

In the following, rm = [cm;wm] : [0, 1] 7→ R2 × R>0 is
a three-dimensional curve, and r = [c;w] : [0,M − 1] 7→
R2×R>0 denotes M−1 consecutive such curves such that

r(s) =

{
rm(s−m+ 1) if s ∈ (0,M − 1]

r1(0) if s = 0
, (10)

where m = ⌈s⌉. We can express a normal direction as
n(s) = R(π/2)c′(s)∥c′(s)∥−1

2 . The left and right lane
boundaries are defined as c(s) ± n(s)w(s). The map pa-
rameters are

γ̄=[vec(P1);...; vec(PM−1); vec(W1);...; vec(WM−1)]. (11)

The problem with (11) is that the curves (10) need not be
continuous at an integer s unless we impose constraints on
γ̄. Furthermore, to achieve continuity of the lane bound-
aries, which is necessary for our proposed algorithms, we
require at least c ∈ C1([0,M − 1],R2) and w ∈ C0([0,M −
1],R+).

2.2.2. Nonlinear Implicitly Continuous Representation
While explicitly enforcing constraints on γ̄ can be done

by numerical methods, we instead enforce continuity im-
plicitly by defining a set of GEPs that by construction
yields continuity. Specifically, consider a representation
with M GEPs, {γm}Mm=1, which relate to the set of con-
trol points {(Pm,Wm)}M−1

m=1 as

[γm]1 = xm = [cm,0]1 = [cm−1,n]1, (12a)
[γm]2 = ym = [cm,0]2 = [cm−1,n]2, (12b)

[γm]3 = ϕm = arctan(
[cm,0−cm−1,2]2
[cm,0−cm−1,2]1

), (12c)

[γm]4 = rm = ∥cm,1 − cm−1,n−1∥2/2, (12d)
[γm]5 = wm = wm,0 = wm−1,1, (12e)

for all m = 2, ..,M − 1, with γ1 and γM defined analo-
gously.

Proposition 1 Writing the segment rm in γm and γm+1

ensures that c ∈ C1([0,M − 1],R2) and w ∈ C0([0,M −
1],R+).

Proof 1 (Sketch) Continuity of w is immediate due to
(12e). Continuity of the curve c similarly follows from
(12a) and (12b), where limλ→1 cm−1(λ) = cm−1,n = cm,0 =
limλ→0 cm(λ). To show continuity of dc/ds, we use that
the derivative of (9) is a Bézier curve of degree n−1 where
the first and last control points are given by n−1(cm,1 −

cm,0) and n−1(cm,n−1−cm,n), respectively. Hence, from (12c)
and (12d),

lim
λ→0

dcm(λ)/dλ− lim
λ→1

dcm−1(λ)/dλ (13a)

= n−1 ·(cm,1 − cm,0)− n−1 ·(cm−1,n−1 − cm−1,n) (13b)

= n−1 ·(R(ϕm)[rm; 0])− n−1 ·(R(ϕm)[rm; 0]) (13c)
= 0. (13d)

Hence, lims↗m dc(s)/ds = lims↘m dc(s)/ds for all m =
2, ...,M − 1. □

We concisely write the GEPs defining the map, here-
inafter referred to as the map parameters, as

γ = [γ1;γ2; · · · ;γM ] ∈MM = (R2 × S1 × R2
+)

M . (14)

Next, we introduce uncertainty in the map by assigning
a Gaussian prior on each γm, γm ∼ N (µγ

m,Σ
γ
m), that

will be updated recursively as measurements are gath-
ered. The time evolution of these parameters is hard to
model from physical reasoning and an accurate prediction
model is therefore difficult to obtain, as map segments are
likely to stay constant for an extended period with occa-
sional discrete changes (e.g., due to temporary road work).
Therefore,

γk+1 = γk +wγ
k , wγ

k ∼ N (0,Qγ). (15)

With the model (15), the process noise Qγ determines
how much uncertainty accumulates in the map as time
increases. In summary, for a more compact notation, in the
following we use x̄ to mean either x̄ = [x;γ] or x̄ = [z;γ].
Similarly f̄(x̄;u) denotes the functional relationships in
(6) or (8) combined with (15), often omitting u for brevity.
Also, we let the full process noise be denoted by w̄ ∼
N (0, Q̄).

Remark 2 The function F : MM 7→ M̄M , that is, from
γ to γ̄, is nonlinear but unique. The function G : M̄M 7→
MM , that is, from γ̄ to γ, defined through (12), is not
generally invertible, but is a projection to the space of maps
with continuous lane boundaries. If indeed a map in M̄M

has continuous lane boundaries, G = F−1.

2.2.3. Regression with Continuity Constraints
Prior maps are usually not represented in a form that

allows a direct conversion to the proposed spline represen-
tation with GEPs (12), and we therefore need a way to
transform the prior maps. Here, we present a systematic
way to go from point-wise maps (e.g., obtained by sam-
pling points from a given prior map) to the proposed map
representation that has continuous lane boundaries (c.f.
Proposition 1).

We assume that the map is represented by J data
points

D = {(c̃j , sj) ∈ R2 × [0,M − 1], sj − sj−1 = h}Jj=1 (16)



for some h > 0 and express the cost as the total variation
(TV),

TV(γ̄) =

∫
∥c(s)− c̃(s)∥22ds ∝ h

M∑

m=1

∥[A]m,:γ̄ − [a]m∥22

= ∥Aγ̄ − a∥22. (17)

where A and a are formed in ζi,n(λ) defined in (9) and
the data D. Enforcing first-order continuity as in (13a)
is a linear equality constraint in γ̄, Cγ̄ = 0. Minimizing
(17) is then a constrained least-squares problem, whose
solution is given by the KKT system [15, Chap. 10.1.1]

MKKT

[
γ̄
λ

]
≜

[
A⊤A C⊤

C 0

] [
γ̄
λ

]
=

[
2a⊤A

0

]
, (18)

where λ is the vector of Lagrange multipliers.
Furthermore, if the sampled points c̃k originate from

a prior map that is unbiased with a Gaussian-distributed
error, the errors of c̃k are zero-mean Gaussian distributed,
N (0, σ2I), and enter additively in a. Hence, this error
propagates to the optimal solution of (18) according to

Cov

([
γ̄
λ

])
= M−1

KKT

[
2A
0

] [
σ2IK 0
0 0

](
M−1

KKT

[
2A
0

])⊤

.

(19)
We can therefore represent the map parameters (11) with a
Gaussian distribution, γ̄ ∼ N (µγ̄ ,Σγ̄), where µγ̄ is given
by the solution to (18) and Σγ̄ is the upper left block
of the covariance matrix in (19). Finally, we approximate
the distribution of the map parameters γ through G in Re-
mark 2—that is, γ ∼ N (µγ ,Σγ), from a Taylor expansion
of G,

µγ = G(µγ̄), (20a)

Σγ =

(
∂G

∂γ̄
(γ̄)

)
Σγ̄

(
∂G

∂γ̄
(γ̄)

)⊤

. (20b)

Hence, we have a systematic way to go from the uncer-
tainty of a prior map of any form using a set of points D
to an approximate Gaussian distribution in the proposed
nonlinear but implicitly continuous representation using
GEPs (12). Algorithm 1 summarizes the steps to create
the proposed spline-based map representation from a prior
map.

Algorithm 1 Pseudo-code of the prior-map regression
Input: Prior map M.
1: Sample M in a set of J points c̃j to obtain (16).
2: Solve (18) and (19) to form γ̄ ∼ N (µγ̄ ,Σγ̄).
3: Evaluate (20) using (12) to obtain γ ∼ N (µγ ,Σγ).

Output: Mean µγ̄ , covariance Σγ̄

Remark 3 The ratio J/M of the number of map data
points and number of segments depends on the resolution
of the map in terms of data points J and the length of the

segments cm required to have sufficient accuracy in the
spline-map representation. Irrespective of these factors,
storing the map in the spline representation is usually effi-
cient compared to storing the map data points. For exam-
ple, as a qualitative argument, to generate the map used
in the numerical validation, the center lane of the origi-
nal map is stored in J = 2000 points (256kB of memory),
whereas storage using M − 1 = 40 Bézier curves requires
a magnitude less of memory (25.6kB).

Remark 4 If the map is prohibitively large, it is possible
to leverage Remark 2 and solve several smaller optimiza-
tion problems, before doing a projection γ̄ ← F (G(γ̄)).
This idea can also be leveraged to generate maps recur-
sively, for example, when map points are provided recur-
sively ahead of the vehicle, which necessitates map stitch-
ing.

2.3. Measurement Model
We rely on GNSS position measurements yp

k as the
source of global information. These measurements are
generated by an estimator using code and carrier-phase
measurements, for example, using any of the methods in
[13, 24, 25]. We assume the position measurements to
be unbiased and Gaussian distributed. Because the esti-
mation quality will continuously change with environmen-
tal conditions and receiver movements, both the mean µp

k

and covariance Σp
k are time varying, resulting in yp

k ∼
N (µp

k,Σ
p
k). For simplicity but without loss of generality,

we let yp ∈ R2.
The camera in combination with a CV algorithm pro-

vides measurements of the road geometry and the vehicle
position relative to the road. We assume intermediary pro-
cessing such that the distance from OC and the left/right
lane boundaries, lL, lR, and a polynomial approximation
of the lane markings, fL, fR, in front of the vehicle for a
look-ahead defined by the CV algorithm, see Fig. 1. To use
the polynomial approximation for inference, the measure-
ment equation needs particular values at each time step.
Hence, we sample the polynomials from the CV algorithm
uniformly at ns points over their domain defined in s in
the camera frame OC , {siL, siR}

ns
i=1. This gives

hc = [lL; lR; fL(s
1
L); · · · ; fL(s

ns

L ); fR(s
1
R); · · · ; fR(s

ns

R )].
(21)

The camera measurements yc
k are assumed Gaussian dis-

tributed according to yc
k ∼ N (hc(x̄k),Σ

c
k.

When we use the dynamic single-track model in the es-
timation, the velocity and heading rate are also included
in the state. Hence, we can utilize an IMU measuring
the vehicle body frame longitudinal, aXk = v̇Xk − vYk ψ̇k,
and lateral, aYk = v̇Yk + vXk ψ̇, acceleration and the yaw
rate ψ̇k. The estimator uses the acceleration, aXk , aYk , and
yaw-rate ψ̇k as measurements, forming the measurement
vector ya

k = [aXk , a
Y
k , ψ̇k]

⊤. Automotive-grade inertial sen-
sors usually have a slowly time-varying bias, which should
be modeled for any implementation supposed to run longer



than a few minutes [7, 8, 27]. For now, we assume that
the bias has been predetermined offline but refer to some
of our previous work [7, 8] for IMU bias estimation in au-
tomotive applications.

The complete measurement model is

yk = h(x̄k,uk) + ek ∈ Rny , (22)

where yk = [yp
k;y

a
k ;y

c
k] ∈ R7+2ns for the dynamic single-

track model (6) and yk = [yp
k;y

c
k] ∈ R2+2ns for the kine-

matic single-track model (8), and ek is zero-mean Gaussian
distributed with a block-diagonal covariance matrix Σk.

Remark 5 As the GNSS provides global position mea-
surements of the vehicle and the camera provides map mea-
surements relative to the vehicle, the models (6) or (8) in
combination with (22) renders x̄k locally observable.

3. Bayesian Sensor Fusion of GNSS and Camera

The resulting estimation problem involving estimating
the vehicle state, the map, and the noise covariance is non-
linear and the Jacobian of the measurement equation is not
known in closed form. For instance, given pX , pY , ψ and
γ̄, the distance lL in (21) is found by applying a univariate
Newton method to compute a path length s⋆L correspond-
ing to the origin of OR,l in the global frame, before evalu-
ating lL. Thus, lL is a function of x̄, but this function is
not differentiable. Hence, we consider derivative-free non-
linear KFs. While an EKF may work by using numerical
differentiation, it may be inaccurate. Also, due to the rich
set of measurements, the estimation problem is likely uni-
modal and a particle filter (PF) is therefore not needed.
A convenient middle-ground between complexity and ac-
curacy is to use LRKFs, which we employ in this work
embedded in two noise-adaptive formulations.

3.1. Linear-Regression Kalman Filter
LRKFs approximate the posterior density by its first

two moments in a Gaussian approximation,

p(x̄k|y0:k) ≈ N
(
x̄k| ˆ̄xk|k,Pk|k

)
. (23)

Given (23) at time step k, the distribution of the state pre-
diction at time step k+ 1 is approximated by a Gaussian,

p(x̄k+1|x̄k,y0:k) ≈ N
(
x̄k+1| ˆ̄xk+1|k,Pk+1|k

)
, (24)

by direct evaluation of the associated moment integrals

ˆ̄xk+1|k =

∫
f̄(x̄k)p(x̄k|y0:k) dx̄k, (25a)

Pk+1|k =

∫ (
f̄(x̄k)− ˆ̄xk+1|k

)
(⋆)

⊤
p(x̄k|y0:k) dx̄k + Q̄k,

(25b)

simplified by the assumption of additive noise w̄k. Using
the approximation (23), (25) reduces to two Gaussian inte-
grals. For a general state-transition function f̄ no closed-
form solutions exist, so we leverage numerical integration

methods also known as cubature rules [41]. To this end,
we transform the coordinates using the Cholesky factors
of the covariance matrix Pk|k = Lk|kL

⊤
k|k, such that in

the transformed coordinates, the integration is over a unit
Gaussian. The LRKFs approximate the transformed inte-
grals by evaluating the nonlinearity f̄ in a set of integra-
tion points defined by I = {ϖi,ηi}|I|i=1, where |I| is the
total number of points. Hence, for each such point ηi,

ˆ̄xi
k+1|k = f̄

(
ˆ̄xk|k +Lk|k η

i
)
, (26)

and we approximate the moment integrals in (25) as

ˆ̄xk+1|k ≈
|I|∑

i=1

ϖi ˆ̄xi
k+1|k, (27a)

Pk+1|k ≈
|I|∑

i=1

ϖi(ˆ̄xi
k+1|k − ˆ̄xk+1|k)(⋆)

⊤. (27b)

For the measurement update, the joint density is ap-
proximated using the same integration techniques,

p
(
[x̄k+1;yk+1]|x̄k,y0:k

)

≈ N

([
ˆ̄xk+1|k
ŷk+1|k

]
,

[
Pk+1|k P x̄y

k+1|k
P yx̄

k+1|k P yy
k+1|k

])
(28)

with moment integrals (dropping time indexing),

ŷ =

∫
h(x̄)N (x̄| ˆ̄x,P )dx̄, (29a)

P x̄y =

∫
(ˆ̄x− x̄)(ŷ − h(x̄))⊤N (x̄| ˆ̄x,P )dx̄, (29b)

P yy =

∫
(ŷ − h(x̄))(⋆)⊤N (x̄| ˆ̄x,P )dx̄+Σ. (29c)

Eq. (29) implies integrating over all of the GEPs γ, which
is computationally prohibitive when using automotive-grade
ECUs with limited computation and memory bandwidth.
To make the problem real-time feasible, we introduce As-
sumption 3.

Assumption 3 γi and γj are independent for i ̸= j.

Using Assumption 3, we perform the integration with re-
spect to each individual curve in the spline. When per-
forming the moment evaluations, it is possible that the
parameters of two adjacent curves are needed. At any rate,
this leads to a significantly smaller estimation problem
than considering the whole spline simultaneously. Condi-
tioning of the joint density in (28) on the new measurement
yk+1 amounts to the update

Kk+1 = P x̄y
k+1|k(P

yy
k+1|k)

−1, (30a)

ˆ̄xk+1|k+1 = ˆ̄xk+1|k +Kk+1|k(yk+1 − ŷk+1|k), (30b)

Pk+1|k+1 = Pk+1|k −Kk+1|kP
yx̄
k+1|k, (30c)

which is done with respect to the vehicle state and the
currently relevant map parameters. Specifically, any GEP
required in the process of evaluating (22) is included ex-
plicitly in the domain over which the integral is computed.



Remark 6 Assumption 3 is introduced to make the esti-
mation problem computationally tractable, as updating a
full map representation of a potentially vast area at each
time step is infeasible both from a memory and computa-
tion standpoint. However, the approximation errors intro-
duced by Assumption 3 can be controlled by choosing the
length of each curve.

To account for the time-varying measurement reliabil-
ity, we now present two different noise-adaptive methods.
In Sec. 3.2 we detail the imm-lrkf (see our prior work [10]
for additional details) and this is followed by the vb-lrkf
(see [37, 36]) in Sec. 3.3.

Remark 7 While it is possible to use any cubature rule I,
we use the spherical Cubature rule [2] as it is simple and
scales favorably when compared to Gauss-Hermite meth-
ods. For the current application, any performance differ-
ence between the different schemes is negligible.

3.2. Interacting Multiple-Model LRKF
In the imm-lrkf we have a set of B models that differ

only in their measurement-noise characteristics. At each
time step k, the IMM assigns a weight qk to each model
reflecting its probability of explaining the measurements.
In this framework,

x̄k+1 = f̄(x̄k;uk) + w̄k, w̄k ∼ N (0, Q̄k),

yk = h(x̄k,uk) + ek(θk), ek ∼ N (0,Σθk
k ),

where the mode parameter θk ∈ [1, B] evolves according
to a finite-state Markov chain with transition probability
matrix Π ∈ [0, 1]B×B , where all rows and columns sum to
1. For every possible θk, we assign a unique measurement-
noise covariance matrix from

{Σθk ∈ Rne×ne |Σθk = (Σθk)⊤,Σθk ≻ 0}Bθk=1}.

At each time step, the IMM uses the transition matrix Π
to perform a mixing of the B model estimates and weights,

q̄ik =

B∑

j=1

Πijq
j
k−1, (31a)

ˆ̄xi
k−1 =

B∑

j=1

Πij

qjk−1

q̄ik
ˆ̄xj
k−1, (31b)

P i
k−1 =

B∑

j=1

Πij

qjk−1

q̄ik

(
P j

k−1 + (ˆ̄xj
k−1 − ˆ̄xi

k−1)(⋆)
⊤
)
.

(31c)

The IMM-LRKF executes B LRKFs to find the esti-
mate of x̄k, where the jth LRKF executes using the noise-
covariance hypothesis Σj . The state posterior is approxi-

mated as a Gaussian mixture of B components,

p(x̄k|y0:k) =

B∑

j=1

p(x̄j
k|y0:k) =

B∑

j=1

p(yk|x̄j
k)p(x̄k|y0:k−1)

p(yk|y0:k−1)

≈
B∑

j=1

qjkN (x̄j
k|(ˆ̄x

j
k)

−, (P j
k )

−),

where

qjk ∝ p(yk|x̄j
k) = N

(
yk|((ŷj

k)
−, (P yy,j

k )−
)
q̄jk, ∀j ∈ [1, B],

(32)
and p(yk|y0:k−1) is a normalization constant. The mean
(ŷj

k)
− and covariance prediction (P yy,j

k )− are determined
by the corresponding LRKF. In this paper we determine
the state estimate as the weighted average

ˆ̄xk =

B∑

j=1

qjk ˆ̄x
j
k, (33a)

Pk =

B∑

j=1

qjk

(
P j

k + (ˆ̄xj
k − ˆ̄xk)(⋆)

⊤
)
, (33b)

which is the minimum mean-square estimate, but other
estimates, such as the maximum aposteriori estimate, can
be used. Algorithm 2 summarizes the proposed imm-lrkf
for adaptive sensor fusion of GNSS and camera measure-
ments.

Algorithm 2 Pseudo-code of the proposed imm-lrkf

Initialize:{ηi, ϖi}|I|i=1, { ˆ̄x
j
−1,P

j
−1,R

j ,qj−1}Bj=1, Π
1: for k = 0, 1, . . . do
2: for i ∈ {1, . . . , B} do
3: Mix estimates according to (31).
4: end for
5: for j ∈ {1, . . . , B} do
6: for i ∈ {1, . . . , |I|} do
7: Determine (ˆ̄xi

k|)
− according to (26).

8: end for
9: Determine (ˆ̄xj

k)
−, (P j

k )
− according to (27).

10: for i ∈ {1, . . . , |I|} do
11: Determine (ŷi

k)
− akin to (26)

12: end for
13: Determine (ŷj

k)
−, (P yy,j

k )−, (P x̄y,j
k )− akin to

(27).
14: Determine ˆ̄xj

k, P
j
k using (30).

15: Determine qjk according to (32).
16: end for
17: Determine ˆ̄xk, Pk according to (33).
18: end for

3.3. Variational-Bayes LRKF
VB methods in Kalman filtering rely on a free-form

approximation of the joint posterior distribution of x̄k and



Σk,
p(x̄k,Σk|y0:k) ≈ p(x̄k|y0:k)︸ ︷︷ ︸

Qx̄(x̄k)

p(Σk|y0:k)︸ ︷︷ ︸
QΣ(Σk)

where the objective is to determine Qx̄(x̄k) and QΣ(Σk).
The VB approximation minimizes the Kullback-Leibler (KL)
divergence between an approximate distribution

Qx̄(x̄k)QΣ(Σk)

and the true distribution p(x̄k,Σk|y0:k). This amounts to
an optimization problem

min
Qx̄,QΣ

KL(Qx̄(x̄k)QΣ(Σk)||p(x̄k,Σk|y0:k)) =

∫
Qx̄(x̄k)QΣ(Σk) log

(
Qx̄(x̄k)QΣ(Σk)

p(x̄k,Σk|y0:k)

)
dx̄kdΣk,

where the minimizers are [37, 36]

Qx̄(x̄k)∝exp

(∫
log p(yk, x̄k,Σk|y0:k−1)QΣ(Σk)dΣk

)
,

(34a)

QΣ(Σk)∝exp

(∫
log p(yk, x̄k,Σk|y0:k−1)Qx̄(x̄k)dx̄k

)
.

(34b)

Eq. (34) cannot be solved directly as there is coupling be-
tween Qx̄ and QΣ. However, when the state posterior
is Gaussian assumed, Qx̄(x̄k) = N (x̄k| ˆ̄xk,Pk) and the
noise is IW distributed, QΣ(Σk) = IW(Σk|νk,Vk), the
integrals in the exponentials of (34) can be written out
explicitly. Subsequently, this leads to the coupled set of
equations [36]

ŷk =

∫
h(x̄k)N (x̄k| ˆ̄x−

k ,P
−
k )dx̄k,

P x̄y
k =

∫
(ˆ̄x−

k − x̄k)(ŷk − h(x̄k))
⊤N (x̄k| ˆ̄x−

k ,P
−
k )dx̄k,

Tk =

∫
(ŷk − h(x̄k))(⋆)

⊤N (x̄k| ˆ̄x−
k ,P

−
k )dx̄k,

Sk = Tk + (νk − ny − 1)−1Vk,

Kk = P x̄y
k S−1

k , (35)
ˆ̄xk|k = ˆ̄x−

k +Kk(yk − ŷk),

Pk|k = P−
k −KkSkK

⊤
k ,

νk = ν−k + 1,

Vk = V −
k +

∫
(yk − h(x̄k))(⋆)

⊤N (x̄k| ˆ̄xk,Pk)dx̄k,

where Σk = (νk − ny − 1)−1Vk. The first six equations
in (35) are the usual KF equations and the integrals in-
volved can be approximated as in Sec. 3.1. The solu-
tion to (35) is found by fixed-point iterations reminis-
cent to expectation-maximization (EM) methods and (lo-
cally) converge asymptotically under reasonable assump-
tions [32, 38].

Algorithm 3 Pseudo-code of the proposed vb-lrkf

Initialize:{ηi, ϖi}|I|i=1, ˆ̄x−1,P−1, ν−1,V−1

1: for k = 0, 1, . . . do
2: for i ∈ {1, . . . , |I|} do
3: Determine ˆ̄xi

k|k−1 according to (26).
4: end for
5: Determine ˆ̄xk|k−1, Pk|k−1 according to (27).
6: Set ν−k =ρ(νk−1−ny− 1)+ny+1, V −

k =ρ2InyVk−1.
7: for i ∈ {1, . . . , |I|} do
8: Determine ŷi

k|k−1 akin to (26)
9: end for

10: Determine ŷk|k−1, Tk, P
x̄y
k|k−1 akin to (27).

11: Set ˆ̄x
(0)
k = ˆ̄xk|k−1, P

(0)
k = Pk|k−1, νk = 1+ ν−k ,

V
(0)
k = V −

k , j = 0.
12: while not_converged do

S
(j+1)
k = Tk + (νk − ny − 1)−1V j

k

K
(j+1)
k = P x̄y

k (S
(j+1)
k )−1

ˆ̄x
(j+1)
k = ˆ̄xk|k−1 +K

(j+1)
k (yk − ŷk|k−1)

P
(j+1)
k = Pk|k−1 −K

(j+1)
k S

(j+1)
k (K

(j+1)
k )⊤

V
(j+1)
k = V −

k +

∫
(yk − h(x̄k))(⋆)

⊤

· N (x̄k| ˆ̄x(j+1)
k ,P

(j+1)
k )dx̄k

13: j = j + 1
14: end while
15: Set ˆ̄xk|k = ˆ̄x

(j)
k , Pk|k = P

(j)
k , Vk = V

(j)
k .

16: end for

The prediction step of the sufficient statistics is in this
paper chosen consistent with [36]:

ν−k = ρ(νk−1 − ny − 1) + ny + 1, (36)

V −
k = ρVk−1, (37)

where ρ ∈ (0, 1] provides exponential forgetting.
Algorithm 3 summarizes the proposed vb-lrkf. The

stopping criteria on Line 12 in Algorithm 3 can be designed
in several ways; for example, by setting a maximum num-
ber of iterations or monitoring the change of the estimates
between iterations according to some metric. In this paper,
we terminate when the measurement error ej = yk − ŷ

(j)
k

between two consecutive iterations j and j + 1 is smaller
than some ϵ, that is, ∥e(j+1)

k − e
(j)
k ∥ < ϵ. For the con-

ducted evaluations, the method converges within 2 − 10
iterations using ϵ ≈ 10−3, depending on the road segment
and driving behavior.

4. Simulation and Hardware-in-the-Loop Results

In this section we validate the proposed framework
in a Monte-Carlo simulation study, and compare Algo-
rithms 2 and 3 in terms of estimation accuracy. Further-
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Figure 3: Snapshots of the estimated map for different time steps including the estimated vehicle position (black dot), estimated lane
boundaries (black dashed), and the posterior with the map uncertainty illustrated by the gray areas. Note that the estimated uncertainty is
magnified for visualization purposes. The blue dots indicate the middle of the road. The vehicle is initially moving in the south-west direction.

more, we validate the proposed methods for computational
timing in a real-time computing environment. The com-
putation times are obtained in dSPACE MicroAutoBox-II
rapid prototyping unit equipped with a 900MHz PowerPC
real-time processor (IBM PPC 750GL) and 16MB of RAM.
The dSPACE MicroAutoBox-II rapid prototyping unit re-
flects the current and next-generation capabilities of em-
bedded microcontrollers in automotive systems, and is a
common platform for evaluating the real-time feasibility
of automotive algorithms.

4.1. Preliminaries
We validate the proposed method in a Monte-Carlo

simulation study using a set of 100 Monte-Carlo runs, each
40s long. For generating synthetic data, the vehicle is mod-
eled by a dynamic single-track model in closed loop with
a reference tracking controller driving on a one-lane road
[10]. The route is extracted using the open-source rout-
ing machine (OSRM) tool [33] from a road segment in the
vicinity of Boston, MA, and the map is represented by a se-
quence of points, corresponding to the output of an MMS.
To generate our spline-based map, we run Algorithm 1 us-
ing 20 Bézier curves. We regress two maps: one with little
noise (σ = 1cm), which is the ground-truth map, and one
with greater noise (σ = 10cm), which is a prior for the
road-map estimation.

The GNSS position measurements are nominally Gaus-
sian zero-mean with covariance Σp

nom = diag(0.22I2). Fur-
thermore, the camera provides lane measurements that
nominally are Gaussian distributed, yc

k ∼ N (hc(x̄k),Σ
c),

where Σc
nom = diag(0.142I10). The GNSS covariance has

been chosen to resemble the reliability of high-performing
GNSS estimation modules under nominal conditions, and

the camera covariance has been determined by a qualita-
tive analysis of typical camera-based lane-estimation mod-
ules. Note, however, that because the lane measure-
ments are sampled from a polynomial that is fitted to the
lane markings, in general the measurements, even without
adding noise, will not fit perfectly to the road. Hence, we
can expect the noise estimates to be slightly larger than
the added random noise. The IMU measurement noise is
comparable to the noise for a low-cost IMU. Note that only
the filters using the dynamic single-track model leverage
the IMU.

For each Monte-Carlo run, we generate the data us-
ing different noise realizations, we sample the initial state
from a Gaussian distribution with 1m initial standard de-
viation on the position, and we sample new map realiza-
tions used by the estimators from the mean and covariance
outputted by Algorithm 1 using σ = 10cm. All measure-
ments arrive with sampling rate 10Hz but the prediction
step is performed at 100Hz, that is, when executing Al-
gorithms 2 and 3 at 100Hz, the measurement update step
and weight update (IMM only) are executed every tenth
time step. The reason for the mixed rates between the pre-
diction and measurement step is that GNSS and camera
measurements usually arrive at a rate that is lower than
the internal vehicle data from the CAN bus. To generate
the measurements, we consider three different models:

1. Σp = Σp
nom,Σ

c = Σc
nom;

2. Σp = 102Σp
nom,Σ

c = Σc
nom;

3. Σp = Σp
nom,Σ

c = 102Σc
nom.

The first model models the reliability of the measurements
in nominal conditions, the second model mimics the case
when GNSS measurements are unreliable, and the third
model includes unreliable camera measurements. The in-



Table 1: Vehicle model parameters used in (1)–(7) for the results
presented in this study.

Notation Value Unit

lf 1.432 m
lr 1.472 m
Rw 0.333 m
Cx

f 96000 N
Cx

r 120000 N
Cy

f 96000 N/rad
Cy

r 120000 N/rad
m 2200 kg
g 9.81 m/s2

flation by a factor of 10 is chosen to give enough difference
from the nominal measurement noise while not entirely
discarding them in the estimation. GNSS outliers occur
every tenth second starting at 5s that last three seconds.
Similarly, we have camera outliers occurring every tenth
second that last three seconds, starting at 10s.

In the IMM, the transition probability matrix Π is set
to have diagonal elements around 0.9 with identical off-
diagonal elements. From our experience, the design of
the mixing matrix is not critical to performance, although
we acknowledge that better performance can likely be ob-
tained by more careful tuning. In imm-lrkf, we use the
six noise covariance matrices

1. Σp = Σp
nom,Σ

c = Σc
nom;

2. Σp = 102Σp
nom,Σ

c = 22Σc
nom;

3. Σp = Σp
nom,Σ

c = 102Σc
nom;

4. Σp = Σp
nom,Σ

c = 52Σc
nom;

5. Σp = 102Σp
nom,Σ

c = Σc
nom;

6. Σp = Σp
nom,Σ

c = 22Σc
nom.

That is, imm-lrkf includes the noise models that generate
the synthetic data in addition to variations of the camera
covariance matrix to account for that the polynomial fit-
ting to the road is imperfect.

The vehicle parameters are from a mid-sized SUV, and
the tire parameters correspond to driving on a dry asphalt
road [5]. Table 1 provides the vehicle and tire parameters.

4.1.1. Illustrative Simulation
For illustration purposes, we first present results from

a single realization using imm-lrkf (Algorithm 2).
Fig. 3 displays snapshots of excerpts of the estimated

map using imm-lrkf at different time instants, with the
vehicle initially moving in the negative Y -direction. As
measurements are gathered, the map estimate is improved,
and the uncertainty in the map is decreased. Note the de-
crease of the uncertainty ahead of the vehicle due to the
forward-looking camera. For instance, at t = 0s, the uncer-
tainty is large due to the initialized prior from Algorithm 1,
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Figure 4: Position RMSE of imm-lrkf (in the vehicle frame) over 100
Monte-Carlo runs with 0.1m initial map standard deviation (see Re-
mark 2). The improvement of using the dynamic single-track model
compared to the kinematic-single track model is minor.

but at later time steps the decrease in uncertainty is no-
ticeable. While we only visualize the covariances using
imm-lrkf, vb-lrkf qualitatively yields the same results.

4.1.2. Results from a Monte-Carlo Study
For the Monte-Carlo study, we have performed 100

Monte-Carlo runs of the same scenario as in Sec. 4.1.1
for different forgetting factors in vb-lrkf, using both the
dynamic and kinematic single-track model, and using Al-
gorithms 2 and 3 both with and without map updates.

Fig. 4 displays the position RMSE in the vehicle frame
for imm-lrkf when using the dynamic and kinematic single-
track model, respectively. Comparing the performance
when using different vehicle models, there is a small im-
provement when using the dynamic single-track model, but
it is minor, except for the longitudinal error when there
are GNSS outliers (see, e.g., around t = 17s). This is ex-
pected as when there are GNSS outliers, the longitudinal
positioning error is largely dependent on the prediction
model. These conclusions also hold for vb-lrkf, and they
indicate that for the driving behavior considered in this
example, positioning accuracy is sufficient using the kine-
matic single-track model. Hence, in the remainder of this
paper we only consider the kinematic single-track model in
the estimator, with the dynamic single-track model only
used to generate the synthetic data.

Fig. 5 shows the position RMSEs, and Fig. 6 shows
the corresponding noise estimates averaged over the 100
Monte-Carlo runs using Algorithm 2 (imm-lrkf) and Al-
gorithm 3 (vb-lrkf) for different forgetting factors with
map updates, using the kinematic single-track model. Over-
all, imm-lrkf performs slightly better than vb-lrkf, ir-
respective of forgetting factor. This is expected, as imm-
lrkf includes the correct noise models for both inlier and
outlier measurements. imm-lrkf has near instantenous
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Figure 5: Position RMSE (in the vehicle frame) for imm-lrkf and
vb-lrkf with different forgetting factors over 100 Monte-Carlo runs
with 0.1m initial map standard deviation (see Remark 2), using the
kinematic single-track model in the estimators.

convergence in the noise estimates. While this is partially
reflected in the positioning errors, the difference between
imm-lrkf and vb-lrkf with ρ = 0.95 and ρ = 0.97 is
mostly negligible except for a few instances; for inlier mea-
surements, the steady-state error differences are negligible.
Using vb-lrkf with a high forgetting factor ρ = 0.99 gen-
erally gives too slow convergence in the noise estimates,
which is reflected in the positioning errors.

4.1.3. Comparison With and Without Map Updates
To conclude the evaluation of the positioning perfor-

mance, we evaluate the impact of including map updates.
We do this in terms of the RMSE of the lateral position in
the vehicle frame, as the accuracy of the lateral position-
ing is largely determined by the camera measurements and
the accuracy of the map estimates. In contrast, the lon-
gitudinal positioning is largely determined by the GNSS
measurements, which are not dependent on the map accu-
racy.

Fig. 7 shows the results with and without map updates
for vb-lrkf using ρ = 0.97 and for imm-lrkf. First, imm-
lrkf with map updates gives the smallest position RMSE,
especially when outliers are present. Second, imm-lrkf
without map updates in contrast gives the largest posi-
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Figure 6: Noise estimates for the GNSS position measurements and
measured distances to each road boundary, averaged over the 100
Monte-Carlo runs. The true noise levels in magenta and using the
kinematic single-track model in the estimators.
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Figure 7: Position RMSE in the vehicle frame with and without map
update (Algorithms 2 and 3 without map states) for an initial prior
map standard deviation of 0.1m (see Remark 2).
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Figure 8: Average noise estimates for the GNSS position measure-
ments and measured distances to each road boundary with map up-
date and without map update (Algorithms 2 and 3 without map
states) for an initial map standard deviation of 0.1m (see Remark 2).
Ground truth in magenta. vb-lrkf uses ρ = 0.97.

tion RMSE, particularly for inlier measurements. Third,
vb-lrkf with map updates performs close to imm-lrkf,
but with a slightly larger RMSE. Comparing vb-lrkf and
imm-lrkf without map updates, vb-lrkf gives slightly
smaller errors and the estimation is smoother overall.

Fig. 8 displays the corresponding noise estimates. To
account for the unmodeled errors in the map, when exe-
cuting vb-lrkf (Algorithm 3) without map updates, the
camera noise estimates are inflated. While this is intu-
itive since the unmodeled map uncertainty is injected into
the noise estimates, it leads to degraded performance com-
pared to including map updates. This is even more pro-
nounced for imm-lrkf. With a finer gridding of the noise
models in imm-lrkf (i.e., using more models), this behav-
ior can be mitigated. Still, it indicates some of the defincies
with using imm-lrkf when using an incorrect map.

Finally, to visualize the variability of estimation perfor-
mance between the different configurations, Fig. 9 displays
the probability of the time-averaged lateral position RMSE
for the filters in Fig. 7. The two approaches with map up-
dates perform similarly with small variability. The differ-
ence in performance between the filters with and without
map updates is notable.

4.2. Real-Time Feasibility for Embedded Implementation
To conclude the validation, we assess the real-time com-

putational feasibility of the proposed methods in a dSPACE
MicroAutoBox-II rapid prototyping unit. We utilized an
implementation in Simulink using the MATLAB function
block with automatic C-code generation, and the setup is
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Figure 9: Probability of time-averaged position RMSE (in the vehicle
frame) for imm-lrkf and vb-lrkf with and without map updates,
computed as cumulative distribution functions over the 100 Monte-
Carlo runs of the whole data set. The simulations correspond to
Figs. 7 and 8. vb-lrkf uses ρ = 0.97.
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Figure 10: Histogram of the computation times using imm-lrkf
(gray) and vb-lrkf (red) without map updates (i.e., vehicle state
estimation alone).

otherwise the same as in the preceding section. The HIL
setup is analogous to [40, 12].

Fig. 10 displays the distribution of the computation
times per time step over a 20s simulation for imm-lrkf
(gray) and vb-lrkf (red), respectively, without map up-
dates. The computation times include both a prediction
step and an update step (i.e., one full iteration of Algo-
rithm 2 and 3). The computational budget is 10ms, as
the method updates with 100Hz. Both methods are well
within the allotted computational budget. However, on
average, vb-lrkf is roughly a factor of 2 faster than imm-
lrkf.

Fig. 11 shows barplots of the corresponding results
when incorporating map updates. To generate the results,
we varied the maximum number of iterations allowed in
vb-lrkf. Furthermore, we reduced the sampling rate in
both estimators to 10Hz. We see that all filter variants
stay within the maximum allotted computation time of
100ms. imm-lrkf is more predictable in that it exhibits
a lower variation of computation times. Nevertheless, all
versions of vb-lrkf have a substantially smaller average
computation time than imm-lrkf, about a factor of 3-5
on average. Note that all versions of vb-lrkf have simi-
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Figure 11: Barplots of the computation times with map updates
using imm-lrkf with six models and vb-lrkf for a varying number
of maximum number of iterations.

lar mean and 75% quantile computation times, while the
maximum computation time differs more. This implies
that a vast amount of the fixed-point iterations converge
quickly, while there are a few occasions when convergence
requires more computations. However, from our experi-
ence the main steps impacting estimation performance are
the first 3 − 4 iterations. Hence, to improve the worst-
case computation times, it is possible to set the maximum
iterations to a relative small number, without sacrificing
estimation performance significantly.

5. Conclusions

We presented a framework for joint vehicle positioning
and map estimation based on GEPs. The map parametriza-
tion gives a flexible way to model road maps and does not
exhibit some of the limitations that clothoidal modeling
frameworks have. Coupled with our two noise-adaptive
nonlinear KFs, the framework allows real-time execution
on automotive-grade computing power. The validation on
a dSPACE MicroAutoBox-II indicates that the presented
methods are suitable for implementation on automotive
embedded platforms. Furthermore, our study shows that
for the considered assumptions and maneuvers, a kine-
matic single-track model gives only minor performance re-
ductions than a dynamic counterpart, while avoiding the
need to estimate additional parameters.

From experience, capping the maximum allowed num-
ber of iterations low (say, 3–4 iterations) does not impact
estimation performance in vb-lrkf but has a large im-
pact in terms of meeting the computation budget. While
imm-lrkf has higher estimation accuracy potential, it has
the inherent drawback that reasonable guesses on the noise
models need to be known a priori. In this regard, vb-lrkf
is more flexible.

References

[1] , 1994. Vägutformning 94 version S-2. Technical Report.
Swedish National Road Administration.

[2] Arasaratnam, I., 2009. Cubature Kalman filtering theory &
applications. Ph.D. thesis. McMaster University.

[3] Beal, M., 2003. Variational algorithms for approximate
Bayesian inference. Ph.D. thesis. University of London.

[4] Berntorp, K., 2008. ESP for Suppression of Jackknifing in an
Articulated Bus. Master’s Thesis ISRN LUTFD2/TFRT--5831-
-SE. Department of Automatic Control, Lund University, Swe-
den.

[5] Berntorp, K., 2014. Particle Filtering and Optimal Control for
Vehicles and Robots. Ph.D. thesis. Department of Automatic
Control, Lund University, Sweden.

[6] Berntorp, K., 2016. Joint wheel-slip and vehicle-motion esti-
mation based on inertial, GPS, and wheel-speed sensors. IEEE
Trans. Control Syst. Technol. 24, 1020–1027.

[7] Berntorp, K., Di Cairano, S., 2018. Tire-stiffness and vehicle-
state estimation based on noise-adaptive particle filtering. IEEE
Trans. Control Syst. Technol. 27, 1100–1114.

[8] Berntorp, K., Di Cairano, S., 2019. Noise-statistics learning of
automotive-grade sensors using adaptive marginalized particle
filtering. J. Dynamic Syst., Measurement, and Control 141,
061009–10.

[9] Berntorp, K., Greiff, M., Di Cairano, S., 2022. Bayesian sensor
fusion of GNSS and camera with outlier adaptation for vehi-
cle positioning, in: Int. Conf. Information Fusion, Linköping,
Sweden.

[10] Berntorp, K., Greiff, M., Di Cairano, S., Miraldo, P., 2023.
Bayesian sensor fusion for joint vehicle localization and road
mapping using onboard sensors, in: Int. Conf. Information Fu-
sion, Charleston, SC.

[11] Berntorp, K., Hoang, T., Quirynen, R., Di Cairano, S., 2018.
Control architecture design of autonomous vehicles, in: Conf.
Control Technol. and Applications, Copenhagen, Denmark. In-
vited paper.

[12] Berntorp, K., Quirynen, R., Uno, T., Di Cairano, S., 2019.
Trajectory tracking for autonomous vehicles on varying road
surfaces by friction-adaptive nonlinear model predictive control.
Veh. Syst. Dyn. 58, 705–725.

[13] Berntorp, K., Weiss, A., Di Cairano, S., 2020. Integer ambi-
guity resolution by mixture Kalman filter for improved GNSS
precision. IEEE Trans. Aerosp. Electron. Syst. 56, 3170–3181.

[14] Blom, H., Bar-Shalom, Y., 1988. The interacting multiple model
algorithm for systems with Markovian switching coefficients.
IEEE Trans. Autom. Control .

[15] Boyd, S., Vandenberghe, L., 2004. Convex Optimization. Cam-
bridge University Press.

[16] Carvalho, A., Lefévre, S., Schildbach, G., Kong, J., Borrelli,
F., 2015a. Automated driving: The role of forecasts and
uncertainty—A control perspective. European J. Control 24,
14–32.

[17] Carvalho, A., Lefévre, S., Schildbach, G., Kong, J., Borrelli, F.,
2015b. Automated driving: The role of forecasts and uncer-
tainty - a control perspective. Eur. J. Control 24, 14–32.

[18] De Boor, C., 2001. A practical guide to splines: Revised Version.
volume 27. Springer-Verlag, New York.

[19] Di Cairano, S., Tseng, H., Bernardini, D., Bemporad, A., 2013.
Vehicle yaw stability control by coordinated active front steering
and differential braking in the tire sideslip angles domain. IEEE
Trans. Control Syst. Technol. 21, 1236–1248.

[20] Dickmanns, E.D., 2007. Dynamic Vision for Perception and
Control of Motion. Springer-Verlag, Berlin, Heidelberg.

[21] Eidehall, A., Pohl, J., Gustafsson, F., 2007. Joint road geometry
estimation and vehicle tracking. Control Eng. Pract. 15, 1484–
1494.

[22] Garcia-Fernandez, A.F., Hammarstrand, L., Fatemi, M., Svens-
son, L., 2014. Bayesian road estimation using onboard sensors.
IEEE Trans. Intell. Transp. Syst. 15, 1676–1689.

[23] Gillespie, T., 1992. Fundamentals of vehicle dynamics. Society
of Automotive Engineers, Inc.



[24] Greiff, M., Berntorp, K., 2020. Optimal measurement projec-
tions with adaptive mixture Kalman filtering for GNSS posi-
tioning, in: Amer. Control Conf.

[25] Greiff, M., Berntorp, K., Di Cairano, S., Kim, K., 2021. Mixed-
integer linear regression Kalman filters for GNSS positioning,
in: Conf. Control Techn. Applications, San Diego, CA.

[26] Gustafsson, F., 2009. Automotive safety systems. IEEE Signal
Process. Mag. 26, 32–47.

[27] Gustafsson, F., 2010. Statistical Sensor Fusion. Utbildning-
shuset/Studentlitteratur, Lund, Sweden.

[28] Karlsson, R., Gustafsson, F., 2017. The future of automotive
localization algorithms: Available, reliable, and scalable local-
ization: Anywhere and anytime. IEEE Signal. Process. Mag.
34, 60–69.

[29] Kiencke, U., Nielsen, L., 2005. Automotive Control Systems—
For Engine, Driveline and Vehicle. 2nd edition ed., Springer-
Verlag, Berlin Heidelberg.

[30] Lundquist, C., Karlsson, R., Özkan, E., Gustafsson, F., 2014.
Tire radii estimation using a marginalized particle filter. IEEE
Transactions on Intelligent Transportation Systems 15, 663–
672.

[31] Lundquist, C., Schön, T.B., 2011. Joint ego-motion and road
geometry estimation. Information Fusion 12, 253–263.

[32] Mbalawata, I.S., Särkkä, S., Vihola, M., Haario, H., 2015. Adap-
tive Metropolis algorithm using variational Bayesian adaptive
Kalman filter. Computational Statistics & Data Analysis 83,
101–115.

[33] OSRM, . Homepage of the open source road map project. URL:
http://project-osrm.org/. last accessed 08-19-2021.

[34] Rajamani, R., 2006. Vehicle Dynamics and Control. Springer-
Verlag.

[35] Sahmoudi, M., Landry, R., 2009. A nonlinear filtering approach
for robust multi-GNSS RTK positioning in presence of multi-
path and ionospheric delays. IEEE J. Selected Topics Signal
Process. 3, 764–776.

[36] Särkkä, S., Hartikainen, J., 2013. Non-linear noise adaptive
Kalman filtering via variational Bayes, in: IEEE Int. Workshop
Machine Learning for Signal Processing, Southampton, UK.

[37] Särkkä, S., Nummenmaa, A., 2009. Recursive noise adaptive
Kalman filtering by variational Bayesian approximations. IEEE
Trans. Automat. Contr. 54, 596–600.

[38] Sato, M.A., 2001. Online model selection based on the varia-
tional Bayes. Neural computation 13, 1649–1681.

[39] Schindler, E., 2007. Fahrdynamik: Grundlagen Des Lenkverhal-
tens Und Ihre Anwendung Für Fahrzeugregelsysteme. Expert-
Verlag, Renningen, Germany.

[40] Sean Vaskov, Rien Quirynen, M.M., Berntorp, K., 2024.
Friction-adaptive stochastic nonlinear model predictive control
for autonomous vehicles. Vehicle System Dynamics 62, 347–371.
doi:10.1080/00423114.2023.2219791.

[41] Steinbring, J., Hanebeck, U.D., 2013. SSKF: The smart sam-
pling Kalman filter, in: Int. Conf. Information Fusion, Istanbul,
Turkey.

[42] Teunissen, P., 1997. A canonical theory for short GPS baselines.
Part III: the geometry of the ambiguity search space. J. Geodesy
71, 486–501.

[43] Wen, W., Bai, X., Zhang, G., Chen, S., Yuan, F., Hsu, L.T.,
2020. Multi-agent collaborative GNSS/camera/INS integration
aided by inter-ranging for vehicular navigation in urban areas.
IEEE Access .

http://project-osrm.org/
http://dx.doi.org/10.1080/00423114.2023.2219791

	Title Page
	page 2

	A Framework for Joint Vehicle Localization and Road Mapping Using Onboard Sensors
	Introduction
	 Relation to Previous Work
	Notation:
	Outline:

	Modeling
	Vehicle Models
	Dynamic Single-Track Model
	Kinematic Single-Track Model

	Road Model
	Linear Discontinuous Representation
	Nonlinear Implicitly Continuous Representation
	Regression with Continuity Constraints

	Measurement Model

	Bayesian Sensor Fusion of GNSS and Camera
	Linear-Regression Kalman Filter
	Interacting Multiple-Model LRKF
	Variational-Bayes LRKF

	Simulation and Hardware-in-the-Loop Results
	Preliminaries
	Illustrative Simulation
	Results from a Monte-Carlo Study
	Comparison With and Without Map Updates

	Real-Time Feasibility for Embedded Implementation

	Conclusions


