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Abstract—Optical coherence tomography (OCT) has broad
applicability for 3D sensing, such as reconstructing the surface
profiles of multi-layered samples in industrial settings. However,
accurately determining the number of layers and their precise
locations is a challenging task, especially for low-cost OCT
systems having low signal-to-noise ratio (SNR). This paper
introduces a principled and noise-robust method of detection
and estimation of surfaces measured with OCT. We first derive
the maximum likelihood estimator (MLE) for the position and
reflectivity of a single opaque surface. We next derive a threshold
that uses the acquisition noise variance and the number of
measurements available to set a target probability for false
acceptance of spurious surface estimates. The threshold and MLE
are then incorporated into an algorithm that sequentially detects
and estimates surface locations. We demonstrate reconstruction
of fine details in samples with optical path lengths around 1 mm
and depth error down to 1.5 µm despite SNRs as low as –10 dB.

Index Terms—Surface estimation, detection, optical coherence
tomography, 3D imaging, probability of false acceptance.

I. INTRODUCTION

OPTICAL coherence tomography (OCT) is an imaging
technique that uses a sequence of low-coherence inter-

ferometry (LCI) measurements to recover three-dimensional
(3D) structures through partially scattering media [2]. In the
common Fourier-domain (FD) OCT configuration, interference
patterns are measured as a function of wavelength, and depth
information is recovered via a Fourier transform. Although
best known for its use in opthalmology since its initial demon-
stration of ocular imaging [3], OCT has also been applied
to numerous other applications that require nondestructive
microscopic 3D measurements [4]. For instance, OCT (or LCI)
has been extensively used in industrial settings for inspecting
and characterizing ceramics [5], polymer strain [6], wear dam-
age [7], optical components [8], wafer topography [9], paper
properties [10, 11], varnish or paint thickness [12, 13, 14, 15],
printed electronics [16, 17], wind turbine delamination [18],
and identification document security features [19]. In addition
to 3D measurement, OCT can also be used to separate direct
and global illumination, and measure material properties such
as scattering, dispersion, or birefringence [20, 21].

A major factor limiting the widespread adoption of OCT for
industrial inspection tasks is the financial cost of the low-noise,
swept-source lasers used in medical or metrological settings.

The authors are with Mitsubishi Electric Research Laboratories (MERL),
Cambridge, MA, USA (email: rapp@merl.com). This work was presented in
part at the IEEE International Conference on Image Processing, Bordeaux,
France, October 2022 [1].

Recently, Yurdakul et al. introduced an affordable spectral-
domain (SD) OCT configuration that uses commodity com-
ponents such as complementary metal-oxide-semiconductor
(CMOS) camera sensors and visible-wavelength light-emitting
diodes (LEDs) [22]. The OCT system further uses a line-field
configuration, which distributes the illumination from a point
into a line field, allowing for parallelized scanning. Similar
OCT system designs could enable the proliferation of fast,
low-cost 3D component inspection.

However, the use of low-cost components has inevitable
downsides. The weaker illumination from the LED yields
measurements with lower signal-to-noise ratio (SNR), and
the line-field configuration further decreases the illumination
power [23]. Measurement noise adversely affects 3D recon-
struction by causing spurious surface detections that degrade
visualization and downstream analysis tasks such as part
inspection. A particular challenge for industrial inspection
with OCT is imaging multi-layered specimens, especially with
an unknown number of layers. While OCT profilometry for
opaque samples is straightforward because the number of
layers is known to be 1, a multi-layered surface measurement
with OCT is more complicated. When the number of layers is
unknown a priori, both the number and location of the layers
must be jointly determined. Existing methods for determining
the number of layers are usually ad hoc [11, 16, 17, 18, 19] or
require manual specification, e.g., pre-specified search regions
for each layer [12, 13, 14]. While ad hoc methods may suffice
at high SNR, a more principled approach is needed for low
SNR, when falsely detecting a surface is much more likely.

In this paper, we propose a method for recovering precise,
reliable surface reconstructions despite low-cost OCT hard-
ware. We demonstrate automatic determination of the number
and location of layers in multi-layered samples with no manual
intervention or prior knowledge of the sample structure. We
focus in particular on the low-SNR setting in which most
heuristic methods fail. First, we derive the maximum like-
lihood estimator (MLE) of the depth and reflectivity of a
surface under the OCT imaging model, assuming a single-
layer sample and a heteroscedastic Gaussian approximation
to Poisson noise. Next, we derive a detection threshold that
sets a target probability of falsely accepting a surface point
estimate due to noise. The threshold computation automat-
ically accommodates multiple measurement frames of the
same sample points, important for increasing the SNR and
improving surface detection. We combine the threshold and
MLE into an algorithm that sequentially detects each layer
and estimates a continuous-valued depth estimate, assuming
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Fig. 1: OCT acquisition and processing pipeline. Light from the illumination source reflects off both the reference mirror and sample, and is recombined
by the beamsplitter. The interfered light iD(λ) is spectrally resolved by the diffraction grating and sampled by the detector array. Subtracting a reference-
only calibration measurement iR(λ) proportional to the power spectral density isolates the component of the interference measurements containing depth
information. Our algorithm sequentially detects and estimates peaks in the A-scan above a threshold that maintains a fixed probability of false acceptance
pFA based on the noise statistics. For a single measurement frame, significant noise yields a high threshold that prevents false acceptance of A-scan peaks
due to noise. Incoherent addition of multiple frames increases SNR and improves the ability to detect peaks corresponding to true surfaces.

layers have separation greater than the coherence length of
the illumination. We validate our algorithm on several multi-
layered samples imaged with the prototype low-cost SD-OCT
system of Yurdakul et al. [22]. Although demonstrated on
a line-field system, our approach is broadly applicable to
scanning point or full-field FD-OCT, including swept-source
(SS) OCT. An overview of our processing pipeline is shown
in Fig. 1.

The rest of this paper is organized as follows. In Section II,
we present the OCT measurement model for multi-layered
samples. In Section III, we derive the MLE for depth es-
timation with OCT under a heteroscedastic Gaussian noise
assumption and show how it compares to alternative depth
estimation approaches. In Section IV, we derive the threshold
used for surface detection. Section V outlines our algorithm,
which takes advantage of the single-surface MLE and detec-
tion threshold. We then present surface reconstructions from
experimental measurements recorded with our apparatus in
Section VI. Finally, we draw conclusions about the approach
in Section VII.

II. MEASUREMENT MODEL

The OCT measurement model is well established—see for
example [24]—and we highlight here the key details. A sketch
of the SD-OCT system is shown as part of Fig. 1. We first
develop the model assuming a point illumination and later
discuss how the model changes with non-uniformities in the
line-scan illumination.

The light source emits a polychromatic plane wave and the
electric field incident on the beamsplitter is

EI(λ, ω) = s(λ, ω) exp

[
i

(
2πz

λ
− ωt

)]
, (1)

for wavelength λ, angular frequency ω, depth z, and time
t. The beamsplitter splits the light into the two arms of the

interferometer, and the resulting field after reflection in the
reference arm is

ER(λ, ω) =
s(λ, ω)√

2
r0 exp

[
i

(
4πz0
λ

− ωt

)]
, (2)

where r0 is the reflectivity of the reference mirror and z0 is
its depth. Similarly, the resulting field after reflection in the
sample arm is

ES(λ, ω) =
s(λ, ω)√

2

L∑
ℓ=1

rℓ exp

[
i

(
4πzℓ
λ

− ωt+ ϕℓ

)]
. (3)

In the sample arm, the electric field is a convolution of the
incident light with the depth-dependent sample reflectivity
profile. We consider a discrete reflector model for L reflectors
with reflectivities {rℓ}Lℓ=1, depths1 {zℓ}Lℓ=1, and homogeneous
media between the reflectors. A phase offset ϕℓ accounts for
shifts in the measurement phase, e.g., due to transmission
through or reflection from the sample [25], or due to vibration.

After reflecting from the reference mirror and sample layers,
the electric fields are recombined by the beamsplitter. In an
SD-OCT system, a diffraction grating separates the recom-
bined light by wavelength. The light intensity incident on the
detector is

I(λ) =
1

2

〈
|ER + ES|2

〉
t

=
S(λ)

2

{
1

2

L∑
ℓ=0

r2ℓ

+

L∑
ℓ=1

r0rℓ cos

[
4π

λ
(zℓ − z0) + (ϕℓ − ϕ0)

]

+

L∑
ℓ=2

rℓ

ℓ−1∑
m=1

rm cos

[
4π

λ
(zℓ − zm) + (ϕℓ − ϕm)

]}
,

(4)

1Since the refractive index changes between surfaces ℓ and ℓ+1, we more
precisely measure the optical path lengths. For simplicity, we refer to z as
the depth.
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where ⟨·⟩t denotes temporal averaging (which acts as a
low-pass filter to eliminate high-frequency components), and
S(λ) = ⟨s(λ, ω)⟩t is the power spectral density (PSD) of the
illumination source.

Strong Reference Reflectivity Assumption In (4), the three
terms are often referred to as the “DC (direct current),”
“cross-correlation,” and “auto-correlation” components [24].
Note that only cross-correlation encodes the depth relative
to the reference z0. We make the common assumption that
the reference reflectivity is much stronger than the sample
layer reflectivities [24, Ch. 2.4], i.e., r0 ≫ rℓ, ℓ = 1, . . . , L,
so we can eliminate the small auto-correlation component
and simplify the DC component to get a linear forward
model approximation. In the Supplement, we show that this
assumption contributes negligible error when r0 ≫ rℓ holds.
For convenience, we also define z0 = 0, ϕ0 = 0, and
aℓ = rℓ/r0 relative to the reference, so the incident intensity
is approximated as

I(λ) ≈ S(λ)r20
2

[
1

2
+

L∑
ℓ=1

aℓ cos

(
4π

λ
zℓ + ϕℓ

)]
. (5)

Measurement Statistics Let η be the efficiency of the detector
converting photons into photo-electrons. At detector element
n = 1, . . . , N , the number of detected photo-electrons is a
Poisson random variable whose rate is proportional to the in-
cident intensity at wavelength λn, i.e., in ∼ Poisson[ηI(λn)].
However, most cameras do not detect individual photo-
electrons directly. Instead, the actual detector measurement
includes effects of the camera gain, dark current, read noise,
and quantization [26]. Assuming the noise is dominated by the
signal-dependent Poisson component (i.e., the measurement is
shot-noise limited), we need only consider the effect of the
gain. Define β as the scaling factor from photo-electrons to
bits in the camera readout after analog-to-digital conversion,
so iDn = βin is the raw detector measurement.

Rather than deal with the statistics of a scaled Poisson
distribution, we assume in this paper that the noise can
be effectively modeled as an independent, heteroscedastic
additive Gaussian, where the variance is proportional to the
mean. For simplicity, we combine the many unwieldy scaling
factors into a single scalar γ and a normalized PSD Ψ(λn),
where

N∑
n=1

Ψ(λn) = 1, (6)

so that
γΨ(λn) = βηr20S(λn)/2. (7)

Continuing with the assumption that r0 ≫ rℓ such that aℓ
is small, the mean and variance of the detector measurement
are dominated by the DC component. Thus we can approxi-
mate the detector measurement of the scaled, noise-corrupted
intensity to be

iDn ≈ γΨ(λn)

[
1

2
+

L∑
ℓ=1

aℓ cos

(
4π

λn
zℓ + ϕℓ

)]
+ wn, (8)

where wn ∼ N
(
0, σ2

n

)
is Gaussian noise that is mutually

independent for all n, and σ2
n = βγΨ(λn)/2.

DC Removal We observe from the derivation of (8) that
the DC component contributes noise despite not containing
any depth information. Fortunately, the DC component is
straightforward to estimate [24, Ch. 2.4]. In a separate ac-
quisition with the sample arm blocked, we can capture the
light intensity from the reference arm only, which is given as
IR(λ) = 1

2 ⟨|ER|2⟩t. Measurement of the reference intensity
can be performed offline, so we assume

iRn = βηIR(λ) = γΨ(λn)/2, (9)

where the shot noise is suppressed through temporal averaging.
Finally, the measurement data is considered to be the vector
y = [y1, . . . , yN ], where

yn = iDn − iRn

= γΨ(λn)

L∑
ℓ=1

aℓ cos

(
4π

λn
zℓ + ϕℓ

)
+ wn. (10)

Note that iR(λ) also serves as an estimate of the wavelength-
dependent noise variance, up to the scaling factor β. We
discuss calibration of β in Section VI-A2.

Multiple Measurements To increase the SNR, F separate
measurement frames y1, . . . ,yF may be captured in sequence
at the same illumination position. We assume the phase ϕℓ,f
is independent and identically distributed (i.i.d.) uniformly
on [0, 2π), and the noise values wn,f are independent across
frames f = 1, . . . , F .

In a line-field acquisition, each row of pixels in the camera
simultaneously captures the spectrally-resolved interference
measurement from a different point across the line-field il-
lumination. We make the assumption that each measurement
is independent, i.e., crosstalk between camera rows is negligi-
ble [27]. Although we assume the normalized spectral density
Ψ(λn) is identical for each row, the scaling factor γ may
vary across rows due to non-uniform intensity of the point
source after spreading into a line. Note that this differs from
other OCT configurations: scanning-point OCT typically has
γ constant for all points, whereas full-field OCT may have γ
that varies across both lateral dimensions.

III. SINGLE LAYER ESTIMATION

Simultaneously estimating the number and location of the
surfaces is a challenging task. We thus focus first on estimating
the depth when it is known that there is exactly 1 layer. Later,
we harness the single-layer estimator for multi-layer, multi-
frame estimation.

A. Conventional Estimation Methods

For a single surface (L = 1) and single frame (F = 1),
the linear forward model (5) is exact, as there are no sample
inter-reflections. Then the measurements are given by

yn = aγΨ(λn) cos

(
4π

λn
z + ϕ

)
+ wn. (11)
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Since there is a single sinusoid, conventional estimation meth-
ods use Fourier analysis to identify a peak in the depth
domain. Indeed, the MLE of the frequency of a single complex
sinusoid in additive white Gaussian noise is well known to
be the peak of the periodogram, i.e., the squared magnitude
of the discrete-time Fourier transform [28]. OCT depth
estimation thus usually applies the discrete Fourier transform
(DFT) via the fast Fourier transform (FFT) algorithm and then
refines the discrete peak position. However, the periodogram-
based approach neglects several factors that can cause small
errors in the final estimates. Naı̈ve application of the DFT
ignores the fact that the measurements are usually real-valued,
rather than complex. For estimating the parameters of real
sinusoids, the positive and negative frequencies interfere with
each other [29], resulting in a slight bias in the peak position.
In other words, the periodogram does not correspond to the
correct likelihood function to maximize for a real sinusoid.

Furthermore, OCT systems typically sample the interfered
light at uniform wavelengths2 λn, which means the samples
are non-uniformly spaced in wavenumber kn = 2π/λn.
However, the FFT requires uniform wavenumber samples. The
most widespread approach for achieving uniform k samples
is to interpolate the data and resample [30, 31]. However,
interpolation amounts to shift-variant low-pass filtering, reduc-
ing the sensitivity to greater depths (i.e., high-frequency inter-
ference components) and propagates noise to the unsampled
wavenumbers, reducing robustness. Alternatively, the non-
uniform (NU) DFT or FFT computes the Fourier transform
for arbitrarily spaced points in wavenumber and/or depth by
interpolation with guarantees on the precision [31, 32, 33, 34,
35, 36, 37]. To avoid the problems caused by interpolation,
alternative hardware systems have been proposed that yield
samples uniformly spaced in wavenumber rather than wave-
length [30, 38, 39, 40, 41]. Although the FFT can be directly
applied to the uniform-k samples, these systems require more
complicated and often expensive hardware.

B. Heteroscedastic Gaussian MLE

Although periodogram maximization can often achieve rea-
sonable surface estimates, it does not exactly correspond to the
MLE based on the single-surface OCT model. Here, we start
from first principles, expanding our earlier work [1] to derive
the exact MLE for single-surface OCT in heteroscedastic
Gaussian noise by including the PSD, non-uniform wavenum-
ber sampling, and real-valued measurements. We then propose
an implementation that identifies a good initialization and
directly maximizes the exact likelihood.

1) Derivation: Define the vectors c = [c1, . . . , cN ]T and
s = [s1, . . . , sN ]T, where cn = γΨ(λn) cos(4πz/λn) and
sn = γΨ(λn) sin(4πz/λn). Given the data vector y =
[y1, . . . , yN ]

T and assuming heteroscedastic Gaussian noise,

2In SD-OCT, uniform wavelength samples arise because a diffraction
grating has an approximately linear relationship between wavelength and
diffraction angle, and the detector pixels are uniformly spaced. In SS-OCT,
the laser may have a linear sweep in wavelength versus time or some other
sweep patterns that do not yield uniform wavenumber samples.

we show in Appendix A how the MLE is the depth z that
maximizes

Λ(y, z) = yTΣ−1H(HTΣ−1H)−1HΣ−1y, (12)

where we define the matrices H = [c, s] and Σ =
diag([σ2

1 , . . . , σ
2
N ]T). Although HTΣ−1H is usually approxi-

mated as diagonal in order to compute its inverse [1, 42], it is
in fact straightforward to compute the exact inverse in closed
form. We can thus rewrite the full objective to maximize as

Λ(y, z) =
1

G

[
(sTΣ−1s)(cTΣ−1y)2 + (cTΣ−1c)(sTΣ−1y)2

− 2(cTΣ−1s)(cTΣ−1y)(sTΣ−1y)
]
,

(13)

where G = (cTΣ−1c)(sTΣ−1s)− (cTΣ−1s)2, and the depth
MLE is

ẑML = argmax
z

Λ(y, z). (14)

We further define the functions:

Ω(y, z) =
1

G

{
[(sTΣ−1s)cTΣ−1y − (cTΣ−1s)sTΣ−1y]2

+ [(cTΣ−1c)sTΣ−1y − (cTΣ−1s)cTΣ−1y]2
} 1

2

(15)

Φ(y, z) =

arctan

(
− (cTΣ−1c)sTΣ−1y − (cTΣ−1s)cTΣ−1y

(sTΣ−1s)cTΣ−1y − (cTΣ−1s)sTΣ−1y

)
.

(16)

Then given ẑML, we can compute the MLEs of the reflectivity
âML = Ω(y, ẑML) and phase offset ϕ̂ML = Φ(y, ẑML).

2) Proposed Implementation: The function Λ(y, z) in (13)
is multi-modal, so a good initial value is needed to find the
global maximum. We show in Appendix A that using the
approximations sTΣ−1c = cTΣ−1s ≈ 0 and cTΣ−1c ≈
sTΣ−1s ≈ γ/β reduces (13) to the periodogram

Λ(y, z) ≈ 4

βγ

∣∣∣∣∣
N∑

n=1

yn exp

(
−i

4π

λn
z

)∣∣∣∣∣
2

, (17)

which has a simple discrete implementation via the NUDFT.
We thus use a two-step process similar to Rife and Boorstyn
[28], in which we compute the approximate MLE for initial-
ization on a discrete grid and then refine our estimate via an
iterative algorithm to get the off-grid MLE.

a) Discrete Initialization: We define the partial NUDFT
matrix A ∈ CN×M , where the (n,m) element is

[A]n,m = exp

(
i
4π

λn
zm

)
, (18)

at depths zm for m = 1, . . . ,M , which are typically
uniformly-spaced with separation δz . To avoid missing the true
peak, a good rule of thumb is to set δz less than the coherence
length, which is the resolution of an OCT measurement based
on the illumination source PSD [43]. We then compute (17)
for the vector of discrete depths z = [z1, . . . , zM ]T via the
element-wise squared magnitude of the back-projection

B(y) = |AHy|2, (19)
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Fig. 2: Depth estimation performance comparison. The MLE is more robust
to additive noise and more accurate than approximate methods, achieving the
CRLB above −13 dB SNR.

where [·]H denotes the Hermitian or conjugate transpose.
The position of the maximum m̃ = argmaxmB(y) yields
the discrete approximate depth MLE ẑBP = zm̃. Note that
a matrix-free NUFFT implementation may also be used,
although we find the explicit matrix multiplication to be
more efficient when parallelizing back-projection for line-field
measurements.

b) Continuous Optimization: Given a sufficiently small
discrete spacing δz , the objective Λ(y, z) is locally unimodal
around ẑBP. We can then refine the discrete estimate via
iterative maximization to get a continuous estimate ẑML.
Fast convergence can be achieved via the RTSAFE algorithm,
which combines Newton’s method with bisection for robust,
bounded optimization [44, Ch. 9.4,]. The Newton iterations
are initialized with z(0) = ẑBP and continue as

z(t+1) = z(t) − Λ′(z(t))

Λ′′(z(t))
, (20)

unless the step would escape the bounding interval, in which
case interval bisection occurs. The algorithm continues until
|z(t+1) − z(t)| < ϵ for some tolerance ϵ. The first and second
derivatives of Λ(y, z) are found in Appendix B. For the
bounding interval, we use ẑBP ± δz .

C. Performance Comparison

1) Simulation Setup: For heteroscedastic noise, the signal-
to-noise ratio (SNR) varies for each element of the measure-
ment vector. For the signal component in (11), the signal power
of the nth element is µ2

n = γ2Ψ2(λn) a
2
/
2 . Given the noise

power is σ2
n = βγΨ(λn)/2, then the SNR for element n is

SNRn =
µ2
n

σ2
n

=
a2γ

β
Ψ(λn). (21)

The average SNR across the measurement is then

SNR =
1

N

N∑
n=1

SNRn =
a2γ

βN
. (22)

To evaluate the performance of the MLE implementation as
a function of average SNR, we simulated an OCT experiment
with fixed a, β, and N while varying γ. The OCT system

TABLE I: Depth estimation runtime comparison

Method NUDFT Interp-DFT Endo Lawman MLE

Runtime (s) 0.0173 0.0199 0.0518 0.041 0.0266

emulates the experimental setup described in Section VI, with
a center wavelength of 530 nm and an approximately Gaussian
PSD with wavelength bandwidth of 35 nm. The noise is
simulated as Poisson, and we set β = 1.

2) Comparison Methods: The comparison methods are
implemented as follows:

• NUDFT implements our discrete initialization as outlined
in Section III-B2a, i.e., it estimates the depth by finding
the maximum of the back-projection with the NUDFT
matrix.

• Interp-DFT applies the uniform DFT to measurements
that have been resampled to have uniform wavenumber
spacing after spline interpolation. The depth estimate is
then the location of the DFT peak.

• Endo refines the Interp-DFT estimate by computing the
centroid around the DFT peak [8].

• Lawman resamples the measurement, and then applies a
Hann window prior to the uniform DFT [14]. The discrete
estimate is refined by fitting a Gaussian function to the
DFT peak.

• MLE uses the NUDFT estimate as initialization and
refines the estimate via Newton’s method, as described
in Section III-B2b.

3) Results: Fig. 2 shows the error as a function of the
average SNR for depth estimation of a single opaque surface.
Because the NUDFT and Interp-DFT estimates are confined to
a discrete grid with δz = 1 µm depth resolution, the root mean
squared error (RMSE) assuming uniformly distributed depths
is limited by the quantization error to

√
δ2z/12 (i.e., “Grid

limit”) [45]. The Endo, Lawman–Liang, and MLE methods
all use continuous refinement to surpass the grid limit. Our
MLE implementation outperforms all comparison methods and
achieves the Cramér–Rao Lower Bound (CRLB, derived in
Appendix C) for SNR values above −13 dB. At high SNR
in particular, improvement comes from maximizing the likeli-
hood directly, rather than using curve fitting approximations.

Table I compares the runtimes of the various methods.
Computing the NUDFT is slightly faster than Interp-DFT
because it skips the interpolation step. Of the methods that use
continuous refinement, the MLE is the fastest and not much
slower than the NUDFT, suggesting that Newton’s method is
an efficient implementation for maximizing the likelihood and
surpassing the grid limit.

IV. NEYMAN–PEARSON DETECTION THRESHOLD

In Section III, we explored surface estimation, assuming
the presence of a single layer in the measurement. However,
detecting whether a layer is indeed present is non-trivial,
especially for samples with an unknown or varying number
of layers across the specimen. Here we develop a principled
rule for layer detection, based on how the noise statistics are
affected by the estimation procedure.
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Fig. 3: Demonstration of the accuracy of the Erlang density noise model for experimental data. The top row shows A-scans dominated by noise, whereas the
second row contains noise plus two signal peaks. A threshold for false alarm probability pFA = 1 × 10−4 is shown as the dashed lines. The bottom row
shows a histogram of the A-scan values and our Erlang density approximation.

As detailed in Section III-B2, a coarse estimate can be
computed via back-projection with the NUDFT matrix. Given
F independent measurement frames, define the A-scan as the
vector

b =

F∑
f=1

|AHy|2, (23)

which sums the squared magnitudes of the back-projections for
each frame. Define the peak A-scan amplitude as ρ = max(b).

The detection rule must effectively determine whether the
peak is actually due to noise. The distribution of surface
reflectivities is unknown, hence we derive a Neyman–Pearson
detection criterion based on a probabilistic model of the
noise alone. Namely, given a fixed probability of accepting
a spurious detection pFA, we determine a threshold τFA on
the A-scan amplitude. Only if the peak amplitude ρ ≥ τFA do
we consider the peak to be a layer detection and proceed with
estimating its parameters.

To determine τFA, we suppose the interference measurement
consisted of only noise. Let wf ∈ RN be a zero-mean, jointly
Gaussian random vector, with element wn having variance σ2

n.
Following Djukanović and Popović-Bugarin [46], the back-
projection of the noise vector νf = AHwf is approximated as
an i.i.d. circularly-symmetric complex Gaussian random vector
with both Re{νm} and Im{νm} ∼ N (0, σ2

ν/2), where

σ2
ν =

N∑
n=1

σ2
n. (24)

Then the magnitude of the back-projection ζm = |νm| is a
Rayleigh(

√
σ2
ν/2) random variable, and the squared magni-

tude ζ2m is an Exponential(σ2
ν) random variable. The mth A-

scan element from F independent noise frames w1, . . . ,wF

is

ψm =

F∑
f=1

ζ2m ∼ Erlang(F, σ2
ν). (25)

For a given detection threshold τFA, the probability of falsely
accepting a detection due to noise is

pFA ≈ 1−
M∏

m=1

Pr[ψm < τFA] (26)

= 1−

1− exp

(
−τFA
σ2
ν

) F−1∑
f=0

1

f !
(τFAσ

2
ν)

f

M

, (27)

which uses the closed-form definition of the Erlang cumulative
distribution function. For multi-frame measurement, we can
use root-finding methods to numerically solve (27) for the
threshold τFA given a target pFA. Moreover, a closed-form
solution for the threshold exists in the case of F = 1:

τFA = −σ2
ν log{1− [1− pFA]

1/M}. (28)

Unlike Djukanović and Popović-Bugarin [46], who set a
threshold for sinusoid detection based on the statistics of a
single DFT bin from a single measurement, our threshold
derivation not only considers the joint probability of false
acceptance across all elements of νf but also easily allows
for an arbitrary number of measurement frames.

An example of threshold selection is demonstrated for
experimental data in Fig. 3. The top two rows show a series
of A-scans for different numbers of frames: the first row is
computed for a measurement containing only noise, and the
second row is for a measurement that also contains two surface
reflections. The bottom row shows the empirical noise density,
i.e., a histogram of the noise-only A-scan values, as well as



RAPP et al.: MULTI-LAYERED SURFACE ESTIMATION FOR LOW-COST OCT 7

the Erlang probability density function (PDF) based on our
noise model. The fit of the PDF is quantified by the Cramér–
von Mises ω2 criterion [47]. The Erlang density shows a very
good fit to the histogram, yielding an effective threshold that
prevents false acceptance of noise spikes, although the increase
in the ω2 criterion for 16 frames suggests a slight model
mismatch that could reduce the effectiveness of the threshold.

While our threshold derivation assumes heteroscedastic
Gaussian noise, we further show in the Supplement that the
Erlang model likewise holds for measurements with Poisson
noise. By the central limit theorem, the back-projection of
Poisson noise with sufficiently large N leads to ν that is
still well-approximated as a circularly-symmetric complex
Gaussian random vector.

V. MULTI-LAYER DETECTION AND ESTIMATION

While surface detection and estimation are straightforward
for a single layer, extension to multiple layers is complicated
by the unknown number of layers. Existing methods of multi-
layer estimation typically apply single-surface estimation
methods sequentially, using ad hoc selection methods or prior
knowledge to determine how many layers need to be estimated.
For instance, Lawman and Liang require pre-specified regions
in which to search for each interface location and then use
post-processing to eliminate obvious errors [12, 13, 14]. Atalar
et al. determine the number and location of targets by setting
a minimum reflectivity threshold as a fixed fraction of the
largest peak height in each A-scan [48]; however, this approach
assumes that sidelobes are the main source of spurious layer
detection, ignoring the effect of noise. Alternatively, a standard
practice in OCT layer detection is to use a global threshold
on the B-scan magnitude [10, 11, 16, 17, 18, 19]. However,
the threshold value generally requires hand-tuning and does
not account for the possibility of spatially-varying amplitude
statistics across the B-scan. More sophisticated methods taking
advantage of the lateral component of cross-sectional B-scans
likewise assume a known number of surfaces that span the
B-scan [49, 15], but in practice—as in the experimental
specimens we consider later—layers may not be contiguous
and may change in number across the lateral dimension.
Other related approaches encourage sparsity in volumetric
OCT reconstruction via ℓ1-norm regularization [50, 51], but
these convex optimization methods have high computational
complexity that scales poorly for large data volumes.

We propose a multi-layered estimation approach that com-
bines our principled single-surface detection and estimation
methods. Our algorithm, which we call Sequential Surface
Estimation (SSE), first computes a detection threshold τFA
and the A-scan b. The algorithm then sequentially compares
each peak in the A-scan to the threshold in order of peak
height. By assuming the layers are separated by at least the
coherence length of the illumination source, the signals from
different layers do not significantly affect each other. Thus, we
can use the same threshold for all layers and simply remove a
small region around each detected depth from the search space
for the next layer detection. If a peak is sufficiently large, we
compute a continuous depth estimate for that detected layer

Algorithm 1 Sequential Surface Estimation (SSE)

Input: measurement frames y1, . . . ,yF ; wavelengths λ; PSD
γΨ(λ); discrete depths z = [z1, . . . , zM ]T; noise vari-
ances σ2

1 , . . . , σ
2
N ; false acceptance probability pFA; min-

imum layer separation dmin; maximum layer count Lmax

Output: depths {ẑ(t)SSE}Tt=1 and reflectivities {â(t)SSE}Tt=1

1: Set up NUDFT matrix A as in (18)
2: Form A-scan b as in (23)
3: Compute σ2

ν as in (24)
4: Solve for threshold τ as in (27)
5: Initialize:

t = 1, M(1) = {1, . . . ,M}
6: while converged = False and t ≤ Lmax do
7: // Detection
8: ρ(t) = maxm∈M(t) b
9: if ρ(t) > τ then

10: // Estimation
11: m̃ = argmaxm∈M(t) b

12: ẑ
(t)
BP = zm̃

13: Calculate ẑ(t)SSE as in (30)
14: â

(t)
SSE = 1

F

∑F
f=1 Ω(yf , ẑ

(t)
SSE)

15: t = t+ 1
16: Update M(t) as in (29)
17: else
18: converged = True
19: T = t− 1

via the MLE. Else if a peak does not meet the threshold, then
we assert that all layers have been detected. In particular, we
ensure continuous-valued parameter estimation from multiple
captured frames by harnessing the single-layer MLE derived
above.

The basic SSE algorithm is summarized in Algorithm 1 and
detailed as follows.

Inputs: The algorithm requires a set of measurement frames
y1, . . . ,yF , the sampled wavelengths λ, the PSD at each
wavelength γΨ(λ), a vector of discrete candidate depths
z = [z1, . . . , zM ]T, the noise variances σ2

1 , . . . , σ
2
N , false

acceptance probability pFA, and a minimum layer separation
dmin. Setting a maximum number of layers Lmax is optional.

Minimum Layer Separation: The minimum layer separation
can be introduced by modifying the index set over which the
A-scan maximum is found. For iteration t, the set of indices
to be included in the search is

M(t; dmin) =

t−1⋂
i=1

{
m ∈ 1, . . . ,M : |zm − ẑ

(i)
SSE| > dmin

}
.

(29)
The indices m ∈ M(t) correspond to depths that are farther
than dmin from previously detected layers 1, . . . , t− 1.

Layer Detection: The A-scan is computed as in (23), and the
peak A-scan amplitude ρ(t) = maxM(t) b is used to compare
to the threshold τ . If ρ(t) > τ , then a layer has been detected.

Layer Estimation: For each detected layer, the index of the
A-scan peak m̃ = argmaxM(t) b is used to assign an initial
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depth estimate ẑ(t)BP = zm̃ based on the discrete set of candidate
depths z. The depth estimate is then refined via the continuous
optimization:

ẑ
(t)
SSE = argmax

z

F∑
f=1

Λ(yf , z)

s.t. zm̃−1 ≤ z ≤ zm̃+1,

(30)

which uses the single-surface log-likelihood function from (13)
and constrains the search to be within one bin of the discrete
initialization. We likewise compute the reflectivity as the
average of the ML estimates âf = Ω(yf , ẑ

(t)
SSE) for each frame.

The algorithm continues until no more layers are detected,
i.e., ρ(t) ≤ τ , or the optional maximum layer count has been
reached (t = Lmax).

VI. EXPERIMENTAL VALIDATION

A. Experimental Setup

1) Hardware: All experiments were performed on the low-
cost prototype line-field OCT system of Yurdakul et al. [22],
pictured in Fig. 4(a). The illumination is a partially-coherent
narrowband green LED (Thorlabs M530L4) with central wave-
length λ0 ≈ 530 nm and wavelength bandwidth ∆λ ≈ 35 nm,
which yields an approximately 3.5 µm full-width at half-
maximum (FWHM) axial resolution [43]. The LED is dif-
fused, focused into a line, and further filtered by a mechanical
slit to create a line-field illumination. After coherent mixing of
the reference and sample arm illumination via a beam-splitter,
a transmission grating (Wasatch Photonics, 1800 lines/mm at
532 nm) diffracts the light quasi-linearly. The intensity of the
diffracted light is then captured by a CMOS camera (FLIR,
BFS-U3-70S7M-C) which has 2200× 3208 pixels.

Each row (3208 pixels) captures the interference spectrum
for one point on the scan line, so the spectra for 2200 points
along the line can be recorded simultaneously. In practice, the
illumination intensity near the edges is much weaker than the
center, so we crop the 200 rows on either edge. After process-
ing the interference pattern, an entire B-scan can be recovered
from a single line-scan measurement (x- and z-directions). To
achieve full 3D scanning, the sample is mechanically scanned
in the lateral (y) direction orthogonal to the scan-line via a
motorized XY stage (Zaber, ASR100B120B-T3A).

2) Noise Calibration: Our model assumes the reference
measurement is iRn = γΨ(λn)/2 and the noise variance is
σ2
n = βiRn . To robustly estimate β, we use a simplified version

of the method of Foi et al. [52]. First, we identify level sets
of the smooth reference measurement iR, and then compute
the variance of detected interference measurement iD on each
level-set. Then we perform linear regression to estimate β̂ from
the full camera measurement. In practice, we find β̂ ≈ 3.2 for
our camera. Although in principle, a single offline calibration
can be used to determine β, we observe slightly better results
by calibrating for each scan line.

B. Comparison Methods

We compare our SSE algorithm to three baseline methods
for multi-layer surface estimation described in the literature.

For each method, we compute the A-scan via back-projection
with the partial NUDFT matrix so as to highlight the differ-
ences based on detection strategy alone.

• Atalar: The A-scan is computed as in (23), and the peak
amplitude is ρ. As described by Atalar et al. [48], the
threshold is set as a fixed fraction of ρ (e.g., τ = 0.5ρ),
and all peaks above the threshold are accepted. In our
evaluation, we retain only the 5 largest peaks with reflec-
tivities above the threshold.

• Lawman: The A-scan is computed as in (23), and
surfaces are assumed to exist within pre-specified depth
ranges, as described by Lawman [14]. For each depth
range, the A-scan peak is assumed to correspond to a
surface, and no amplitude-based thresholding is used.
This approach requires prior knowledge to hard-code the
search range and is only applicable to an entire B-scan
when the number of layers is consistent and when the
layers can be completely separated in depth.

• Percentile: Numerous approaches implement a global
threshold for layer detection in a B-scan, and while the
methods differ (or details are omitted), the threshold gen-
erally requires hand-tuning [10, 11, 16, 17, 18, 19]. Here
we implement global thresholding based on a percentile
of B-scan magnitudes, hand-selected to optimize the
trade-off between the false acceptance and true rejection
rates. Note that unlike the proposed SSE method or that
of Atalar et al. [48], the same threshold is applied across
all A-scans.

C. Results

For all experiments, we use pFA = 1×10−4, dmin = 20 µm,
and Lmax = 5. We show the estimated reflectivities in
grayscale (in dB) and the depth in false color. Fig. 4 demon-
strates a characteristic result for our method. The prototype
SD-OCT system is pictured in Fig. 4(a). Fig. 4(b) shows a
sample we call ‘dime+tape’, which is a US ten-cent coin
covered on one side by Scotch tape. A full 3D point cloud from
4 measurement frames per scan line is shown in Fig. 4(c), and
the reconstructions for individual scan lines are highlighted
in Fig. 4(d). The tape adheres to the coin at the highest
features but not in the deepest crevices, thus certain parts of
the reconstruction show three distinct layers, including both
the top and bottom surfaces of the tape.

In Fig. 5, we show performance comparisons with alter-
native methods for the ‘dime+tape’ sample as we increase
the number of measurement frames. Fig. 6 shows similar
comparisons for the ‘dime+glue’ sample (photograph in Fig. 9)
consisting of a dime covered in translucent glue. The optical
path length through the glue is up to ≈1mm, so the reflections
from both the glue and coin are weak, leading to extremely
low-SNR measurements. For both samples, the B-scans are
fairly noisy, and surface extraction is non-trivial. The method
of Atalar et al. [48], which sets a threshold relative to the
strongest peak in each A-scan, performs poorly in regions
without strong surface reflections. Since Atalar et al. [48]
assume at least one surface per A-scan, if the strongest peak
is quite low, the threshold is set too low, and many spurious
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Fig. 4: Surface estimation using the prototype OCT apparatus (a) to scan the ‘dime+tape’ sample (b). The full 3D point cloud (c) and results for individual
y scan lines (d) are shown for 4 frames per scan line. The tape covers the coin roughly between 4 and 8mm, indicated by the red dotted line in (d). The
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Fig. 5: Reconstruction comparisons of the ‘dime+tape’ sample (scan-line y = 9.975mm) for an increasing number of frames. The method of Atalar et al. [48]
sets a threshold relative to the peak at each x position, leading to many spurious detections when the peak reflectivity is low. The percentile method sets a
global threshold on the B-scan magnitude, which performs better as the number of frames increases. The method of Lawman and Liang [13] is not shown
because the layers cannot be separated by simple depth segmentation.

surfaces are falsely accepted. The percentile method, which
sets a global threshold for the entire B-scan has uneven perfor-
mance across the scan-line, as the signal and noise statistics are
spatially varying. The performance of the percentile method
improves as the number of frames increases and achieves
acceptable results for 16 frames in Fig. 5. However, results for
the ‘dime+glue’ method are poor, and the percentile level must
be tuned by hand for each dataset. The method of Lawman
and Liang [13] requires pre-specifying search regions for each

layer and is thus impractical for the ‘dime+tape’ sample,
which has varying numbers of layers for each A-scan, and the
layers are not easily separated in depth. For the ‘dime+glue’
sample, even with the prior assumption that there are exactly
two layers, separated in depth above and below −0.7mm,
the method of Lawman and Liang [13] accepts too many
false surface detections. Post-processing would be required to
remove spurious surfaces.

In comparison, the SSE shows much better robustness to
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Fig. 6: Reconstruction comparisons of the ‘dime+glue’ sample (scan-line y = 8.9mm) for an increasing number of frames. The Atalar et al. [48], Lawman–
Liang [13], and percentile methods accept a large number of spurious detections for low-SNR measurements. The proposed SSE method only accepts surface
points unlikely to be artifacts due to noise, resulting in far fewer outliers.
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Fig. 7: SNR estimates for the SSE results in Fig. 6. The SNR is estimated
shown only for those A-scans in which at least one surface was detected.
Results show a sensitivity to measurements with an SNR as low as −10 dB.

noise. In particular, the SSE correctly accounts for noise statis-
tics that vary within and across datasets. The SSE shows good
rejection of false layer acceptance for 1, 2, or 4 frames. Further
increasing F appears to cause a slight mismatch between the
assumed noise model and the actual measurements, causing the
computed threshold to be too low, and increasing the number
of spurious detections. Still, the SSE results far surpass those
from comparison methods. In principle, the SSE is similar
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Fig. 8: Precision estimation for the SSE applied to the prototype OCT system
in ‘height’ and ‘depth’-map configurations and either 1 or 8 frames. The
RANSAC algorithm [53] is used to compute a robust linear fit for one scan
line of a flat metal specimen. The number of inliers found by RANSAC is
shown in (a), and the root-mean-square error (b) is computed for the inliers
relative to the linear fit. The depth error is around 1.5 µm at a distance of
0.1mm and increases to 3− 4 µm at 1mm.

to other threshold detection methods (Atalar et al. [48], and
percentile) in that a detected layer is defined as a peak in the
A-scan above a particular threshold magnitude. However, the
results in Fig. 5 and Fig. 6 demonstrate that our principled
threshold selection achieves a better tradeoff between a low
false acceptance rate and a high true detection rate.
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Fig. 9: Effect of spatial regularization for surface estimation of the ‘dime+glue’ specimen (a). The resulting 3D point cloud (b) can easily be separated into
the top (c) and bottom (d) layers for better inspection of the surface detail.

SNR Estimation: Careful threshold selection is unnecessary
for high-SNR measurements, as a broad range of thresholds
can easily distinguish between peaks due to signal and noise.
Here we estimate the SNR of our measurements to underscore
why principled threshold selection is so important for low-
cost low-SNR OCT systems. Figure 7 shows estimates of
the SNR for the sample measurement in Fig. 6. The total
power Ptot is computed from the total A-scan intensity. Then
after identifying and removing likely signal components, the
noise power Pnoise is computed from the total remaining A-
scan intensity. The SNR is estimated as the ratio SNR =
(Ptot − Pnoise)/Pnoise . Figure 7 shows only the estimates
for which the SNR is nonzero (i.e., a surface reflection was
identified). The number of A-scans with a surface detection
clearly increases as the number of frames increases. For small
numbers of frames, the reflectivity threshold is conservative,
accepting surface detections only if the SNR is roughly 0 dB or
greater. As the number of frames increases, the amplitude peak
corresponding to a surface increases with the number of frames
faster than the Neyman–Pearson threshold, which allows for
surface detection from measurements with SNR estimated to
be below −10 dB.

Precision Estimation: To evaluate the depth estimation
precision of the OCT system and our SSE algorithm, we use
a series of line scans of a planar aluminum test target. Line
scans of the flat target were made at varying distances from the
reference plane z = 0 in two configurations: (1) as a ‘height’
map (z > 0); and (2) as a ‘depth’ map (z < 0). For each
distance, the SSE algorithm was applied to data from either 1
or 8 frames. To get a proxy for the ground truth position at
each x-position in the line scan, the RANSAC algorithm [53]
was used to fit a line to the estimated depths, rejecting outliers.
Then the average error with respect to the line fit was used
to calculate the precision from the inliers. The mean depth
was the average of the estimated inlier depths. As shown in
Fig. 8(a), the number of inliers increases with the number
of frames, in accordance with the increase in SNR. Fig. 8(b)
shows the depth error is around 1.5 µm at a distance of 0.1mm
from the reference plane—less than the axial resolution for
the OCT system—and the error increases to 3−4 µm at 1mm
from the reference plane. However, the precision estimates are
roughly the same for 1 or 8 frames, suggesting that, though
surface detection improves with increasing numbers of frames
(and increasing SNR), the depth error is limited by other
factors such as the illumination bandwidth.

Optional Point Cloud Denoising: To further improve perfor-
mance beyond the pixelwise detection and estimation strategy
of the SSE, point cloud post-processing can be used to
reject outliers or produce smoother surface estimates based
on information from neighboring pixels. Classical point cloud
processing approaches often harness signal processing on
graphs [54, 55, 56, 57] or use local polynomial approxima-
tions [58]. A more recent trend is to use neural networks to
learn and enforce priors on manifold structures for point cloud
denoising [59, 60, 61, 62].

For a simple demonstration of the effect of post-processing,
we show results in Fig. 9 with outlier rejection and total
variation (TV) denoising via the method of Schoenenberger
et al. [54] applied to the SSE output. The graph-based method
proceeds in two steps: 1) remove outliers by forming an ϵ-
nearest neighbor graph (i.e., connecting all points that are
within a ball of radius ϵ from each other) and removing
vertices that have few small edge weights; 2) apply total
variation (TV) regularization to the graph coordinates (i.e.,
the remaining surface locations after outlier rejection), which
promotes spatial smoothness. The graph-based regularization
is implemented via the GSP graph signal processing tool-
box [63]. Outlier rejection uses neighborhood size ϵ = 3 ×
10−5 m, kernel variance θ = 3×10−5 m, and degree threshold
τ = 2; TV regularization uses neighborhood size k = 25 and
regularization parameter γ = 1 × 10−6 (see [54] for details).
We apply the post-processing separately to each 2D line-scan
to avoid long computations for processing large 3D graphs.

Fig. 9 shows the results of combining the individual
line-scans into a full 3D point cloud representation of the
‘dime+glue’ sample. In the Supplement, we further show
how each of the denoising steps affects the SSE results for
individual scan-lines. Using a larger number (i.e., 16) frames
with additional post-processing enables good recovery of the
true surface points with few outliers. Because the top glue
surface and bottom coin layer are well-separated in depth, we
can use a depth threshold of −0.7mm to individually inspect
the reconstruction of the top and bottom layers. The top glue
surface is almost completely recovered, while most of the coin
surface is recovered with a few gaps.

VII. DISCUSSION AND CONCLUSION

Simultaneously determining both the number and position
of layers is a challenging task at low SNR, since noise can
cause spikes easily mistaken for surface profiles. We therefore
introduce an algorithm for multi-layer surface reconstruction
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with OCT that automatically detects layers using a threshold
to limit the probability of falsely accepting noise spikes as true
signal. Compared to existing methods, the number of spurious
surface detections is greatly reduced, improving the ability to
visualize and further analyze recovered surfaces.

While our approach effectively limits the number of de-
tected outliers due to noise, some true signal peaks are
inevitably missed. Several promising approaches could reduce
the number of missed surface points, which are left for future
work. One such approach would be to incorporate spatial
information into the initial surface estimate directly rather than
simply as post-processing, so that weak reflections are easier
to detect. Another approach would be to better suppress or
model the sources of noise. For instance, cross-talk is known to
occur in line-scan or full-field OCT systems [27, 64, 65], and
could potentially be removed computationally. Alternatively,
we observe that the noise in our SD-OCT system is dominated
by the DC measurement component. A useful direction of
future research would explore low-cost configurations and
noise statistics for balanced detectors, which remove common-
mode noise. Finally, our method could be adapted for multi-
layer estimation in other modalities such as lidar.

APPENDIX A
MLE DERIVATION

We consider the case of a sample known to have a single
opaque layer and seek to estimate the depth z, reflectiv-
ity a, and phase shift ϕ relative to the reference mirror.
Given the single-frame interference measurement vector y =
[y1, . . . , yN ]

T and assuming jointly Gaussian but heteroscedas-
tic noise with variance σ2

n at element n, the likelihood is

p(y; a, z, ϕ) =

N∏
n=1

1√
2πσ2

n

× exp

{
− 1

2σ2
n

[
yn − γΨ(λn)a cos

(
4π

λn
z + ϕ

)]2}
.

(31)

The negative log-likelihood is

L(y; a, z, ϕ) = 1

2
Jy(a, z, ϕ)− log

{
N∏

n=1

1√
2πσ2

n

}
, (32)

where

Jy(a, z, ϕ) =

N∑
n=1

1

σ2
n

[
yn − γΨ(λn)a cos

(
4π

λn
z + ϕ

)]2
.

(33)

Maximizing the likelihood with respect to a, z, ϕ requires
minimizing Jy(a, z, ϕ). Expanding the cosine in (33) and
defining α1 = a cos(ϕ) and α2 = −a sin(ϕ) yields the
quadratic equation

J ′
y(α1, α2, z) =

N∑
n=1

1

σ2
n

[
yn − α1γΨ(λn) cos

(
4πz

λn

)

− α2γΨ(λn) sin

(
4πz

λn

)]2

.

(34)

We define the column vectors c = [c1, . . . cN ]T and s =
[s1, . . . , sN ]T as functions of some depth z, where cn =
γΨ(λn) cos(4πz/λn) and sn = γΨ(λn) sin(4πz/λn). We
also define the parameter vector α = [α1, α2]

T and the matrix
H = [c, s]. The matrix Σ−1 = diag([1/σ2

1 , . . . , 1/σ
2
N ]T)

contains the reciprocals of the noise variances on its diagonal.
Then we can rewrite (34) as the quadratic function

J ′
y(α1, α2, z) = (y −Hα)TΣ−1(y −Hα), (35)

which is well-known to be minimized by

α̂ = (HTΣ−1H)−1HTΣ−1y. (36)

Replacing α with its estimate, we can expand

J ′
y(α̂1, α̂2, z) = yTΣ−1[I−H(HTΣ−1H)−1HΣ−1]y.

(37)

The MLE ẑML is then the value of z that maximizes

Λ(y, z) = yTΣ−1H(HTΣ−1H)−1HΣ−1y. (38)

Using the exact inverse

(HΣ−1H)−1 =
1

G

[
sTΣ−1s −cTΣ−1s
−cTΣ−1s cTΣ−1c

]
, (39)

where G = (cTΣ−1c)(sTΣ−1s)−(cTΣ−1s)2, we can rewrite
the full objective to maximize as

Λ(y, z) =
1

G

[
(sTΣ−1s)(cTΣ−1y)2 + (cTΣ−1c)(sTΣ−1y)2

− 2(cTΣ−1s)(cTΣ−1y)(sTΣ−1y)
]
.

(40)

and ẑML = argmaxz Λ(y, z). We can likewise expand (36)
based on the inverse in (39):[

α̂1

α̂2

]
=

1

G

[
(sTΣ−1s)cTΣ−1y − (cTΣ−1s)sTΣ−1y
(cTΣ−1c)sTΣ−1y − (cTΣ−1s)cTΣ−1y

]
(41)

We then define the functions

Ω(y, z) =
1

G

{
[(sTΣ−1s)cTΣ−1y − (cTΣ−1s)sTΣ−1y]2

+ [(cTΣ−1c)sTΣ−1y − (cTΣ−1s)cTΣ−1y]2
} 1

2

(42)

Φ(y, z) =

arctan

(
− (cTΣ−1c)sTΣ−1y − (cTΣ−1s)cTΣ−1y

(sTΣ−1s)cTΣ−1y − (cTΣ−1s)sTΣ−1y

)
.

(43)

Given ẑML, the ML reflectivity is then

âML =
√
α̂2
1(ẑML) + α̂2

2(ẑML) = Ω(y, ẑML), (44)

and the phase offset is

ϕ̂ML = arctan(−α̂2(ẑML)/α̂1(ẑML)) = Φ(y, ẑML). (45)
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A. MLE Approximations

The following approximations can be used to simplify the
exact MLE formulations:

sTΣ−1c = cTΣ−1s

=

N∑
n=1

γ2Ψ2(λn)

σ2
n

cos

(
4πz

λn

)
sin

(
4πz

λn

)

=

N∑
n=1

γ2Ψ2(λn)

2σ2
n

[
sin(0) + sin

(
8πz

λn

)]
≈ 0 (46)

sTΣ−1s ≈ cTΣ−1c

=
N∑

n=1

γ2Ψ2(λn)

σ2
n

cos2
(
4πz

λn

)

=

N∑
n=1

γ2Ψ2(λn)

2σ2
n

[
1 + cos

(
8πz

λn

)]
≈ γ

β
, (47)

where (47) uses σ2
n = βγΨ(λn)/2. Then

Λ(y, z) ≈ (cTΣ−1y)2 + (sTΣ−1y)2

cTΣ−1c

≈ β

γ

∣∣∣∣∣
N∑

n=1

yn
σ2
n

γΨ(λn) exp

(
−i

4πz

λn

)∣∣∣∣∣
2

=
4

βγ

∣∣∣∣∣
N∑

n=1

yn exp

(
−i

4πz

λn

)∣∣∣∣∣
2

, (48)

and

Ω(y, z) ≈
√
(cTΣ−1y)2 + (sTΣ−1y)2

cTΣ−1c

≈ β

γ

∣∣∣∣∣
N∑

n=1

yn
σ2
n

γΨ(λn) exp

(
−i

4πz

λn

)∣∣∣∣∣
=

2

γ

∣∣∣∣∣
N∑

n=1

yn exp

(
−i

4πz

λn

)∣∣∣∣∣ . (49)

APPENDIX B
MLE DERIVATIVES

The exact MLE is the value of z that maximizes (13).
The first and second derivatives of (13) are useful for fast
maximization via Newton’s method. We thus define the vectors
c = c⊘ λ, s = s⊘ λ, and y = y ⊘ λ, where the symbol ⊘
implies elementwise (Hadamard) division, i.e., cn = cn/λn.

Let the cost function be Λ(y, z) = g(y, z)/h(y, z). The
derivatives with respect to z are

g′(y, z) = 8π
{
(sTΣ−1c)(cTΣ−1y)2

− (sTΣ−1s)(cTΣ−1y)(sTΣ−1y)

+ (cTΣ−1c)(sTΣ−1y)(cTΣ−1y)

− (sTΣ−1c)(sTΣ−1y)2

− (cTΣ−1c)(cTΣ−1y)(sTΣ−1y)

+ (sTΣ−1s)(cTΣ−1y)(sTΣ−1y)

− (cTΣ−1s)(cTΣ−1y)(cTΣ−1y)

+ (cTΣ−1s)(sTΣ−1y)(sTΣ−1y)
}

(50)

g′′(y, z) = 32π2
{
2(sTΣ−1s)(cTΣ−1y)(cTΣ−1y)

− 2(sTΣ−1s)(sTΣ−1y)(sTΣ−1y)

− 2(cTΣ−1c)(cTΣ−1y)(cTΣ−1y)

+ 2(cTΣ−1c)(sTΣ−1y)(sTΣ−1y)

− 4(sTΣ−1c)(cTΣ−1y)(sTΣ−1y)

− 4(sTΣ−1c)(sTΣ−1y)(cTΣ−1y)]

+ 4(sTΣ−1c)(cTΣ−1y)(sTΣ−1y)

+ (cTΣ−1c− sTΣ−1s)
[
(cTΣ−1y)2 − (sTΣ−1y)2

]
+ (cTΣ−1c)

[
(cTΣ−1y)2 − (sTΣ−1y)(sTΣ−1y)

]
+ (sTΣ−1s)

[
(sTΣ−1y)2 − (cTΣ−1y)(cTΣ−1y)

]
+ (cTΣ−1s)

[
(cTΣ−1y)(sTΣ−1y)

+ 2(cTΣ−1y)(sTΣ−1y) + (sTΣ−1y)(cTΣ−1y)
]}
(51)

h′(y, z) = 8π{cTΣ−1c(sTΣ−1c)− sTΣ−1s(sTΣ−1c)

− cTΣ−1s(cTΣ−1c− sTΣ−1s)}
(52)

h′′(y, z) = 32π2
{
(cTΣ−1c− sTΣ−1s)(cTΣ−1c− sTΣ−1s)

+ 2(cTΣ−1c)(sTΣ−1s) + 4(cTΣ−1s)(cTΣ−1s)

− (cTΣ−1c)2 − (sTΣ−1s)2 − 4(sTΣ−1c)2
}
.

(53)

The cost function derivatives are

Λ′(y, z) =
g′(y, z)h(y, z)− g(y, z)h′(y, z)

[h(y, z)]2
(54)

Λ′′(y, z) =
g′′(y, z)− h′′(y, z)Λ(y, z)− 2h′(y, z)Λ′(y, z)

h(y, z)
.

(55)

The Newton iterations are initialized with z(0) = ẑBP and
continue as

z(t+1) = z(t) − Λ′(y, z(t))

Λ′′(y, z(t))
. (56)
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APPENDIX C
SINGLE-SURFACE CRAMÉR–RAO LOWER BOUND

The Cramér–Rao Lower Bound (CRLB) places a lower
bound on the variance of an unbiased estimator [42, Ch. 3].
The CRLB is computed by first forming the Fisher information
matrix (FIM) and computing the inverse. The Fisher informa-
tion for a vector parameter θ is

[I(θ)]ij = −E
{
∂2 log p(x;θ)

∂θi∂θj

}
(57)

The CRLB for parameter i is given by the (i, i) element of
the inverse Fisher info matrix:

Var(θ̂i) ≥ [I−1(θ)]ii. (58)

We consider the CRLB for the vector parameter θ =
[a, z, ϕ]T, assuming a single reflecting surface and using the
heteroscedastic Gaussian noise model. Given the likelihood
in (31), the elements of the FIM are found to be

[I(θ)]11 = −E
{
∂2 log p(y;θ)

∂a2

}
=

N∑
n=1

γ2Ψ2(λn)

σ2
n

cos2
(
4πz

λn
+ ϕ

)
(59)

[I(θ)]12 = [I(θ)]21 = −E
{
∂2 log p(y;θ)

∂a∂z

}
= −

N∑
n=1

γ2Ψ2(λn)

σ2
n

4π

λn
a cos

(
4πz

λn
+ ϕ

)
sin

(
4πz

λn
+ ϕ

)
(60)

[I(θ)]13 = [I(θ)]31 = −E
{
∂2 log p(y;θ)

∂a∂ϕ

}
= −

N∑
n=1

γ2Ψ2(λn)

σ2
n

a cos

(
4πz

λn
+ ϕ

)
sin

(
4πz

λn
+ ϕ

)
(61)

[I(θ)]22 = −E
{
∂2 log p(y;θ)

∂z2

}
=

N∑
n=1

γ2Ψ2(λn)

σ2
n

(
4π

λn

)2

a2 sin2
(
4πz

λn
+ ϕ

)
(62)

[I(θ)]23 = [I(θ)]32 = −E
{
∂2 log p(y;θ)

∂ϕ∂z

}
=

N∑
n=1

γ2Ψ2(λn)

σ2
n

4π

λn
a2 sin2

(
4πz

λn
+ ϕ

)
(63)

[I(θ)]33 = −E
{
∂2 log p(y;θ)

∂ϕ2

}
=

N∑
n=1

γ2Ψ2(λn)

σ2
n

a2 sin2
(
4πz

λn
+ ϕ

)
. (64)
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