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Abstract

Accurate time-series forecasting is essential for real-world applications such as pre-
dictive maintenance and feedback control. While deep neural networks have shown
promise in recognizing complex patterns and predicting trends, their generalization
capabilities are open to debate, and they typically do not perform well with limited
data. In this paper, we examine the potential of time-series foundation models
(TSFM) as a practical solution for addressing real-world (probabilistic) forecasting
challenges. Our experiments using real building data demonstrate that, through
fine-tuning TSFMs, we can achieve excellent predictions, even with limited data,
and improve generalization in zero-shot prediction on unseen tasks.

1 Motivation

Probabilistic time-series forecasting plays a crucial role in a range of real-world applications such as
energy systems, especially as predictive models for anomaly detection based on confidence intervals
or stochastic model-based predictive control. Deep forecasting models are especially useful when
accurate and tractable first-principles models (e.g., a physics-based model) are difficult to obtain.
Consequently, recent developments have focused on deep learning methods, which can identify
patterns from historical data and provide predictions; c.f. DEEPAR [18], N-BEATS [15], and
temporal fusion transformers (TFT) [13]. While deep learning approaches can yield accurate time-
series forecasts [16], they also often produce unreliable forecasts, sometimes even under-performing
compared to traditional statistical models like seasonal ARIMA or classical MLPs [10]. Moreover,
for small datasets, these approaches are prone to issues like overfitting or mode collapse [7, 14].

Foundation models (FMs) [3] have recently emerged as a powerful tool, demonstrating excellent
performance across numerous machine learning domains. The core idea of FMs involves leveraging
a massive dataset to pre-train a large model, which can then be tuned to various downstream use
cases. This approach contrasts with classical deep learning, which typically learns from scratch using
task-specific data. Two primary advantages of FMs include: (i) their capacity to learn various function
landscapes, allowing them to be expressive enough to contribute to different problem domains; and
(ii) their strong generalization capability which can be attributed to exploiting patterns learned from a
wide range of pre-training datasets. This generalizability is typically exploited for specific use cases
or downstream tasks through a transfer learning process referred to as fine-tuning.

Despite their impressive track record in language and vision [4, 11, 17], their applicability and
effectiveness in real-world time-series forecasting problems remain largely unexplored. This paper
examines the effectiveness of time-series foundation models (TSFMs), with emphasis on real multi-
month data obtained from building energy systems. In particular, we present four pressing research
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questions and provide answers based on empirical studies using time-series signals collected from
real-world building energy systems: (RQ1) Zero-shot prediction quality: How effective are baseline
TSFMs? (RQ2) Effectiveness of fine-tuning: Can fine-tuning improve baseline TSFM forecasts?
(RQ3) Performance with limited data: How do TSFMs perform on problems with limited data?
(RQ4) Generalization to unseen tasks: Can TSFMs predict accurately on unseen systems?

2 Experimental Setup: Benchmark Models, Datasets, and Evaluation

TSFMs: Salesforce’s MOIRAI [22], Google’s TIMESFM [5], and Amazon’s CHRONOS [2]. Deep
Forecasting Models: LSTM[8]-based DEEPAR, N-BEATS , and TFT. See Appendix A for details.

For our experiments, we test the aforementioned forecasting methods on four different types of time-
series signals, collected at 15-minute intervals from SUSTIE, a Mitsubishi Electric’s net-zero energy
building, during office workdays. The signals include room occupancy (Occ), carbon emissions
(CO2), power consumption for illumination and appliances (Light), and energy consumption for
heating, ventilation, and air conditioning (HVAC) equipment (HVAC).

To reduce bias in the experimental results, we collected each time series from 8 zones spanning 3
floors (i.e., 3+3+2=8). Moreover, we conducted the experiments using 4 different cross-validation
splits, each representing a different season through a blocked-split approach; each signal spans
3 months, resulting in 8 zones × 4 seasons = 32 different time series. For each time series, the
last 2 weeks of signals are excluded and used as test periods. Based on the building’s operational
specifications, we used 24-hour signals as the context length (i.e., look-back period) to predict the
following 4 hours. We conduct a rolling-window analysis [23] and report the mean ± standard
deviation error across these 32 time series.

3 Results

To evaluate the efficacy of different TSFMs compared to classical deep forecasting models such as
TFT, we assess the performance based on: mean absolute scaled error (MASE), root-mean-squared
scaled error (RMSSE), mean scaled interval score (MSIS), and weighted quantile loss (wQL); c.f.
Appendix B for further details. Note that MASE and RMSSE evaluate the accuracy of the models’
point predictions, while MSIS and wQL assess the quality of their probabilistic predictions. We
compare against the popular N-BEATS which is deterministic: probabilistic metrics do not apply.

3.1 Zero-Shot Prediction Quality (RQ1)

Table 1: Comparison of forecasting performance. The winner/runner-up is highlighted in light
blue/yellow. Fine-tuned TSFMs outperform baseline TSFMs and s.o.t.a. deep forecasting models.

Deep Forecasting Models TSFMs (Zero-Shot) Fine-tuned TSFMs

Dataset Metric N-BEATS DEEPAR TFT MOIRAI TIMESFM CHRONOS
CHRONOS

+FullFT
CHRONOS

+LoRA

Occ

MASE 0.32 ± 0.06 0.27 ± 0.05 0.27 ± 0.05 0.70 ± 0.12 0.51 ± 0.07 0.60 ± 0.08 0.24 ± 0.04 0.23 ± 0.04

RMSSE 0.33 ± 0.05 0.27 ± 0.04 0.28 ± 0.05 0.68 ± 0.11 0.50 ± 0.07 0.59 ± 0.07 0.25 ± 0.04 0.24 ± 0.04

MSIS - 4.24 ± 0.92 3.93 ± 0.89 9.11 ± 1.50 10.84 ± 1.55 8.50 ± 1.26 3.80 ± 0.72 3.58 ± 0.82

wQL - 0.44 ± 0.08 0.43 ± 0.08 1.09 ± 0.18 1.12 ± 0.17 1.11 ± 0.15 0.43 ± 0.07 0.40 ± 0.07

CO2

MASE 0.34 ± 0.09 0.48 ± 0.16 0.38 ± 0.10 0.70 ± 0.14 0.55 ± 0.12 0.50 ± 0.11 0.32 ± 0.08 0.31 ± 0.07

RMSSE 0.31 ± 0.08 0.43 ± 0.14 0.34 ± 0.09 0.66 ± 0.13 0.50 ± 0.11 0.47 ± 0.10 0.29 ± 0.07 0.29 ± 0.07

MSIS - 7.75 ± 2.86 5.27 ± 1.73 8.54 ± 1.79 12.08 ± 2.59 6.96 ± 1.51 5.43 ± 1.38 4.54 ± 1.16

wQL - 0.15 ± 0.06 0.10 ± 0.03 0.18 ± 0.05 0.20 ± 0.06 0.14 ± 0.03 0.10 ± 0.03 0.09 ± 0.02

Light

MASE 0.63 ± 0.06 0.28 ± 0.05 0.27 ± 0.08 0.83 ± 0.09 0.50 ± 0.08 0.52 ± 0.07 0.22 ± 0.04 0.22 ± 0.04

RMSSE 0.64 ± 0.06 0.30 ± 0.05 0.29 ± 0.07 0.80 ± 0.10 0.49 ± 0.08 0.51 ± 0.07 0.26 ± 0.04 0.25 ± 0.04

MSIS - 4.47 ± 1.17 3.79 ± 0.99 11.30 ± 1.10 10.60 ± 1.72 7.74 ± 1.13 3.38 ± 0.70 3.10 ± 0.66

wQL - 0.33 ± 0.07 0.31 ± 0.10 0.93 ± 0.10 0.77 ± 0.15 0.66 ± 0.10 0.28 ± 0.05 0.25 ± 0.05

HVAC

MASE 0.51 ± 0.46 0.41 ± 0.35 0.40 ± 0.30 0.79 ± 0.66 0.58 ± 0.51 0.42 ± 0.49 0.32 ± 0.24 0.32 ± 0.24

RMSSE 0.48 ± 0.40 0.38 ± 0.31 0.35 ± 0.25 0.69 ± 0.54 0.48 ± 0.40 0.37 ± 0.41 0.30 ± 0.22 0.30 ± 0.22

MSIS - 7.59 ± 6.63 5.38 ± 3.91 9.38 ± 8.55 12.56 ± 11.10 7.08 ± 8.59 5.01 ± 3.79 5.00 ± 4.03

wQL - 0.94 ± 0.81 0.80 ± 0.58 1.42 ± 1.25 1.59 ± 1.42 0.98 ± 1.16 0.72 ± 0.57 0.70 ± 0.56

From Table 1, we observe the following. Among the TSFMs, TIMESFM and CHRONOS perform
similarly, while MOIRAI generally exhibits the highest errors on our datasets. From the perspective
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of distribution forecasting, CHRONOS consistently achieves the best performance amongst these
three models. We attribute this to differences in the architectures and training methodologies, as this
is in line with current conventional wisdom regarding generative models for continuous data (e.g.,
images), i.e., that models based on tokenized (i.e., discrete) representation often outperform models
with continuous variables [19, 12]. In our case, we see CHRONOS, which operates on a tokenized
representation of time series data and is trained via a classification cross-entropy loss, performing
better than TIMESFM, i.e., a fully-connected network trained via a regression loss.

It is worth noting that our signals are not completely distinct but may share similarities with some
of the pre-training datasets, such as PedestrianCounts, SpanishEnergyAndWeather,
KDDCup2018, and AustralianElectricity. Nevertheless, the zero-shot performance of
TSFMs falls short compared to models specifically trained on the downstream datasets, contradicting
the original paper’s claim of having comparable or occasionally superior zero-shot performance on
new datasets. This discrepancy highlights the need for further examination, as discussed in Section 4.

Given that CHRONOS demonstrates the most promising preliminary performance, and its imple-
mentation is compatible with HuggingFace’s Transformers library [21], we conduct the subsequent
experiments using the CHRONOS models.

3.2 Effectiveness of (Parameter-Efficient) Fine-Tuning (RQ2)

Next, we investigate whether we can potentially improve upon the (underwhelming) zero-shot
performance of TSFMs with fine-tuning. Concretely, we test the effects of full fine-tuning (Full-FT)
along with parameter-efficient fine-tuning (PEFT) via low-rank adaptation (LoRA) [9], which has
shown promise in fine-tuning large language models (LLMs) but has been under-explored for TSFMs.

From Table 1, we deduce that fine-tuning proves to be effective when applying TSFMs to our
real-world data. Fine-tuned CHRONOS clearly and consistently outperforms the benchmark deep
forecasting models with both FullFT and PEFT with 1K fine-tuning gradient steps, sometimes
reducing the error metric by more than 50%. We also check the impact of LoRA rank by varying
r = 4, 16, and 64 for 1K training iterations; see Table 3 in Appendix C. Interestingly, Table 3 implies
that LoRA is not only comparable, but actually outperforms (albeit marginally) Full-FT. This is
consistent with the observations of LoRA in language tasks [9], and mainly because LoRA can
prevent overfitting. Since the PEFT results are all similarly good, we recommend a lower rank (e.g.,
r = 4) to reduce the computational expense, for limited data and few FT iterations. In fact, using
LoRA r = 4 reduces our total training floating-point operations (FLOPS) by 33% and accelerates
training by 2.3×, compared to Full-FT, on a NVIDIA RTX2080Ti GPU with 6 CPU cores.

3.3 Transferability with limited data (RQ3)
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Figure 1: Forecasting accuracy by training dataset size on the Occ dataset.

So far, we have demonstrated that TSFMs can successfully forecast real-world building time-series
data with fine-tuning. An immediate question is how much time-series data is needed to fine-tune
such large models and whether a fine-tuned model can achieve high accuracy with less data. To
explore this, we vary the training dataset size across periods of 1 week, and {1, 3, 6, 9, 11} months.
For a fair comparison, we keep the evaluation period fixed while extending the training duration
accordingly. The plot of forecasting accuracy across different models for the Occ signal is shown in
Figure 1, with the tabulated results provided in Appendix C Tables 4–9.
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When sufficient training data is available, TFT demonstrates performance comparable to that of
TSFMs. However, the forecasting accuracy of both deep learning baselines and TSFMs declines as
the training dataset size decreases. Notably, the performance gap between tiny datasets (e.g., 1 week)
and sufficient datasets (e.g., ≥ 6 months) is ≈ 0.5× for CHRONOS compared to DEEPAR and TFT.
This suggests that TSFMs exhibit greater robustness to the small data problem, presumably due to
pre-training; pre-training enables models to capture general patterns from large datasets, which helps
mitigate overfitting and enhances generalization [6].

3.4 Generalizability to unseen tasks (RQ4)

In real applications, one is often faced with predicting time-series for a new client/user: i.e., with ex-
tremely little prior data available for training. In such circumstances, we evaluate the generalizability
of TSFMs to unseen (but known to be similar) thermal zones. We fine-tuned CHRONOS using data
for 3 months from a zone on the 2nd floor of our commercial building, and then tested it on the one
from the 3rd (Table 2) and the other from the 4th floor (Table 10) without any additional tuning. As
in the previous sections, we conducted tests on the four splits.

We observe that TSFM with fine-tuning outperforms TFT predictions comprehensively in terms of
errors between point estimates. As in previous sections, LoRA r = 4 often does slightly better than
Full-FT. The improvement of fine-tuned TSFMs over TFT is especially apparent from the Light and
HVAC categories, where the TSFM competitors generalize significantly better due to an informative
prior learned from a pre-training dataset containing energy data (albeit from a completely different
source). For Occ and CO2 (which are correlated), since usage patterns across zones are not very
dissimilar, TFT exhibits slight improvement in the probabilistic metrics, but is still outclassed by
fine-tuned TSFMs. This demonstrates clearly how the pre-training prior of CHRONOS helps regularize
the training and build predictions more robust to unseen patterns. With probabilistic forecasting
deemed more complex, we surmise it is more susceptible to overfitting, occasionally competing
against the benefits from the pre-trained prior and potentially explaining the few rare cases when TFT
outperforms Full-FT on probabilistic metrics.

Table 2: Comparison of forecasting accuracy between TFT and TSFMs on unseen zone. The model
is trained on a zone on the 2nd floor, then tested on another zone on the 3rd floor.

Fine-tuned TSFMs Fine-tuned TSFMs

Dataset Metric TFT CHRONOS
+FullFT

CHRONOS
+LoRA Dataset Metric TFT CHRONOS

+Full-FT
CHRONOS

+LoRA

Occ

MASE 0.271 ± 0.071 0.231 ± 0.061 0.229 ± 0.064

Light

MASE 0.262 ± 0.061 0.216 ± 0.056 0.223 ± 0.049

RMSSE 0.278 ± 0.070 0.248 ± 0.062 0.243 ± 0.063 RMSSE 0.292 ± 0.056 0.255 ± 0.057 0.258 ± 0.050

MSIS 4.040 ± 1.030 3.693 ± 1.179 3.629 ± 1.173 MSIS 3.818 ± 0.936 3.368 ± 1.045 3.239 ± 0.744

wQL 0.432 ± 0.110 0.435 ± 0.114 0.416 ± 0.117 wQL 0.305 ± 0.062 0.281 ± 0.076 0.259 ± 0.059

CO2

MASE 0.345 ± 0.087 0.274 ± 0.074 0.255 ± 0.070

HVAC

MASE 0.436 ± 0.310 0.410 ± 0.235 0.383 ± 0.270

RMSSE 0.309 ± 0.074 0.255 ± 0.068 0.239 ± 0.064 RMSSE 0.380 ± 0.292 0.363 ± 0.263 0.347 ± 0.276

MSIS 4.875 ± 1.384 4.742 ± 1.230 3.624 ± 1.009 MSIS 6.895 ± 3.724 6.462 ± 4.056 6.285 ± 4.443

wQL 0.100 ± 0.024 0.101 ± 0.023 0.079 ± 0.018 wQL 0.984 ± 0.494 0.988 ± 0.427 0.924 ± 0.438

4 Conclusions and Open Opportunities

While the underwhelming performance of zero-shot TSFMs is understandable given that the models
have not been exposed to real building usage data or a wide range of occupancy signals during
pretraining, this highlights that TSFMs are still in the early stages of development and are not yet
ready for plug-and-play with real-world applications. Instead of relying on in-context inference alone,
our preliminary study indicates that to reach their full potential, current TSFMs require fine-tuning
until they are scaled significantly to comprise billions of parameters, similar to LLMs, and capable of
learning from a massive data corpus.

One open challenge is multivariate forecasting, which is especially critical to building energy systems
whose time series are correlated, as they are produced by dynamics that are strongly connected
between zones. Current TSFMs predominantly focus on univariate time series, while real-world
data is often multivariate. Furthermore, the most effective method to integrate additional static
and/or dynamic covariates into TSFMs remains unclear. Finally, an interesting open problem is to
enable domain adaptation e.g. from commercial building data, how to transfer knowledge to improve
residential building forecasting problems, or from the building level to the city level.
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Appendices

A Benchmark Models

Foundation Models We use our base model on official implementations of three recently developed
TSFMs: Salesforce’s MOIRAI [22], Google’s TIMESFM [5], and Amazon’s CHRONOS [2]. Despite
some minor differences, these models utilize transformers [20] as their underlying architecture, with
91M, 200M, and 200M parameters, respectively. They are all trained on publicly available datasets
encompassing various domains such as energy, weather, stock, and synthetic time-series datasets.

Deep Forecasting Models We compare these TSFMs to three prominent deep learning baselines:
LSTM[8]-based DEEPAR, N-BEATS , and TFT; all implementations use GluonTS [1].

B Description of Performance Metrics

Let Y := {y1, . . . , yt, . . .} denote a time-series. The main objective of probabilistic forecasting is to
predict the conditional probability distribution

π := π(
−→
Y t,P |

←−
Y t,C)

of the future target sequence

−→
Y t,P := {yt+1, yt+2, . . . , yt+P }

based on a past context sequence

←−
Y t,C := {yt−C+1, yt−C+2, . . . , yt}

for a given predictive window length P ∈ N and context window length C ∈ N. Errors are computed
between model predictions

−→
Y t,P and ground truth

−→
Y true

t,P = {ytruet+1, y
true
t+2, . . . , y

true
t+P }. Let the absolute

mean error of a naive forecasting:

ζMAE =
1

T − C

T∑
τ=C+1

|ytrueτ − ytrueτ−C |.

where T = |Y | is the length of a time-series. Similarly, let the root-mean-squared error of a navie
forecasting:

ζRMSE =

√√√√ 1

T − C

T∑
τ=C+1

|ytrueτ − ytrueτ−C |2.

The performance metrics chosen‡ in the paper to evaluate model performance are as follows. Note
that we do not want the metric to assign higher weights to easy-to-forecast sub time-series or (near)
zero-series, since they, in fact, hold less practical importance in practice. Therefore, instead of using
varying scales, we apply a constant scale across the series.

For MSIS, we use the 10% and 90% quantiles for lower and upper bounds, respectively. For wQL,
we evaluate the 10%, 50%, and 90% quantiles..

B.1 Mean Absolute Scaled Error (MASE)

MASE(
−→
Y t,P ,

−→
Y true

t,P ) =
1

ζMAE
· 1
P

t+P∑
τ=t+1

|yτ − ytrueτ |

‡Note that the evaluation metrics are modified arithmetically to ensure a constant scaling factor.
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B.2 Root-Mean-Squared Scaled Error (RMSSE)

RMSSE(
−→
Y t,P ,

−→
Y true

t,P ) =
1

ζRMSE
·

√√√√ 1

P

t+P∑
τ=t+1

|yτ − ytrueτ |2

For the probabilistic metrics some additional notation is required. Suppose ut = y
(0.9)
t and lt = y

(0.1)
t

respectively denote the upper (90th) and lower (10th) quantiles considered during evaluation, y(0.5)t

denote the median, and y
(β)
t denote the β-th quantile for β ∈ (0, 1), all at time t. Let I(·) denote

an indicator function that is 1 when the parenthetical argument (usually a conditional statement) is
satisfied, and 0 otherwise. Since we choose the 10-90 confidence interval, α = 0.1 denotes the 10%
coverage parameter.

B.3 Mean Scaled Interval Score (MSIS)

MSIS(π,
−→
Y true

t,P ) =
1

ζMAE
· 1
P

t+P∑
τ=t+1

[
(ut − lt) +

2

α
(lt − ytruet ) · I(ytruet < lt) +

2

α
(ytruet − ut) · I(ytruet > ut)

]

B.4 Weighted Quantile Loss (wQL)

wQL(π,
−→
Y true

t,P ) :=
1

3

[
QL(0.1)(π,

−→
Y true

t,P ) + QL(0.5)(π,
−→
Y true

t,P ) + QL(0.9)(π,
−→
Y true

t,P )
]

where,

QL(β)(π,
−→
Y true

t,P ) =

2
P

∑t+P
τ=t+1

[
β ·max(0, ytruet − y

(β)
t ) + (1− β) ·max(0, y

(β)
t − ytruet )(j)

]
1

T−C

∑T
τ=C+1 |ytrueτ |
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C Supplementary Tables

Table 3: Comparison of forecasting accuracy between PEFT and FullFT.

Dataset Metric LoRA
(rank=4)

LoRA
(rank=16)

LoRA
(rank=64) FullFT

Occ

MASE 0.229 ± 0.042 0.230 ± 0.042 0.229 ± 0.042 0.235 ± 0.037
RMSSE 0.242 ± 0.041 0.243 ± 0.040 0.242 ± 0.041 0.250 ± 0.037
MSIS 3.577 ± 0.815 3.599 ± 0.814 3.588 ± 0.827 3.801 ± 0.724
wQL 0.402 ± 0.074 0.403 ± 0.074 0.402 ± 0.075 0.434 ± 0.069

CO2

MASE 0.306 ± 0.074 0.305 ± 0.077 0.306 ± 0.077 0.316 ± 0.081
RMSSE 0.287 ± 0.069 0.287 ± 0.071 0.287 ± 0.072 0.293 ± 0.074
MSIS 4.543 ± 1.161 4.535 ± 1.132 4.538 ± 1.142 5.427 ± 1.377
wQL 0.087 ± 0.021 0.086 ± 0.022 0.086 ± 0.021 0.104 ± 0.025

Light

MASE 0.215 ± 0.035 0.216 ± 0.035 0.216 ± 0.035 0.215 ± 0.036
RMSSE 0.250 ± 0.037 0.251 ± 0.036 0.251 ± 0.037 0.256 ± 0.038
MSIS 3.102 ± 0.659 3.134 ± 0.657 3.134 ± 0.668 3.376 ± 0.698
wQL 0.254 ± 0.047 0.256 ± 0.046 0.256 ± 0.046 0.282 ± 0.052

HVAC

MASE 0.320 ± 0.239 0.319 ± 0.238 0.319 ± 0.238 0.315 ± 0.244
RMSSE 0.299 ± 0.217 0.300 ± 0.217 0.300 ± 0.216 0.301 ± 0.216
MSIS 4.995 ± 4.028 5.024 ± 4.091 4.979 ± 4.053 5.012 ± 3.790
wQL 0.698 ± 0.564 0.700 ± 0.567 0.700 ± 0.566 0.716 ± 0.570

Table 4: Comparison of forecasting accuracy (1 week).

Deep Forecasting Models Fine-tuned TSFMs

Dataset Metric N-BEATS DEEPAR TFT CHRONOS
+FullFT

CHRONOS
+LoRA

Occ

MASE 0.340 ± 0.048 0.461 ± 0.096 0.559 ± 0.296 0.293 ± 0.052 0.293 ± 0.059
RMSSE 0.339 ± 0.044 0.453 ± 0.088 0.530 ± 0.253 0.307 ± 0.048 0.308 ± 0.054
MSIS - 8.067 ± 1.999 7.850 ± 3.622 4.863 ± 0.869 4.983 ± 0.982
wQL - 0.967 ± 0.230 1.084 ± 0.544 0.571 ± 0.095 0.582 ± 0.110

CO2

MASE 0.467 ± 0.134 2.017 ± 1.367 0.705 ± 0.223 0.392 ± 0.108 0.381 ± 0.121
RMSSE 0.412 ± 0.118 1.652 ± 1.106 0.612 ± 0.188 0.359 ± 0.100 0.351 ± 0.111
MSIS - 38.715 ± 26.897 11.621 ± 3.817 6.972 ± 1.867 6.644 ± 2.002
wQL - 0.730 ± 0.444 0.242 ± 0.074 0.137 ± 0.041 0.131 ± 0.047

Light

MASE 0.544 ± 0.103 0.693 ± 0.309 0.467 ± 0.159 0.275 ± 0.051 0.281 ± 0.056
RMSSE 0.568 ± 0.088 0.659 ± 0.269 0.468 ± 0.136 0.315 ± 0.050 0.323 ± 0.054
MSIS - 11.757 ± 6.195 7.615 ± 3.464 4.555 ± 0.901 4.632 ± 0.950
wQL - 1.052 ± 0.499 0.716 ± 0.364 0.390 ± 0.075 0.396 ± 0.082

HVAC

MASE 0.462 ± 0.387 0.581 ± 0.633 0.553 ± 0.375 0.360 ± 0.288 0.341 ± 0.265
RMSSE 0.442 ± 0.358 0.488 ± 0.485 0.461 ± 0.296 0.337 ± 0.242 0.318 ± 0.223
MSIS - 10.804 ± 12.535 8.857 ± 6.034 5.632 ± 4.229 5.319 ± 3.983
wQL - 1.450 ± 1.614 1.328 ± 0.939 0.853 ± 0.700 0.791 ± 0.636
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Table 5: Comparison of forecasting accuracy (1 month).

Deep Forecasting Models Fine-tuned TSFMs

Dataset Metric N-BEATS DEEPAR TFT CHRONOS
+FullFT

CHRONOS
+LoRA

Occ

MASE 0.329 ± 0.059 0.319 ± 0.069 0.358 ± 0.077 0.272 ± 0.052 0.267 ± 0.049
RMSSE 0.333 ± 0.059 0.326 ± 0.063 0.356 ± 0.069 0.288 ± 0.051 0.283 ± 0.048
MSIS - 5.331 ± 1.310 5.396 ± 1.389 4.488 ± 0.930 4.544 ± 0.898
wQL - 0.609 ± 0.142 0.627 ± 0.135 0.518 ± 0.100 0.520 ± 0.092

CO2

MASE 0.368 ± 0.098 0.540 ± 0.227 0.524 ± 0.169 0.364 ± 0.095 0.351 ± 0.105
RMSSE 0.333 ± 0.087 0.473 ± 0.191 0.458 ± 0.144 0.335 ± 0.085 0.326 ± 0.095
MSIS - 8.990 ± 3.892 8.458 ± 2.895 6.517 ± 1.688 6.009 ± 1.820
wQL - 0.173 ± 0.068 0.166 ± 0.055 0.125 ± 0.029 0.115 ± 0.032

Light

MASE 0.581 ± 0.068 0.315 ± 0.077 0.351 ± 0.146 0.242 ± 0.043 0.243 ± 0.040
RMSSE 0.602 ± 0.058 0.336 ± 0.067 0.369 ± 0.123 0.284 ± 0.045 0.287 ± 0.041
MSIS - 5.057 ± 1.309 5.555 ± 3.271 3.961 ± 0.736 3.980 ± 0.717
wQL - 0.418 ± 0.112 0.465 ± 0.235 0.336 ± 0.068 0.331 ± 0.057

HVAC

MASE 0.466 ± 0.395 0.376 ± 0.283 0.431 ± 0.345 0.342 ± 0.267 0.327 ± 0.257
RMSSE 0.448 ± 0.367 0.342 ± 0.240 0.371 ± 0.274 0.325 ± 0.233 0.307 ± 0.221
MSIS - 6.289 ± 4.537 6.224 ± 4.773 5.542 ± 4.146 5.342 ± 4.056
wQL - 0.867 ± 0.656 0.922 ± 0.708 0.811 ± 0.647 0.762 ± 0.613

Table 6: Comparison of forecasting accuracy (3 months).

Deep Forecasting Models Fine-tuned TSFMs

Dataset Metric N-BEATS DEEPAR TFT CHRONOS
+FullFT

CHRONOS
+LoRA

Occ

MASE 0.322 ± 0.056 0.265 ± 0.046 0.274 ± 0.048 0.235 ± 0.037 0.229 ± 0.042
RMSSE 0.325 ± 0.053 0.273 ± 0.042 0.280 ± 0.045 0.250 ± 0.037 0.242 ± 0.041
MSIS - 4.236 ± 0.920 3.925 ± 0.886 3.801 ± 0.724 3.577 ± 0.815
wQL - 0.439 ± 0.077 0.431 ± 0.079 0.434 ± 0.069 0.402 ± 0.074

CO2

MASE 0.337 ± 0.088 0.478 ± 0.158 0.378 ± 0.104 0.316 ± 0.081 0.306 ± 0.074
RMSSE 0.306 ± 0.079 0.427 ± 0.141 0.340 ± 0.093 0.293 ± 0.074 0.287 ± 0.069
MSIS - 7.750 ± 2.859 5.265 ± 1.728 5.427 ± 1.377 4.543 ± 1.161
wQL - 0.146 ± 0.060 0.103 ± 0.033 0.104 ± 0.025 0.087 ± 0.021

Light

MASE 0.625 ± 0.063 0.283 ± 0.053 0.269 ± 0.080 0.215 ± 0.036 0.215 ± 0.035
RMSSE 0.639 ± 0.058 0.304 ± 0.050 0.293 ± 0.070 0.256 ± 0.038 0.250 ± 0.037
MSIS - 4.467 ± 1.174 3.788 ± 0.986 3.376 ± 0.698 3.102 ± 0.659
wQL - 0.326 ± 0.072 0.309 ± 0.104 0.282 ± 0.052 0.254 ± 0.047

HVAC

MASE 0.512 ± 0.458 0.414 ± 0.346 0.400 ± 0.297 0.315 ± 0.244 0.320 ± 0.239
RMSSE 0.479 ± 0.404 0.384 ± 0.307 0.352 ± 0.249 0.301 ± 0.216 0.299 ± 0.217
MSIS - 7.594 ± 6.631 5.383 ± 3.911 5.012 ± 3.790 4.995 ± 4.028
wQL - 0.935 ± 0.810 0.802 ± 0.584 0.716 ± 0.570 0.698 ± 0.564
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Table 7: Comparison of forecasting accuracy (6 months).

Deep Forecasting Models Fine-tuned TSFMs

Dataset Metric N-BEATS DEEPAR TFT CHRONOS
+FullFT

CHRONOS
+LoRA

Occ

MASE 0.329 ± 0.060 0.271 ± 0.054 0.246 ± 0.045 0.230 ± 0.042 0.227 ± 0.044
RMSSE 0.332 ± 0.058 0.278 ± 0.049 0.255 ± 0.043 0.245 ± 0.041 0.240 ± 0.043
MSIS - 4.485 ± 1.137 3.433 ± 0.874 3.675 ± 0.823 3.527 ± 0.877
wQL - 0.439 ± 0.081 0.385 ± 0.073 0.419 ± 0.078 0.387 ± 0.075

CO2

MASE 0.337 ± 0.086 0.482 ± 0.149 0.332 ± 0.090 0.319 ± 0.081 0.299 ± 0.074
RMSSE 0.307 ± 0.077 0.431 ± 0.129 0.303 ± 0.081 0.296 ± 0.073 0.281 ± 0.068
MSIS - 7.830 ± 2.841 4.207 ± 1.201 5.300 ± 1.403 4.258 ± 1.075
wQL - 0.145 ± 0.053 0.087 ± 0.023 0.101 ± 0.026 0.080 ± 0.020

Light

MASE 0.638 ± 0.068 0.271 ± 0.042 0.243 ± 0.048 0.209 ± 0.035 0.220 ± 0.043
RMSSE 0.649 ± 0.064 0.292 ± 0.038 0.269 ± 0.043 0.249 ± 0.038 0.250 ± 0.042
MSIS - 4.080 ± 0.736 3.255 ± 0.873 3.178 ± 0.700 3.125 ± 0.843
wQL - 0.309 ± 0.054 0.270 ± 0.054 0.263 ± 0.050 0.249 ± 0.054

HVAC

MASE 0.525 ± 0.462 0.459 ± 0.409 0.355 ± 0.256 0.323 ± 0.243 0.361 ± 0.280
RMSSE 0.487 ± 0.406 0.419 ± 0.353 0.327 ± 0.229 0.305 ± 0.216 0.329 ± 0.248
MSIS - 8.947 ± 8.572 5.095 ± 3.728 5.133 ± 3.846 5.743 ± 5.047
wQL - 1.012 ± 0.884 0.706 ± 0.492 0.717 ± 0.558 0.790 ± 0.646

Table 8: Comparison of forecasting accuracy (9 months).

Deep Forecasting Models Fine-tuned TSFMs

Dataset Metric N-BEATS DEEPAR TFT CHRONOS
+FullFT

CHRONOS
+LoRA

Occ

MASE 0.327 ± 0.059 0.265 ± 0.044 0.242 ± 0.041 0.227 ± 0.041 0.228 ± 0.044
RMSSE 0.331 ± 0.056 0.273 ± 0.040 0.252 ± 0.039 0.242 ± 0.041 0.240 ± 0.044
MSIS - 4.318 ± 0.786 3.456 ± 0.718 3.602 ± 0.801 3.515 ± 0.834
wQL - 0.432 ± 0.068 0.379 ± 0.065 0.406 ± 0.076 0.386 ± 0.076

CO2

MASE 0.342 ± 0.092 0.444 ± 0.189 0.327 ± 0.086 0.312 ± 0.082 0.299 ± 0.079
RMSSE 0.312 ± 0.083 0.398 ± 0.164 0.299 ± 0.079 0.289 ± 0.075 0.282 ± 0.073
MSIS - 6.270 ± 3.144 4.333 ± 1.221 4.967 ± 1.339 4.193 ± 1.114
wQL - 0.130 ± 0.058 0.086 ± 0.021 0.095 ± 0.024 0.079 ± 0.021

Light

MASE 0.644 ± 0.061 0.272 ± 0.040 0.237 ± 0.046 0.210 ± 0.039 0.222 ± 0.047
RMSSE 0.654 ± 0.057 0.293 ± 0.040 0.262 ± 0.042 0.246 ± 0.040 0.252 ± 0.044
MSIS - 4.127 ± 0.940 3.276 ± 0.706 3.104 ± 0.712 3.136 ± 0.819
wQL - 0.311 ± 0.052 0.265 ± 0.054 0.255 ± 0.055 0.249 ± 0.057

HVAC

MASE 0.526 ± 0.461 0.451 ± 0.396 0.354 ± 0.268 0.316 ± 0.239 0.368 ± 0.290
RMSSE 0.487 ± 0.406 0.412 ± 0.343 0.322 ± 0.231 0.298 ± 0.213 0.330 ± 0.255
MSIS - 8.626 ± 7.904 4.946 ± 3.984 4.913 ± 3.926 5.746 ± 5.097
wQL - 0.997 ± 0.876 0.681 ± 0.505 0.683 ± 0.554 0.789 ± 0.669
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Table 9: Comparison of forecasting accuracy (11 months).

Deep Forecasting Models Fine-tuned TSFMs

Dataset Metric N-BEATS DEEPAR TFT CHRONOS
+FullFT

CHRONOS
+LoRA

Occ

MASE 0.331 ± 0.060 0.265 ± 0.053 0.245 ± 0.049 0.226 ± 0.040 0.228 ± 0.045
RMSSE 0.333 ± 0.057 0.273 ± 0.049 0.253 ± 0.046 0.240 ± 0.040 0.240 ± 0.043
MSIS - 4.252 ± 1.127 3.617 ± 0.967 3.561 ± 0.802 3.529 ± 0.854
wQL - 0.428 ± 0.081 0.380 ± 0.074 0.398 ± 0.074 0.385 ± 0.075

CO2

MASE 0.341 ± 0.089 0.403 ± 0.116 0.328 ± 0.096 0.310 ± 0.079 0.301 ± 0.079
RMSSE 0.311 ± 0.080 0.363 ± 0.101 0.298 ± 0.086 0.289 ± 0.073 0.284 ± 0.072
MSIS - 6.415 ± 2.494 4.535 ± 1.196 4.795 ± 1.310 4.196 ± 1.118
wQL - 0.117 ± 0.036 0.086 ± 0.023 0.092 ± 0.023 0.080 ± 0.021

Light

MASE 0.649 ± 0.071 0.275 ± 0.042 0.241 ± 0.057 0.207 ± 0.036 0.224 ± 0.049
RMSSE 0.658 ± 0.066 0.295 ± 0.040 0.267 ± 0.052 0.243 ± 0.038 0.254 ± 0.046
MSIS - 3.934 ± 0.940 3.155 ± 0.829 3.029 ± 0.677 3.182 ± 0.859
wQL - 0.311 ± 0.053 0.270 ± 0.065 0.246 ± 0.048 0.251 ± 0.059

HVAC

MASE 0.529 ± 0.464 0.453 ± 0.383 0.355 ± 0.266 0.318 ± 0.239 0.372 ± 0.293
RMSSE 0.489 ± 0.409 0.413 ± 0.334 0.324 ± 0.233 0.297 ± 0.212 0.333 ± 0.257
MSIS - 8.325 ± 7.131 5.320 ± 4.065 4.914 ± 4.002 5.737 ± 5.142
wQL - 0.991 ± 0.848 0.682 ± 0.500 0.684 ± 0.557 0.796 ± 0.676

Table 10: Comparison of forecasting accuracy between TFT and TSFMs on unseen zone. The model
is trained on a zone on the 2nd floor, then tested on another zone on the 4th floor.

Fine-tuned TSFMs Fine-tuned TSFMs

Dataset Metric TFT CHRONOS
+FullFT

CHRONOS
+LoRA Dataset Metric TFT CHRONOS

+Full-FT
CHRONOS

+LoRA

Occ

MASE 0.250 ± 0.077 0.224 ± 0.061 0.213 ± 0.064

Light

MASE 0.225 ± 0.054 0.223 ± 0.054 0.218 ± 0.048

RMSSE 0.260 ± 0.073 0.242 ± 0.062 0.229 ± 0.063 RMSSE 0.256 ± 0.050 0.261 ± 0.055 0.249 ± 0.049

MSIS 3.799 ± 1.144 3.417 ± 1.241 3.117 ± 1.230 MSIS 3.495 ± 0.804 3.423 ± 0.981 3.063 ± 0.707

wQL 0.413 ± 0.112 0.409 ± 0.114 0.366 ± 0.117 wQL 0.256 ± 0.055 0.299 ± 0.074 0.261 ± 0.059

CO2

MASE 0.348 ± 0.081 0.294 ± 0.063 0.285 ± 0.057

HVAC

MASE 0.262 ± 0.288 0.216 ± 0.211 0.231 ± 0.254

RMSSE 0.309 ± 0.070 0.264 ± 0.059 0.259 ± 0.054 RMSSE 0.256 ± 0.273 0.227 ± 0.242 0.225 ± 0.262

MSIS 5.314 ± 1.177 5.129 ± 1.056 4.169 ± 0.679 MSIS 3.553 ± 3.418 3.398 ± 3.711 2.928 ± 4.215

wQL 0.079 ± 0.027 0.081 ± 0.025 0.065 ± 0.018 wQL 0.486 ± 0.450 0.453 ± 0.373 0.421 ± 0.402
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