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Abstract
Problem definition: Revenue management in railways distinguishes itself from that in tradi-
tional sectors such as airline, hotel, and fashion retail, in several important ways: (i) Capacity
is substantially more flexible, in the sense that changes to the capacity of a train can often
be made throughout the sales horizon. Consequently, the joint optimization of prices and
capacity assumes genuine importance. (ii) Capacity can only be added in discrete “chunks”,
i.e., coaches. (iii) Passengers with unreserved tickets can travel in any of the multiple trains
available during the day. Further, passengers in unreserved coaches are allowed to travel
by standing, thus giving rise to the need to manage congestion. Motivated by our work
with a major railway company in Japan, we analyze the problem of jointly optimizing pric-
ing and capacity – this problem is a more-general version of the canonical multiproduct
dynamic-pricing problem. Methodology/Results: Our analysis yields four asymptotically op-
timal policies. From the viewpoint of the pricing decisions, our policies can be classified
into two types – static and dynamic. With respect to the timing of the capacity decisions,
our policies are again of two types – fixed capacity and flexible capacity. We establish the
convergence rates of these policies: when demand and supply are scaled by a factor k P N,
the optimality gaps of the static policies scale proportional to ?k, and those of the dynamic
policies scale proportional to log k. We illustrate the attractive performance of our policies
on a test-suite of instances based on real-world operations of the high-speed “Shinkansen”
trains in Japan, and develop associated insights. Managerial implications: Our work provides
railway administrators with simple and effective policies for pricing, capacity, and congestion
management. Our policies cater to different contingencies that decision- makers may face in
practice: the need for static or dynamic prices, and for fixed or flexible capacity.
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Problem definition: Revenue management in railways distinguishes itself from that in traditional sectors

such as airline, hotel, and fashion retail, in several important ways: (i) Capacity is substantially more

flexible, in the sense that changes to the capacity of a train can often be made throughout the sales horizon.

Consequently, the joint optimization of prices and capacity assumes genuine importance. (ii) Capacity can

only be added in discrete “chunks”, i.e., coaches. (iii) Passengers with unreserved tickets can travel in any of

the multiple trains available during the day. Further, passengers in unreserved coaches are allowed to travel

by standing, thus giving rise to the need to manage congestion. Motivated by our work with a major railway

company in Japan, we analyze the problem of jointly optimizing pricing and capacity – this problem is a

more-general version of the canonical multiproduct dynamic-pricing problem.

Methodology/Results: Our analysis yields four asymptotically optimal policies. From the viewpoint of

the pricing decisions, our policies can be classified into two types – static and dynamic. With respect to the

timing of the capacity decisions, our policies are again of two types – fixed capacity and flexible capacity.

We establish the convergence rates of these policies: when demand and supply are scaled by a factor κ PN,
the optimality gaps of the static policies scale proportional to

?
κ, and those of the dynamic policies scale

proportional to logκ. We illustrate the attractive performance of our policies on a test-suite of instances based

on real-world operations of the high-speed “Shinkansen” trains in Japan, and develop associated insights.

Managerial implications: Our work provides railway administrators with simple and effective policies for

pricing, capacity, and congestion management. Our policies cater to different contingencies that decision-

makers may face in practice: the need for static or dynamic prices, and for fixed or flexible capacity.

1. Introduction

Revenue management techniques can be fundamentally classified into two types – price-based

and quantity-based. While price-based techniques manage demand through the pricing of the

products offered through time, quantity-based techniques directly control the consumption of

products through time. Reveneue management practices originated in the airline industry and

have now been adopted in several other major industries, including hotels, restaurants, retail,

and broadcast television; see e.g., Talluri and Van Ryzin (2006).

Researchers have also recognized the potential of using revenue management techniques in

railway operations; e.g., Konno and Raghunathan (2020), Kamandanipour et al. (2020), Wang

et al. (2016), and Hetrakul and Cirillo (2014). In most developing countries, railways continue

1



Dynamic Pricing and Capacity Optimization in Railways
2

to fulfill a strong social obligation as an affordable means of transportation for the common peo-

ple. However, as technology has progressed and competition from other means of transportation

has increased, the demand from railway passengers for the latest services, amenities, and com-

forts has also grown. Accordingly, to compete effectively, railways (both government-owned and

privately-owned) are increasingly placing emphasis on improving profits, so that better facilities

and services can be provided. The increasing adoption of revenue management principles in rail-

ways worldwide is in line with this goal. Below, we discuss railway practice in the context of

pricing (static or dynamic pricing) and the timing of capacity decisions (fixed or flexible capacity),

whether or not unreserved travel is allowed, and whether or not standing travel is allowed.

Railway practice on pricing: In the United States, Amtrak uses dynamic pricing for all

passenger trains.

“Similar to airlines, Amtrak uses dynamic pricing, meaning fares will rise and fall based on

consumer demand. With some careful attention, and luck, you can get a fare at the minimum

fare price even days before your departure.” [The Urbanist 2019]

In Europe, most of the international trains use dynamic pricing. However, some countries use

fixed fares for domestic travel.

“International train fares within Europe all seem to have this dynamic pricing where the fare

goes up as the date approaches and more tickets are sold. However, some countries including

Switzerland and the Scandinavian countries have fixed domestic fares that can be reasonable

if bought on travel day. However, they also have “super saver” fares on some routes where

they offer very cheap tickets if you buy far enough in advance.” [Price of Travel 2022]

The Indian railway network, the second busiest in the world after China, uses a mix of fixed fares

and dynamic pricing. The exclusive “premium” trains (fast, direct routes) use dynamic pricing,

while most non-premium trains use fixed pricing.

“Premium trains are popular for their speed, direct routes, and covering long distance jour-

neys in less time duration . . . Currently, there are more than 140 trains catering in this

segment operated by the Indian Railways . . .What goes common with these trains is the

“Dynamic Fare Pricing” of the journey tickets. Meaning, the ticket prices change according

to the availability of the berths in these particular trains.” [Rail Mitra 2019]

In China, dynamic pricing is being explored. Currently, except for a few high-speed trains on

the busiest routes, most of the trains have fixed fares. Dynamic pricing was introduced on the

Beijing-Shanghai high-speed rail in December 2020.

“Rail line operator Beijing-Shanghai High Speed Railway Co Ltd announced in October 2020

that it would move away from flat fares to a variable pricing model.” [Business Traveller

2020]
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Railway practice on capacity: While most networks allow for additional coaches to be added

to trains to cater to high demand, there does not seem to be precise information in the public

domain on the deadline for adding such coaches. Our discussions with practitioners indicate that

the entire spectrum of deadlines ranging from the start of the selling season (fixed capacity) to

the end of the selling season (flexible capacity) is possible.

Railway practice on unreserved travel and standing travel: Most major railway networks

allow unreserved travel and standing travel. In the United States, Amtrak allows unreserved

travel only on select routes, but does not allow standing travel [Amtrak 2022, Trains.com 2019].

Railway operations distinguish themselves from those in airlines in many important ways; we

discuss a few below.

(a) Joint Optimization of Pricing and Capacity: Studies in the mainstream revenue manage-

ment literature typically analyze the pricing (or inventory control) of multiple products over a

finite sales horizon, under exogenously-specified capacities of the resources needed to offer these

products. That is, the capacity of each resource is assumed to be fixed at the beginning of the

sales horizon, and dynamic pricing is used to maximize the revenue generated over the horizon;

examples include the sale of airline seats (Bumpensanti and Wang 2020, Kunnumkal and Talluri

2016), hotel rooms (Zhang and Weatherford 2017), and fashion products (Ferreira et al. 2018,

Ferreira et al. 2016). In such applications, the assumption of fixed capacity is reasonable since

there is little flexibility to dynamically change capacities, or the lead times required for such

changes are significant. For instance, in the case of airline tickets, the limited availability of air-

crafts and the simultaneous need for other scarce resources such as pilots and crews leave little

room to meaningfully make dynamic updates to capacity.

In significant contrast, capacity is substantially more flexible in railway operations. First, the

ability to add individual coaches to a train allows for a more granular control over capacity.

Second, several countries have extensive rail networks with critical resources (coaches, drivers,

maintenance staff and equipment) spread over the entire network. Third, these resources are

typically cheaper than those in the airline industry and hence their availability is not as tightly

constrained. Together, these characteristics often make it feasible to quickly support changes

in the capacity of a train throughout the sales horizon. Consequently, the joint optimization of

pricing and capacity gains genuine importance in railways.

(b) Discrete Capacity: Capacity can only be added in discrete sizes, namely coaches. This

discreteness leads to technical challenges – in particular, the need to solve non-convex problems,

which typically requires solving their continuous relaxations followed by rounding procedures.

(c) Unreserved Capacity and Congestion Management: In many countries around the world,

railway travel is the most affordable, and hence popular, option. Consequently, passenger demand

usually exceeds the supply of seats, and railway firms are often mandated to provide unreserved

coaches where passengers are allowed to stand (if all the seats are taken). Often, each train is
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required to offer a certain minimum amount of unreserved capacity. The presence of unreserved

capacity leads to several important features. First, unreserved tickets are typically valid for a

particular day and are not train-specific; thus, passengers with such tickets can travel in any of

the multiple trains available on the same day. Second is the substitutability of demand between

reserved and unreserved tickets. For example, an increase in the price of reserved tickets for

an itinerary can lead to an increase in the demand for unreserved tickets. Third is the need to

manage congestion (number of standing passengers) in the unreserved coaches: allowing more

standing passengers can increase revenue, but may deteriorate travel experience.

In this paper, motivated by our work with a major railway company in Japan, we study the

following joint pricing and capacity optimization problem:

Consider a railway firm that operates trains at different times of the day on a single railway

line that serves multiple stations. Let L�1 be the total number of stations on the line, including

the start and end stations. Thus, the railway line comprises of L consecutive legs pi, i � 1q,
i� 1,2, . . . ,L. Let M be the number of distinct trains that operate in a day from start to end

on this line. Let N � �
L�1
2

�
be the number of available itineraries for any train m, 1¤m¤M ,

where an itinerary is defined by a starting station i and an ending station j, i  j. The firm offers

two types of tickets for any itinerary – a reserved ticket and an unreserved ticket. A reserved

ticket specifies the itinerary, date, and the specific train on which the customer must travel; the

customer cannot travel with this ticket on any train other than the one specified. The customer

is also guaranteed a seat for the entire journey. An unreserved ticket, on the other hand, specifies

only the itinerary and the date of travel, and does not specify the train on which the customer

must travel. The customer can travel with this ticket on any train that operates on the date of

travel; however, she is not guaranteed a seat. Corresponding to the two types of tickets, the firm

operates two types of coaches on each train – reserved and unreserved; passengers who buy a

reserved (resp., unreserved) ticket can travel only on a reserved (resp., unreserved) coach.

We focus on a single day of operations on this railway line. Tickets for travel on this focal day

are sold during an advance sales horizon consisting of T periods: 1,2,. . . , T , which immediately

precede that day; for brevity, we denote the sales horizon by r1, T s. For this single day of opera-

tions, the firm sells both reserved and unreserved tickets for all the itineraries and can vary the

price of any ticket, on any train, during the sales horizon. The demand arrivals for the tickets

are stochastic, with arrival rates that depend on ticket prices. For every coach used on a train,

the firm incurs a fixed operational cost. There are also limits on the number of coaches used

on each train; specifically, there is an upper bound on the total number of coaches and a lower

bound on the number of unreserved coaches used on each train. Furthermore, the firm needs to

guarantee a seat for every reserved ticket sold, on all the itineraries, on all the trains. On the

unreserved coaches, since standing is allowed, the firm needs to manage the congestion due to

potential standing. To model this congestion, we include a per-leg penalty cost on each leg for
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each standing passenger. Further details on the demand and supply models are provided in Sec-

tion 2. For this setting, the firm’s goal is to maximize its expected net profit (namely, revenue less

the operational cost and the congestion penalty) by making the following decisions: (i) The prices

of reserved and unreserved tickets on each itinerary, on each train, at every time instant during

the sales horizon and (ii) The capacity, i.e., the number of reserved and unreserved coaches, of

each train. This problem, which we refer to as PS, is formally defined in Section 2.3.

1.1. Our Results and Contributions

We offer four asymptotically optimal policies for our problem of joint pricing and capacity deci-

sions:

� Static- and Dynamic-Pricing Policies: From the viewpoint of the pricing decisions,

our four policies can be classified into two types – static and dynamic; see Figure 1. While the

dynamic-pricing policies are more sophisticated and offer a relatively better performance, the

static-pricing policies are also attractive due to their simplicity and a surprisingly strong overall

performance. As discussed earlier, both types of policies are of interest in practice.

� Fixed- and Flexible-Capacity Policies: With respect to the timing of the capacity deci-

sions, our policies can be classified into two types – fixed capacity and flexible capacity. In the

latter, capacity is “flexible” throughout the sales horizon, in the sense that the capacity decisions

are made only at the end of the sales horizon. While the firm would naturally prefer the luxury

of delaying capacity decisions to the extent possible, operating conditions in busy seasons (when

the demand for resources is high) may sometimes necessitate that the firm make these decisions

in advance. This motivates policies in which the capacity decisions are made and fixed at the

beginning of the sales horizon and then remain unchanged; accordingly, we refer to these policies

as “fixed” capacity policies.

For all four policies, we establish performance guarantees on the rates at which they converge

to optimality. When supply and demand are scaled by a factor κ PN, the optimality gaps of both

our static policies scale proportional to
?
κ (Theorems 2 and 3) whereas the optimal profit of the

upper-bound problem scales proportional to κ, thereby establishing the asymptotic optimality

of these policies (Corollaries 1 and 2). For both of our dynamic policies, the optimality gaps

scale proportional to logκ (Theorems 4 and 5) and hence establish their asymptotic optimality

(Corollaries 3 and 4). Figure 1 also provides a convenient view of our main results.

We also illustrate the impressive performance of all our policies on a test bed with problem

instances generated from the real-world operations of the high-speed “Shinkansen” trains in

Japan. The average relative optimality gap (over all the instances) of each of our policies is at most

10%. Our numerical analysis also shows that dynamic-pricing policies significantly outperform

static-pricing policies when the demand arrival rates are high, while the performance of flexible-

capacity policies is significantly better than that of fixed-capacity policies under low demand

arrival rates.
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Problem PS (Section 2.3)

Static Pricing
Policies (Section 3)

Flexible Capacity
Policy (π1q (Section 3.1)

Asymptotic Optimality
and

?
κ Convergence

Rate (Theorem 2)

Fixed Capacity
Policy (π2q (Section 3.2)

Asymptotic Optimality
and

?
κ Convergence

Rate (Theorem 3)

Dynamic Pricing
Policies (Section 4)

Flexible Capacity
Policy (π3) (Section 4.1)

Asymptotic Optimality
and logκ Convergence
Rate (Theorem 4)

Fixed Capacity
Policy (π4) (Section 4.2)

Asymptotic Optimality
and logκ Convergence
Rate (Theorem 5)

Figure 1 Organization of our analysis and summary of results.

To the best of our knowledge, ours is the first comprehensive study of revenue management

in railways – as discussed earlier, this setting has several distinguishing features of railway oper-

ations that are new to the literature, including the joint optimization of pricing and capacity

decisions, discrete “jumps” in capacity, and unreserved capacity along with the need for conges-

tion management. While it is clear that the capacity decisions in our problem are new relative to

the existing revenue management literature, it is important to note that these decisions determine

the cost incurred by the firm. It is the analysis of the total cost in our problem that necessitates a

substantial amount of new and challenging analysis. Although there are other challenges as well,

e.g., capacity can only be acquired in discrete steps and there are bounds to be satisfied on the

number of reserved and unreserved coaches used on each train, our main technical innovation is

in the capacity analysis. Below, we explain why the analysis of the cost is challenging and how

we address it.

Main Challenge: Bounding the Total Cost

Bounding the total cost incurred requires bounding both the reserved and unreserved costs. In

what follows, we first highlight and then elaborate on the important challenges in bounding the

total cost incurred. Subsequently, we also briefly discuss other challenges in our analysis, including

the restriction that capacity can only be added in multiples of a discrete size.

The objective of our joint optimization problem PS, namely the maximization of the firm’s

expected net profit over the sales horizon, consists of three components: the revenue earned

from ticket sales, the cost incurred in operating (reserved and unreserved) coaches, and the

total penalty cost incurred as a result of passengers standing in unreserved coaches. The most

significant challenges arise due to the analysis of the cost portion. In particular, to establish

the asymptotic optimality of any of our policies and the order of our optimality loss, we need

to derive an upper bound on the difference between the cost incurred by the policy and the

benchmark (optimal cost incurred in the deterministic problem PD, defined in Section 2.3). This
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particular component of our problem necessitates a significant amount of new analysis. Broadly,

the need for new analysis arises because the computation of the cost incurred by any policy in

our problem, over any time interval, is non-separable; i.e., the cost incurred over a time interval

cannot be easily computed by decomposing it as the sum of costs incurred in each period of

the interval. Further, computing the total cost incurred by a policy requires characterizing the

demand arrivals under that policy until the end of the sales horizon; this characterization is also

non-trivial. In what follows, we first explain the difficulties in computing the total cost incurred

by our policy due to the following two reasons: (a) the non-separability of cost over time and

(b) the difficulty in characterizing demand arrivals. Then, in (c), we elaborate on how we handle

these challenges in cost computation discussed in (a) and (b). We now proceed with the details.

(a) In problem PS, the cost incurred by a policy in a given time period, say t, cannot be

computed in a straightforward manner. The fundamental reason behind this difficulty is the fact

that the sale of a ticket on a specific leg does not necessarily increase the cost incurred! Indeed,

the cost incurred at any time is determined by the number of coaches needed, which, in turn,

is determined by the leg on which the maximum number of tickets are sold. Consequently, a

ticket sold on a leg that has fewer ticket sales than the maximum does not lead to an increase in

cost. Thus, the cost incurred by a policy in period t depends on the state of the system in that

period; that is, the number of tickets sold on each leg of each train until period t. In turn, this

state determines the number of coaches required to satisfy the demand generated until period t,

which ultimately determines the cost incurred until period t. Due to this dependency of cost on

the state of the system, computing the expected cost incurred until period t as the sum of the

individual expected costs incurred from periods 1 through t is intractable. Hence, the exisiting

analyses in the literature cannot be extended in a straightforward manner to handle the analysis

of the cost function. Below, in (c), we explain how we handle this challenge in the context of our

dynamic-price flexible-capacity policy.

(b) We now discuss the difficulty in characterizing demand arrivals until the end of the sales

horizon. Consider any policy (π) for problem PS. To derive a lower bound on the profit obtained

under this policy, we separately analyze the revenue and cost portions of the profit. Let Rπrt1, t2s
and Cπrt1, t2s denote the revenue earned and cost incurred, respectively, under policy π, from

period t1 until period t2. Thus, we need to obtain a lower bound on Rπr1, T s and an upper bound

on Cπr1, T s. Instead of bounding Rπr1, T s, we obtain our desired lower bound on Rπr1, τ s, where τ
is the first period in which all the available seats on one of the legs of one of the trains are sold

out. Thus, the pricing decisions after τ do not affect the bound on the revenue. However, the

analysis of cost has to be different. This is because the pricing decisions after period τ affect the

total cost incurred and therefore, bounding the cost incurred only until period τ does not result in

a valid upper bound. Hence, relative to pricing policies for revenue maximization problems which

do not involve costs, our policy has to be developed more carefully. Further, after period τ , it is
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difficult to characterize the demand arrivals in problem PS since the demand on the leg on which

capacity is exhausted is turned off after period τ . This leads to difficulties in bounding Cπr1, T s.
We now explain how we handle the above challenges in the context of our analysis of the

dynamic-price flexible-capacity policy (policy π3 in Section 4.1).

(c) Our dynamic-price flexible-capacity policy is a linear rate-control policy (see, e.g., Jasin

2014, Besbes and Maglaras 2012, and Atar and Reiman 2012). As discussed above, relative to the

revenue management literature, the analysis of such a policy for problem PS requires us to address

the cost component of the objective function. To handle the challenge in bounding Cπ3r1, T s (the
total cost under policy π3), we consider problem PU , an unconstrained version of our problem PS

in which there is no capacity restriction on any train, i.e., no bound on the number of coaches

used on any train. For this unconstrained problem, we define a modified version of our policy,

denoted by π̃3, in which ticket sales are allowed until the end of the sales horizon, assuming

unlimited capacity. Using the constructions of our original policy π3 and its modified version π̃3,

we show that the cost incurred by the modified policy π̃3 in the unconstrained problem PU is

higher than the cost incurred by policy π3 in problem PS. Since capacity is never exhausted in

problem PU , it is easier to characterize the demand arrivals under policy π̃3 until the end of the

sales horizon. Therefore, instead of bounding Cπ3r1, T s, we focus on bounding C π̃3r1, T s, the total
cost incurred by the modified policy π̃3 in problem PU .

As discussed earlier in (a), bounding C π̃3r1, T s is also challenging since it is not easy to compute

the total expected cost incurred over the sales horizon as the sum of expected costs in each

period of the horizon. To handle this challenge, we use the following approach: Recall that the

number of reserved coaches used on a train is determined by the leg with the highest number

of tickets sold. Therefore, the total expected cost of reserved capacity for a train is determined

by the expectation of the maximum over the number of tickets sold on each leg. Based on this

observation, we first focus on bounding the (stochastic) cost incurred on each leg of a train along

every sample path. Using these bounds, we bound the maximum cost incurred over all the legs for

each sample path. Finally, using these bounds on the maximum cost, we obtain our desired upper

bound on the total expected cost of reserved capacity incurred on a train. A similar approach is

also used to obtain our bound for the expected cost from unreserved capacity.

Other Challenges: Discrete Capacity and Bounds on the Number of Coaches

Below, we summarize some of the other challenges encountered in our analysis and the approach

we adopt to handle them.

� The fact that capacity can only be added in multiples of a discrete size, namely the size of

a coach, also poses a challenge in our analysis. Our policies use the solution to the deterministic

relaxation of problem PS; this relaxation is a non-convex optimization problem due to the dis-

creteness in capacity. To address this difficulty, we examine the continuous counterpart of this

relaxation by further relaxing capacity to be continuous and solving the resulting convex program.
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This solution, which uses a fractional number of coaches, is then modified by careful rounding to

ensure that our policies are feasible and also offer the desired performance guarantees.

� In our setting, capacity is not exogenously specified but there are restrictions on the total

number of coaches used on each train and a lower bound on the number of unreserved coaches

used on each train. Therefore, to guarantee feasibility and to prove the asymptotic convergence

rate for any of our policies, we need to devise specific limits to impose on the number of reserved

and unreserved seats to sell on each train, under that policy.

1.2. Literature Review

Broadly, our joint pricing and capacity optimization problem belongs to the stream of work on

multi-product dynamic-pricing problems in the revenue management literature. An early study

in this stream is Gallego and Van Ryzin (1997), which examines the dynamic pricing of multiple

products over a finite sales horizon and under fixed capacities of the resources that are required

to offer these products. For this problem, the authors develop two asymptotically optimal static

policies, and establish the rates at which they converge to optimality. Several subsequent studies

revisit the multi-product dynamic-pricing problem and develop policies with stronger perfor-

mances; we discuss a few here. Maglaras and Meissner (2006) develop asymptotically optimal,

resolving-based dynamic policies and use an extensive numerical study to demonstrate their supe-

rior performance over static policies. Jasin (2014) develops two dynamic policies – re-optimized

static control and linear rate correction – and shows that the optimality gaps of these policies

scale proportional to logκ when the demands and capacities are scaled by κ PN. Ke et al. (2019)

adopt an approximate dynamic programming approach to develop a pricing policy and conduct

an extensive numerical study to demonstrate its strong performance. Wang and Wang (2022)

establish an Op1q optimality gap for the re-optimized static control policy in Jasin (2014). In

addition to these studies, several multi-product dynamic-pricing problems that incorporate a

variety of additional constraints, motivated by real-world applications, have also been addressed

in the literature; examples include Lei et al. (2018) [e-commerce retail], Ferreira et al. (2018)

[fashion retail], Zhang and Weatherford (2017) [hotels] and Chen et al. (2016) [airlines, hotels].

The above studies analyze the pricing of products under fixed and exogenously specified capac-

ities of the resources. In contrast, capacities are decisions in our analysis. Moreover, as discussed

earlier, our setting of railway operations has other distinguishing features such as capacity acqui-

sition in multiples of a discrete size, unreserved coaches, standing travel resulting in congestion,

and bounds on the total number of coaches and the number of unreserved coaches. Put succinctly,

the problem we analyze in this paper can be viewed as a more-general version of the canonical

multi-product dynamic-pricing problem.

A majority of revenue management studies in the context of railways use quantity-based tech-

niques. Ciancimino et al. (1999), one of the earliest such work, examines the problem of determin-

ing seat allocations to maximize revenue on a single-train line with a single fare-class and multiple
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legs. A subsequent study by You (2008) analyzes the extension to two fare-classes – the author

formulates this problem as a mixed integer nonlinear program and proposes a heuristic. In their

overview of revenue management models and approaches in the context of railways, Armstrong

and Meissner (2010) extend the two fare-class model in You (2008) to multiple fare-classes. Wang

et al. (2016) study a seat-allocation problem with stochastic (discrete random) demand. They

construct a variety of seat-allocation policies and numerically compare these policies. Zhai et al.

(2018) study the problem of maximizing passenger throughput for multiple lines that serve a set of

origin-destination pairs, by optimizing seat allocation. Zhu et al. (2021) study a dynamic capacity-

control problem that makes instantaneous and non-changeable seat assignments for tickets sold,

in addition to deciding the itineraries open for sale at any time during the sales horizon. They

propose a resolving-based policy that achieves uniformly bounded regret under mild assumptions.

Konno and Raghunathan (2020) study a data-driven pricing and seat-allocation problem by for-

mulating it as an integer program. There are several studies that use mathematical programming

models (in particular, linear integer programming) to formulate dynamic pricing problems and

meta-heuristics to generate effective feasible solutions; examples include Hohberger (2020) and

Qin et al. (2019). Kamandanipour et al. (2020) use simulation together with a simulated anneal-

ing meta-heuristic for a dynamic pricing and capacity allocation model. There are also empirical

studies of revenue management in railways that develop models to predict customer choice; for

example, Hetrakul and Cirillo (2014) use a latent-class choice model.

2. Model

For the setting described in Section 1, we discuss the demand and supply models in Sections 2.1

and 2.2. Then, Section 2.3 formulates our problem as well as a related deterministic variant.

2.1. Demand Model

Recall from Section 1 that we consider a single day of operations of a railway line, and a preceding

sales horizon r1, T s during which tickets for the N itineraries on each of the M trains are sold for

travel on the focal day. Also, recall that a passenger with an unreserved ticket for an itinerary

can travel on any of the M trains. Our model of the demand-price relationship of the itineraries

is general, in the following sense:

� The price of a reserved ticket for itinerary n on any train affects the demand of a reserved

ticket for itinerary n on all the trains, and also the demand of an unreserved ticket for itinerary n.

� The price of an unreserved ticket for itinerary n affects the demand of an unreserved ticket

for itinerary n and also the demand of reserved tickets for itinerary n on all the trains.

We assume that the price of a ticket (reserved or unreserved) for itinerary n does not affect

the demand of a ticket for any other itinerary. In period t P t1,2, ..., T u, let pn,mptq be the price

of a reserved ticket for itinerary n on train m and let qnptq be the price of an unreserved ticket
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for itinerary n. Let p⃗nptq �
�
pn,1ptq, ..., pn,Mptq

�
denote the vector of prices of a reserved ticket for

itinerary n on the M trains. Similar to most discrete-time models in the revenue management

literature, we assume that the duration of a period is sufficiently small so that at most one cus-

tomer arrives during each period. In period t, let Xn,mptq � 1 if a customer arrives and purchases

a reserved ticket for itinerary n on train m, and Xn,mptq � 0 otherwise. Similarly, let Ynptq � 1 if

a customer arrives in period t and purchases an unreserved ticket for itinerary n, and Ynptq � 0

otherwise
�
note that

M°
m�1

N°
n�1

Xn,mptq �
N°

n�1

Ynptq ¤ 1, since at most one customer arrives during

each period
�
. Let xn,mptq and ynptq denote the expectations of Xn,mptq and Ynptq, respectively;

we refer to xn,mptq and ynptq as the demand rates. Let x⃗nptq �
�
xn,1ptq, ..., xn,Mptq

�
denote the

vector of demand rates of a reserved ticket on itinerary n for the M trains. We note that both

x⃗nptq and ynptq depend on p⃗nptq as well as qnptq. For better exposition, we will also benefit from

another succinct notation for the demand rates: In any period t, let λ⃗npp⃗nptq, qnptqq denote the

demand-rate vector of a ticket for itinerary n as a function of the current price vector of that

itinerary; that is,�
x⃗nptq, ynptq

�� �
xn,1ptq, .., xn,Mptq, ynptq

�
� λ⃗n

�
p⃗nptq, qnptq

���
λn,1

�
p⃗nptq, qnptq

�
, ..., λn,M

�
p⃗nptq, qnptq

�
, λu

n

�
p⃗nptq, qnptq

�

.

Here, λn,m is the demand function of a reserved ticket for itinerary n on train m for 1¤m¤M ,

and λu
n is the demand function of an unreserved ticket for itinerary n. We assume that all the

demand functions are stationary1 and known.

Similar to several other studies in the dynamic pricing literature (see e.g., Gallego and

Van Ryzin 1997, Jasin 2014), we assume the following regularity conditions:

1. For itinerary n, let PC
n and ΛC

n denote the set of feasible prices and the set of feasible demand

rates, respectively. For all 1 ¤ n ¤ N , both PC
n and ΛC

n are convex, and the demand function

λ⃗np�q :PC
n ÑΛC

n is bounded and continuously differentiable.

2. For all 1 ¤ n ¤ N , λ⃗np�q has an inverse function denoted by ζ⃗np�q : ΛC
n Ñ PC

n ; that is,

λ⃗n

�
ζ⃗npx⃗n, ynq

� � px⃗n, ynq. Therefore, either the demand rates of the itineraries or, equivalently,

their prices can be viewed as decision variables.

3. In any time period, there exists a “null” price vector p⃗pn,8 � pp⃗n,8, qn,8q for each itinerary

n such that λ⃗npp⃗n,8, qn,8q � 0⃗ for all 1¤ n¤N . Let p⃗p8 � pp⃗p1,8, ..., p⃗pN,8q be the price vector that

turns off the demand on all the itineraries of all the trains.

4. In any time period, the revenue rate of the firm as a function of the demand rates of the

itineraries in that period is defined by:

rpx⃗1, ..., x⃗N , y1, ..., yNq �
Ņ

n�1

rnpx⃗n, ynq, where rnpx⃗n, ynq � px⃗n, ynq � ζ⃗npx⃗n, ynq

1 The time-homogeneity assumption on the demand functions is purely for ease of exposition and is not necessary
for our results to hold.
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is the revenue rate from itinerary n. The function r is bounded, twice differentiable, and jointly

concave in the demand rates. The joint-concavity assumption is standard in the literature and

holds for many common demand models such as the multinomial logit and nested logit (Li and

Huh 2011) models, and the linear demand model (Maglaras and Meissner 2006).

2.2. Supply Model

We now discuss the supply side. The reserved and unreserved coaches of the trains are identical,

with each coach consisting of k seats. Let us first consider the supply for reserved tickets.

Reserved Supply: To compute the capacity needed to satisfy the demand for reserved tickets

on each train, we need to examine the reserved-ticket demand arrivals on each leg of a train.

Let Sℓ denote the set of all itineraries that use leg ℓ, 1 ¤ ℓ ¤ L, and let S̄n denote the set of

all legs used by itinerary n, 1 ¤ n ¤N . In any period t, let Xℓ,mptq �
°

nPSℓ
Xn,mptq. Since we

assume that at most one customer arrives in each period, from the definition of Xn,mptq, we
know that Xℓ,mptq takes the value 1 if a customer arrives in period t and purchases a reserved

ticket that uses leg ℓ of train m, and takes the value 0, otherwise. The demand rate of Xℓ,mptq
is given by x̄ℓ,mptq �

°
nPSℓ

xn,mptq. Now, let Xℓ,mr1, ts �
°t

t̂�1Xℓ,mpt̂q; i.e., Xℓ,mr1, ts denotes the
total number of purchases, until the end of period t, of reserved tickets that use leg ℓ of train m.

Therefore, max
 
Xℓ,mr1, T s : 1¤ ℓ¤L

(
denotes the total number of seats required to satisfy the

reserved demand on train m. Since travel by standing is not allowed in the reserved coaches, the

number of reserved coaches2 needed on train m is

R
max

 
Xℓ,mr1,T s:1¤ℓ¤L

(
k

V
, where k is the number

of seats in a coach. Thus, the pricing policy of the firm indirectly determines the total number

of reserved coaches required on each train. Next, we discuss the supply for unreserved tickets.

Unreserved Supply: Recall the random variable Ynptq, which equals 1 if a customer arrives in

period t and purchases an unreserved ticket for itinerary n, and equals 0 otherwise. Also, recall

that an unreserved ticket for an itinerary is not associated with a specific train – the customer

can travel on any train on the day of her travel on that itinerary. We assume that a customer who

buys an unreserved ticket for itinerary n chooses to travels on train m with a probability δn,m

that is known to the firm; these probabilities can be estimated from historical sales.

Define the random variable Yn,mptq as follows: Yn,mptq � 1, if a customer arrives in period t and

purchases an unreserved ticket on itinerary n and eventually (on the day of travel) chooses to

travel on train m; Yn,mptq � 0, otherwise. Note that the exact realization of Yn,mptq is known only

on the day of travel and not in period t. Recall that the demand rate of an unreserved ticket for

itinerary n is ynptq; thus, the expectation of Yn,mptq is δn,m � ynptq. Similar to Xℓ,mptq, we define

Y ℓ,mptq �
°

nPSℓ
Yn,mptq. Since at most one customer arrives in any period, Y ℓ,mptq equals 1 if a

customer who purchases (in period t) an unreserved ticket that uses leg ℓ ends up traveling on

2 For any x PR�, the floor txu is the largest integer smaller than or equal to x. The ceiling rxs� txu� 1.
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train m, and equals 0 otherwise. The exact realization of Y ℓ,mptq will also be known only on the

day of travel and not in period t. Let Y ℓ,mr1, ts �
°t

t̂�1 Y ℓ,mpt̂q. Thus, among customers who (until

period t) buy unreserved tickets that use leg ℓ, the number who choose to travel on train m is

Y ℓ,mr1, ts. On the unreserved coaches, passengers are allowed to stand and the firm can therefore

sell more tickets than the seats available. Therefore, the number of unreserved coaches is not

directly determined by the sale of unreserved tickets, and is a separate decision for the firm. Let

b⃗u � pbu,1, ..., bu,Mq, where bu,m denotes the decision variable for the number of unreserved coaches

used on train m.

Costs and Constraints: Since standing is allowed on unreserved coaches, the firm’s pricing

policies, aimed solely at profit maximization, could lead to the number of passengers in a train

exceeding the available unreserved capacity. To model the dissatisfaction of unreserved customers

who do not find a seat, we include a penalty cost of cs per leg, on each leg, for each standing

passenger3. To operate one coach on the railway line, the firm incurs an operational cost of co,

which includes costs such as per-mile electricity cost, cleaning fee, and maintenance cost. Due to

a variety of reasons, including the hauling capacity of electric locomotives, the length of railway

platforms, and the length of loop lines that provide bypassing routes, there is an upper bound

on the number of coaches that can be used on a train. Let bm denote the maximum number

of coaches that can be used on train m. Finally, governmental regulations mandate a minimum

number of unreserved coaches on each train. Accordingly, we impose a lower bound bm on the

number of unreserved coaches used on train m.

Table 1 summarizes the notation for all our variables and parameters. With all the assumptions

and constraints discussed above, we now proceed to provide a precise formulation of our problem.

2.3. Formulation

The firm decides the prices of all the reserved and unreserved tickets in each time period, and

the number of unreserved coaches to use on each train, subject to the capacity constraints dis-

cussed above. Let Π denote the class of all non-anticipatory policies. For the quantities that we

have defined in this section, we will use the superscript π, wherever appropriate, to denote the

corresponding quantities under policy π PΠ. The firm’s profit-maximization problem can now be

written as:

JS �max
πPΠ

E

�
Ţ

t�1

Ņ

n�1

rnpx⃗π
nptq, yπnptqq�

M̧

m�1

co

S
max

 
X

π

ℓ,mr1, T s : 1¤ ℓ¤L
(

k

W

�
M̧

m�1

cob
π
u,m�

M̧

m�1

Ļ

ℓ�1

cs

�
Y

π

ℓ,mr1, T s� bπu,mk
���

(PS)

subject to:

3 While this assumption makes the total penalty cost linear in the number of standing passengers, in Appendix K
(supplementary appendix) we show that our analysis and results throughout the paper extend to the case where
the total penalty is a convex function of the number of standing passengers.
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Parameter Definition

t P t1,2, ..., T u Time Period.

m P t1,2, ...,Mu Train.

ℓ P t1,2, ...,Lu Leg; i.e., a pair of successive stations where a train stops.

n P t1,2, ..,Nu Itinerary; i.e., a combination of consecutive legs.

Sℓ Set of itineraries that use leg ℓ.

Sn Set of legs used by itinerary n.

Xn,mptq �resp., Yn,mptq� Random demand of a reserved (resp., unreserved)

ticket for itinerary n on train m in period t.

Xℓ,mptq �resp., Y ℓ,mptq� Random demand of a reserved (resp., unreserved)

ticket for leg ℓ on train m in period t.

Xℓ,mr1, ts �resp., Y ℓ,mr1, ts� Total random demand of a reserved (resp., unreserved)

ticket for leg ℓ on train m until the end of period t.

xn,mptq, yn,mptq, x̄ℓ,mptq, ȳℓ,mptq Expected rates of Xn,mptq, Yn,mptq, Xℓ,mptq, Y ℓ,mptq in period t.

k Number of seats in a coach of a train.

bm Maximum number of coaches allowed on train m.

bm Minimum number of unreserved coaches to be used on train m.

co Cost of operating a coach.

cs Per-person penalty cost for travel by standing on a leg.

Variable Definition

pn,mptq Price of a reserved ticket for itinerary n on train m in period t.

qnptq Price of an unreserved ticket for itinerary n in period t.

bu,m Number of unreserved coaches used on train m.

Table 1 Our main notation

X
π

ℓ,mr1, T s� bπu,mk¤ bmk (a.s.) @ 1¤ ℓ¤L, 1¤m¤M, (1)

bπu,m ¥ bm, bπu,m PN @ 1¤m¤M, (2)

px⃗π
nptq, yπnptqq PΛC

n @ 1¤ n¤N.

We refer to the above problem as PS and its optimal expected profit as JS. The first term in the

objective function of PS represents the total expected revenue, while the second and third terms

represent the expected operational costs from reserved and unreserved coaches, respectively. The

last term represents the expected total penalty cost incurred due to standing passengers. Recall

that there is an upper bound bm on the number of coaches used on train m; mathematically,S
max

 
X

π

ℓ,mr1, T s : 1¤ ℓ¤L
(

k

W
� bπu,m ¤ bm (a.s.) @ 1¤m¤M. (3)

It is easy to verify that constraints (3) are equivalent to constraints (1). Constraints (2) model

the requirement that there should be least bm unreserved coaches on train m.

Problem PS is more general than the canonical multi-product dynamic-pricing problem in the

revenue management literature; see e.g., Gallego and Van Ryzin (1997). It is therefore well-

understood that obtaining an optimal solution to PS is intractable, in general. Therefore, we

aim to develop efficient policies with attractive performance guarantees. To this end, we first
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define the following deterministic optimization problem PD that is obtained from problem PS

by dropping the ceiling function and the integrality restriction on bπu,m, replacing the stochastic

quantities by their expectations, and making the demand-rate decision variables time-invariant.

JD � max
x⃗,y⃗,⃗bu

�
Ņ

n�1

rnpx⃗n, ynq T �
M̧

m�1

coT

k
maxtx̄ℓ,m : 1¤ ℓ¤Lu�

M̧

m�1

cobu,m

�
M̧

m�1

Ļ

ℓ�1

cs

�
ȳℓ,mT � bu,mk

���
(PD)

subject to:

x̄ℓ,mT � bu,m k¤ bm k @ 1¤ ℓ¤L, 1¤m¤M,

bu,m ¥ bm, bu,m PR� @ 1¤m¤M,

x̄ℓ,m �
¸
nPSℓ

xn,m, ȳℓ,m �
¸
nPSℓ

δn,m � yn @ 1¤ ℓ¤L, 1¤m¤M,

px⃗n, ynq PΛC
n @ 1¤ n¤N. (4)

The following result establishes an upper bound on the optimal profit of problem PS. The

proofs of all the technical results are in the appendix.

Theorem 1. The optimal profit of PS is at most that of PD, i.e., JS ¤JD.

Next, we use the solution of PD to define our policies for PS. Section 3 (resp., Section 4)

develops our static-pricing (resp., dynamic-pricing) policies.

3. Static Pricing Policies

We first develop our static-price flexible-capacity policy and show that when demand-arrival

rates and capacities are both scaled by a factor κ P N, the optimality gap of this policy scales

proportional to
?
κ whereas the profit of the upper-bound problem PD scales proportional to κ,

thereby proving that this policy is asymptotically optimal (Theorem 2). Subsequently, we develop

our static-price fixed-capacity policy and establish the same results for that policy (Theorem 3).

Later, in Section 5, we also numerically evaluate the two policies and demonstrate the superior

performance of the flexible-capacity policy.

3.1. Static Pricing Policy with Flexible Capacity

We construct our static-price flexible-capacity policy using an optimal solution to the determin-

istic problem PD. Let
�
x⃗�, y⃗�, b⃗�u

�
be an optimal solution to problem PD, where x⃗

� � �
x⃗�1 , ..., x⃗

�
N

�
,

x⃗�n �
�
x�n,1, ..., x

�
n,M

�
for 1¤ n¤N , y⃗� � �

y�1 , ..., y
�
N

�
, and b⃗�u �

�
b�u,1, ..., b

�
u,M

�
. For 1¤ ℓ¤ L and

1¤m¤M , let x̄�ℓ,m �°
nPSℓ

x�n,m and ȳ�ℓ,m �°
nPSℓ

δn,m � y�n. Also, let
�
p⃗�n, q

�
n

�� ζ⃗n�x⃗�n, y�n� be the

corresponding optimal prices of a reserved ticket and an unreserved ticket for itinerary n. Below,

we first describe the main idea behind our policy and then define the policy precisely.
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For each n, 1¤ n¤N , and for each m, 1¤m¤M , we maintain the price of a reserved ticket

for itinerary n on train m at p�n,m and the price of an unreserved ticket for itinerary n at q�n, until

the earliest time period in which, for some ℓ̂ and m̂, the number of reserved seats sold on leg ℓ̂ of

train m̂ equals a carefully-chosen upper bound on the reserved capacity of train m̂; 1¤ ℓ̂¤L and

1¤ m̂¤M . After that time period, we stop the sales of all the reserved and unreserved tickets

for any itinerary n that uses leg ℓ̂, i.e., for all n P Sℓ̂. For any itinerary n that does not use leg

ℓ̂, i.e., n R Sℓ̂, we continue to maintain the price of a reserved ticket on train m at p�n,m and the

price of an unreserved ticket at q�n, until a time period in which the number of reserved seats sold

for some leg ℓ̃� ℓ̂ of a train reaches the upper bound on the reserved capacity of that train; from

this time period, we stop the sales of all the reserved and unreserved tickets for any itinerary n

that uses leg ℓ̃. We proceed in a similar manner until the sales for all the itineraries have stopped

or the end of the sales horizon is reached.

At the end of the sales horizon, the capacity decisions are made as follows. On each train, we

choose the minimum number of reserved coaches sufficient to provide the required number of

reserved seats. The vector of the number of unreserved coaches on the trains is jointly chosen so

that, over all the trains, the sum of operational costs and penalty cost from standing is minimized.

We now precisely define our policy, which we denote by π1. We first describe the pricing

decisions and then the capacity decisions.

Algorithm for Static-Price Flexible-Capacity Policy

 Pricing decisions:

1. In time period t� 1, for itinerary n,1¤ n¤N , choose
�
p⃗π1
n p1q, qπ1

n p1q�� pp⃗�n, q�nq.

2. In time periods t ¡ 1, for all itineraries p1 ¤ n ¤ Nq, do the following: For itinerary n, if

X
π1

ℓ,mr1, t� 1s � k�bm� tb�u,mu
�
for some ℓ P S̄n and 1¤m¤M , then choose the null price vector,

i.e.,
�
p⃗π1
n ptq, qπ1

n ptq�� �
p⃗n,8, qn,8

�
; otherwise, choose

�
p⃗π1
n ptq, qπ1

n ptq�� pp⃗�n, q�nq.

 Capacity decisions:

3. The capacity to be used on each train is determined from the total demand generated at the

end of the sales horizon. Define

bπ1
r,m �

S
max

 
X

π1

ℓ,mr1, T s : 1¤ ℓ¤L
(

k

W
@1¤m¤M.

On train m (1¤m¤M), use bπ1
r,m reserved coaches.

4. For all 1¤m¤M , let Bπ1
m � �

bm, pbm� bπ1
r,mq

�
. Let Bπ1 �Bπ1

1 � � � ��Bπ1
M . Define

b⃗π1
u � �

bπ1
u,1, ..., b

π1
u,M

�
:� argmin

b⃗PBπ1

M̧

m�1

cobm�
M̧

m�1

Ļ

ℓ�1

csE
�
Y

π1

ℓ,mr1, T s� bmk
��
. (Qπ1)

Problem Qπ1 is a convex program. On train m (1¤m¤M), use
X
bπ1
u,m

\
unreserved coaches.
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It is easy to verify that policy π1 is feasible for problem PS. We now obtain the performance

guarantee offered by policy π1. To this end, consider a sequence of scaled problems PS,κ indexed

by κ PN, where in PS,κ the demand arrival rates and the capacities are all scaled by κ¡ 0 (in other

words, the number of time periods in the sales horizon is scaled by κ and the maximum number

of total coaches allowed on train m is κ � b̄m). Throughout this section, for several quantities that
we have already defined, we will use the subscript κ to represent their corresponding versions in

the κ-scaled system; for example, JS,κ denotes the optimal profit in problem PS,κ. Let J π1
S and

J π1
S,κ be the expected profit obtained by the static-price flexible-capacity policy in problem PS

and PS,κ, respectively. The following result establishes a bound on the performance of policy π1.

Theorem 2. The difference between the optimal profit of problem PS,κ and the profit obtained

by the static-price flexible-capacity policy π1 in PS,κ is Op?κq, i.e., JS,κ�J π1
S,κ �Op?κq. Conse-

quently, π1 is asymptotically optimal, i.e., the ratio
Jπ1
S,κ

JS,κ
Ñ 1 as κÑ8.

3.2. Static Pricing Policy with Fixed Capacity

In this section, we define our static-pricing policy in which the capacity decisions on all the trains

are made at the beginning of the sales horizon. We also establish that this policy offers the same

asymptotic convergence rate as that in Theorem 2 for the static-price flexible-capacity policy.

The construction of our static-price fixed-capacity policy is also based on the optimal solution

to the deterministic problem PD. Recall the optimal solution
�
x⃗�, y⃗�, b⃗�u

�
to problem PD, where

x⃗� � �
x⃗�1 , ..., x⃗

�
N

�
, x⃗�n �

�
x�n,1, ..., x

�
n,M

�
for 1¤ n¤N , y⃗� � �

y�1 , ..., y
�
N

�
, and b⃗�u �

�
b�u,1, ..., b

�
u,M

�
. Let�

p⃗�n, q
�
n

�� ζ⃗n
�
x⃗�n, y

�
n

�
be the corresponding optimal prices of reserved and unreserved tickets on

itinerary n for all 1¤ n¤N . Also, recall the quantities x̄�ℓ,m �°
nPSℓ

x�n,m and ȳ�ℓ,m �°
nPSℓ

δn,m �y�n
for all 1¤ ℓ¤L and 1¤m¤M . In the deterministic problem PD, observe that x̄�ℓ,mT and ȳ�ℓ,mT

represent the total number of reserved and unreserved customers, respectively, who travel on

leg ℓ of train m. Further, maxtx̄�ℓ,mT : 1¤ ℓ¤ Lu represents the total number of seats required

to satisfy the reserved demand on train m. Therefore, in problem PD, the number of coaches

required to satisfy the reserved demand on train m is equal to
Q
maxtx̄�ℓ,m:1¤ℓ¤LuT

k

U
.

In our static-price fixed-capacity policy, which we denote henceforth by π2, we choose the

number of coaches on each train based on the capacity consumption in problem PD by its optimal

solution
�
x⃗�, y⃗�, b⃗�u

�
. Let bπ2

u,m � tb�u,mu and

bπ2
r,m �

R
maxtx̄�ℓ,m : 1¤ ℓ¤LuT

k

V
.

Algorithm for Static-Price Fixed-Capacity Policy

 Capacity decisions:

1. On train m (1¤m¤M), use bπ2
r,m reserved and bπ2

u,m unreserved coaches.

 Pricing decisions:
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2. In time period t� 1, for itinerary n, choose
�
p⃗π2
n p1q, qπ2

n p1q�� pp⃗�n, q�nq, 1¤ n¤N .

3. In time periods t ¡ 1, for all itineraries p1 ¤ n ¤ Nq, do the following: For itinerary n, if

X
π2

ℓ,mr1, t� 1s � k bπ2
r,m for some ℓ P S̄n and 1 ¤m ¤M , then choose the null price vector4, i.e.,�

p⃗π2
n ptq, qπ2

n ptq�� �
p⃗n,8, qn,8

�
; otherwise, choose

�
p⃗π2
n ptq, qπ2

n ptq�� pp⃗�n, q�nq.

Note that the capacity decisions in this policy are made at the beginning of the sales horizon

and remain unchanged thereafter. Observe that bπ2
r,m � bπ2

u,m ¤ bm, the upper bound on the total

number of coaches on train m, and bπ2
u,m ¥ bm, the minimum number of unreserved coaches on

train m, 1¤m¤M . Thus, policy π2 is feasible for problem PS.

We now establish the performance guarantee offered by policy π2. To this end, we again consider

a κ-scaled system; see the paragraph preceding Theorem 2. Let J π2
S,κ be the expected profit

obtained by policy π2 in problem PS,κ.

Theorem 3. The difference between the optimal profit of problem PS,κ and the profit obtained

by the static-price fixed-capacity policy π2 in PS,κ is Op?κq, i.e., JS,κ � J π2
S,κ �Op?κq. Conse-

quently, π2 is asymptotically optimal, i.e., the ratio
Jπ2
S,κ

JS,κ
Ñ 1 as κÑ8.

Remark 1. (Analysis of a Discrete Variant) In practice, the price of a train itinerary is

often restricted to a few convenient values for consumers’ ease of understanding and familiarity.

Motivated by this observation, in Appendix B, we study a variant of problem PS in which the

possible prices of reserved and unreserved tickets on each itinerary are restricted to discrete and

finite sets. We develop an efficient policy for this problem and establish an attractive guarantee

on the performance of the policy (Theorem ??).

We now turn our attention to dynamic policies for problem PS.

4. Dynamic Pricing Policies

In this section, we develop two dynamic-pricing policies for problem PS and establish their asymp-

totic optimality. As with our static policies, the fundamental difference between our two dynamic

policies is the timing of the capacity decisions. We first develop our dynamic-price flexible-capacity

policy and show that when the demand arrival rates and the capacities are both scaled by a factor

κ P N, the optimality gap of this policy scales proportional to logκ, which also establishes that

this policy is asymptotically optimal (Theorem 4). Subsequently, we develop our dynamic-price

fixed-capacity policy and establish the same results for that policy as well (Theorem 5).

4.1. Dynamic Pricing Policy with Flexible Capacity

Our dynamic-price flexible-capacity policy also uses the optimal solution to problem PD. Recall

the optimal solution
�
x⃗�, y⃗�, b⃗�u

�
to problem PD, where x⃗

� � �
x⃗�1 , ..., x⃗

�
N

�
, x⃗�n �

�
x�n,1, ..., x

�
n,M

�
for

4 Note that the switching criteria to the null price vector in π2 is different from that in π1.
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1 ¤ n ¤ N , y⃗� � �
y�1 , ..., y

�
N

�
, and b⃗�u �

�
b�u,1, ..., b

�
u,M

�
. We now define another quantity that is

useful in the development of our policy. Under any policy π, we define ∆π
n,mptq �Xπ

n,mptq�xπ
n,mptq

and p∆π
nptq � Y π

n ptq � yπnptq for all 1¤ t¤ T , 1¤ n¤N , and 1¤m¤M . In words, ∆π
n,mptq andp∆π

nptq represent the difference between the realized and expected demand, in period t, of reserved

tickets for itinerary n on train m, and unreserved tickets for itinerary n, respectively. As in Jasin

(2014), we make the following assumption that is useful in defining our policy:

Assumption 1. The deterministic problem PD has an interior optimum. That is, for 1¤ n¤
N , there exist ψ⃗

n
� �

ψ
n,1
, ...,ψ

n,M

�¡ 0⃗, ψ⃗n �
�
ψn,1, ...,ψn,M

�¡ 0⃗, ψ̂
n
¡ 0, and ψ̂n ¡ 0 such that��

x⃗�n, y
�
n

���
ψ⃗

n
, ψ̂

n

	
,
�
x⃗�n, y

�
n

���
ψ⃗n, ψ̂n

	�
PΛC

n ,

where ΛC
n is the convex set of feasible demand-rate vectors for any itinerary n.

The above assumption is useful in the construction of both our dynamic-price flexible- and

fixed-capacity policies. Specifically, this assumption ensures that the periodic adjustments to the

demand rates are feasible; i.e., lie in the interior of ΛC . We now define our policy, which we denote

by π3. We first describe our pricing decisions followed by our capacity decisions.

Algorithm for Dynamic-Price Flexible-Capacity Policy

 Pricing decisions:

1. In time period t� 1, for itinerary n, choose
�
p⃗π3
n p1q, qπ3

n p1q�� pp⃗�n, q�nq � ζ⃗n
�
x⃗�n, y

�
n

�
, 1¤ n¤N .

2. In time periods t ¡ 1, for all itineraries p1 ¤ n ¤ Nq do the following: For itinerary n, if

X
π3

ℓ,mr1, t� 1s � k
�
bm � b�u,m

�
for some ℓ P S̄n and 1 ¤m ¤M , then choose the null price vec-

tor, i.e.,
�
p⃗π3
n ptq, qπ3

n ptq�� �
p⃗n,8, qn,8

�
; otherwise, choose

�
p⃗π3
n ptq, qπ3

n ptq�� ζ⃗n
�
⃗̃xnptq, ỹnptq

�
. Here,�

⃗̃xnptq, ỹnptq
�
is defined as follows:

x̃n,mptq �

$'&'% x�n,m�
t�1̧

s�1

∆π3
n,mpsq
T � s , if �ψn,m  

t�1̧

s�1

∆π3
n,mpsq
T � s  ψ

n,m

0, otherwise,

⃗̃xnptq �
�
x̃n,1ptq, ..., x̃n,Mptq

�
, and

ỹnptq �

$'&'% y�n �
t�1̧

s�1

∆̂π3
n psq
T � s , if � ψ̂n  

t�1̧

s�1

∆̂π3
n psq
T � s   ψ̂

n

0, otherwise.

 Capacity decisions:

3. The capacity to be used on each train is determined from the total demand generated at the

end of the sales horizon. Define

bπ3
r,m �

S
max

 
X

π3

ℓ,mr1, T s : 1¤ ℓ¤L
(

k

W
@1¤m¤M.
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On train m (1¤m¤M), use bπ3
r,m reserved coaches.

4. For all 1¤m¤M , let Bπ3
m � �

bm, pbm� bπ3
r,mq

�
. Let Bπ3 �Bπ3

1 � � � ��Bπ3
M . Define

b⃗π3
u � �

bπ3
u,1, ..., b

π3
u,M

�
:� argmin

b⃗PBπ3

M̧

m�1

cobm�
M̧

m�1

Ļ

ℓ�1

csE
�
Y

π3

ℓ,mr1, T s� bmk
��
. (Qπ3)

Problem Qπ3 is a convex program. On train m (1¤m¤M), use tbπ3
u,mu unreserved coaches.

In the pricing definitions above, the adjustments in the demand rates are similar to those in

the linear rate-control policies developed in Besbes and Maglaras (2012) and Jasin (2014). For

any itinerary on a train, the demand rate used in a time period is equal to the demand rate in

the previous period minus the difference between the realized and expected demand used in the

previous period, divided by the remaining duration in the sales horizon. The intuition behind this

policy is as follows: if the realized demand in the previous period is higher (lower) than expected,

then we decrease (increase) the demand rate used in the current period; the increase or decrease

is scaled based on the remaining duration of the sales horizon. These adjustments in the demand

rates try to maintain the sales of each itinerary, on every sample path, to be close to that in the

optimal solution to the upper-bound problem PD.

It can be verified that policy π3 is feasible for PS. We now proceed to establish the perfor-

mance guarantee offered by this policy. As before, we consider a κ-scaled system in which the

demand (the number of time periods) and capacity are proportionally scaled by κ; we refer to

the corresponding problem as PS,κ. Without loss of generality, we assume that T � 1. Therefore,

the number of time periods in the κ-scaled system is equal to κ. Recall that for our analysis

of the static policies, we first obtained performance guarantees for our policies in the unscaled

system and then analyzed how these guarantees scale in the κ-scaled system. However, in this

section, for convenience of analysis, we directly work with the κ-scaled system. Let J π3
S,κ be the

expected profit obtained by policy π3 in problem PS,κ. The result below bounds the optimality

gap of policy π3:

Theorem 4. The difference between the optimal profit of problem PS,κ and the profit obtained

by the dynamic-price flexible-capacity policy π3 in PS,κ is Oplogκq, i.e., JS,κ �J π3
S,κ �Oplogκq.

Consequently, π3 is asymptotically optimal, i.e., the ratio
Jπ3
S,κ

JS,κ
Ñ 1 as κÑ8.

Remark 2. (Restricted Flexible-Capacity Policies) In practice, even if capacity decisions

can be delayed until the end of the sales horizon, there could be restrictions on the number of last-

minute changes in the number of coaches, due to limited availability of resources. In Appendix C,

we examine restricted flexible-capacity policies in which the number of reserved coaches used on

each train is decided at the start of the sales horizon and this number is then allowed to increase

or decrease by at most one coach at the end of the sales horizon.
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4.2. Dynamic Pricing Policy with Fixed Capacity

In this section, we define our dynamic-pricing policy in which the capacity decisions are made at

the beginning of the sales horizon. We establish that this policy also offers the same convergence

rate as that of the dynamic-price flexible-capacity policy we analyzed in the previous subsection.

The construction of our dynamic-price fixed-capacity policy, which we denote by π4, is also

based on the optimal solution
�
x⃗�, y⃗�, b⃗�u

�
to problem PD. Let b

π4
u,m � tb�u,mu and

bπ4
r,m �

R
maxtx̄�ℓ,m : 1¤ ℓ¤LuT

k

V
.

Algorithm for Dynamic-Price Fixed-Capacity Policy

 Capacity decisions:

1. On train m (1¤m¤M), use bπ4
r,m reserved and bπ4

u,m unreserved coaches.

 Pricing decisions:

2. In time period t � 1, for all itineraries p1 ¤ n ¤ Nq, choose
�
p⃗π4
n p1q, qπ4

n p1q� � pp⃗�n, q�nq �
ζ⃗n
�
x⃗�n, y

�
n

�
.

3. In time period t ¡ 1, for all itineraries p1 ¤ n ¤ Nq do the following: For itinerary n, if we

have X
π4

ℓ,mr1, t � 1s � k bπ4
r,m for some ℓ P S̄n and 1 ¤ m ¤M , then choose the null price vec-

tor, i.e.,
�
p⃗π4
n ptq, qπ4

n ptq�� �
p⃗n,8, qn,8

�
; otherwise, choose

�
p⃗π4
n ptq, qπ4

n ptq�� ζ⃗n
�
⃗̃xnptq, ỹnptq

�
. Here,�

⃗̃xnptq, ỹnptq
�
is defined as follows:

x̃n,mptq �

$'&'% x�n,m�
t�1̧

s�1

∆π4
n,mpsq
T � s , if �ψn,m  

t�1̧

s�1

∆π4
n,mpsq
T � s  ψ

n,m

0, otherwise,

ỹnptq �

$'&'% y�n �
t�1̧

s�1

∆̂π4
n psq
T � s , if � ψ̂n  

t�1̧

s�1

∆̂π4
n psq
T � s   ψ̂

n

0, otherwise,

and ⃗̃xnptq �
�
x̃n,1ptq, ..., x̃n,Mptq

�
.

Note that the capacity decisions in policy π4 are made at the beginning of the sales horizon and

remain unchanged thereafter. We now proceed to establish the performance guarantee offered by

policy π4. To this end, we again consider the κ-scaled system. Let J π4
S,κ be the expected profit

obtained by policy π4 in problem PS,κ. The proof of the following result uses arguments similar

to those in the proof of Theorem 4; a summary of the main steps is provided in the appendix.

Theorem 5. The difference between the optimal profit of problem PS,κ and the profit obtained

by the dynamic-price fixed-capacity policy π4 in PS,κ is Oplogκq, i.e., JS,κ � J π4
S,κ � Oplogκq.

Consequently, π4 is asymptotically optimal, i.e., the ratio
Jπ4
S,κ

JS,κ
Ñ 1 as κÑ8.

Based on our work with a railway company in Japan, we now proceed to numerically demon-

strate the attractive performance of our policies on a test suite of instances generated from the

real-world operations of a popular high-speed railway line and discuss the related insights.
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5. Numerical Experience and Insights

The network of Shinkansen high-speed trains (colloquially, “bullet trains”) is a major means of

transportation in Japan. For our numerical study, we focus on the Tokyo-Shinosaka railway line,

one of the busiest Shinkansen lines. Five different types of trains operate on this line; we focus

on the “Nozomi” type, which is the fastest and attracts the most demand. Before we discuss

our test bed, we recall the main parameters of our model: (i) The number of stations on the

railway line (L� 1), the number of trains (M) operating on the line, and the number of seats

in a coach (k). (ii) The parameters related to the demand function λn,m for reserved tickets

on itinerary n of train m, and the demand function λu
n for unreserved tickets on itinerary n;

n� 1,2, . . . ,N ;m� 1,2, . . . ,M . (iii) The cost for operating a coach (co), the per-person penalty

cost for travelling on a leg of the journey by standing (cs), the maximum number of coaches on

each train (bm,m� 1,2, . . . ,M), and the minimum number of unreserved coaches on each train

(bm,m� 1,2, . . . ,M).

5.1. Test Bed

We first examine the performance of our policies on three “full-scale” instances that correspond

to the actual parameters of the Tokyo-Shinosaka line (Section 5.1.1). Next, we examine the

performance on three full-scale instances based on Yan et al. (2022) (Section 5.1.2). Then, to

confirm robustness of the performance and to assess the impact of the penalty cost (for standing

passengers) on congestion in unreserved coaches, we also use a larger test bed of relatively smaller

instances (Section 5.1.3).

5.1.1. Full-Scale Instances The Tokyo-Shinosaka line connects the following five stations,

in that order: Tokyo, Shinyokohoma, Nagoya, Kyoto, and Shinosaka. Thus, the number of legs

on this line is L � 4, and the number of different itineraries is N � 10. Our interactions with

practitioners suggest that significant demand substitution occurs only between the trains that

operate within the same standard hour; e.g., between trains that operate from 9am–10am or

between trains that operate from 11am–12noon. On average, about 5 Nozomi trains operate on

this line in a standard hour; we therefore set M � 5. The number of seats in a coach is k � 87.

We use an MNL demand function to model the demand-price relationship for each itinerary.

Accordingly, the demand function of a reserved ticket for itinerary n on train m; 1 ¤ n ¤ 10,

1¤m¤ 5, is given by

λn,mpp⃗n, qnq � exppαn,m�βn,m � pn,mq
1�°M

m�1 exppαn,m�βn,m � pn,mq� exppαu
n�βu

n � qnq
Γn,

and the demand function of an unreserved ticket for itinerary n, 1¤ n¤ 10, is given by

λu
npp⃗n, qnq �

exppαu
n�βu

n � qnq
1�°M

m�1 exppαn,m�βn,m � pn,mq� exppαu
n�βu

n � qnq
Γn.
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Here, the β parameters specify price sensitivity and the Γ parameters represent market size.

Based on our discussions with practitioners, we set pβn,1, ..., βn,5q = p0.00095, 0.000975, 0.001,
0.001025,0.105q and βu

n � 0.0011 for 1 ¤ n ¤ 10. The prices of a reserved ticket for the ten

itineraries (denoted by p̂n, n � 1,2, . . . ,10) in Japanese Yen are as follows5: 3010 (Tokyo-

Shinyokohoma), 11300 (Tokyo-Nagoya), 14170 (Tokyo-Kyoto), 14720 (Tokyo-Shinosaka), 10640

(Shinyokohoma-Nagoya), 13500 (Shinyokohoma-Kyoto), 14390 (Shinyokohoma-Shinosaka), 5910

(Nagoya-Kyoto), 6680 (Nagoya-Shinosaka), 3070 (Kyoto-Shinosaka). Using these prices, we set

αn,m � 0.001 � p̂n for 1¤ n¤ 10 and 1¤m¤ 5, and αu
n � 1.1 � αn,m for 1¤ n¤ 10. The average

total number of passengers traveling over the five trains on each of the ten itineraries are as

follows6: 87, 677, 390, 846, 125, 110, 175, 77, 232, 61; we denote these by d̂n, n � 1,2, . . . ,10.

The maximum number of coaches (resp., minimum number of unreserved coaches) is bm � 16

(resp., bm � 4), for 1 ¤ m ¤ 5. The probabilities δn,m with which the demand for unreserved

passengers realizes on specific trains (see Section 2.2) are set as follows: δn,1 � 0.3, δn,2 � 0.25,

δn,3 � 0.2, δn,4 � 0.15, δn,5 � 0.1, for 1¤ n¤ 10. The cost for operating a coach (co) on the line is

approximately 100,000 Yen.

We generate three full-scale instances, one each corresponding to low, medium, and high

demand, by choosing three values of a demand-scaling factor η (namely, 0.5, 2.0, 5.0) and setting

Γn � η � d̂n for 1 ¤ n ¤ 10. For these instances, we set the per-person per-leg penalty cost for

standing (cs) to 1000. For our larger test bed described below, we vary this penalty cost system-

atically to examine its impact on congestion in the unreserved coaches, and thereby the firm’s

net profit.

5.1.2. Full-Scale Instances Based on Yan et al. (2022) In Yan et al. (2022), the authors

use a logit model to estimate the passenger-choice behavior of buying high-speed railway tick-

ets from data based on the Beijing-Hohhot high-speed railway in China. The authors consider

two products, namely full-price ticket and discounted ticket. They estimate the price-sensitivity

parameter for the utility of both the products to be equal to -0.0098. Based on this estimate, we

generate another set of three full-scale instances for our setting as follows.

We again consider the Tokyo-Shinosaka railway line with the number of legs L� 4, the number

of itineraries N � 10, and the number of trains M � 5. Let β̂ ��0.0098, as obtained from Yan

et al. (2022). The price-sensitivity parameters are drawn as follows: For 1¤ n¤ 10, we draw βn,m

randomly from Ur0.95 � β̂,1.05 � β̂s for 1 ¤ m ¤ 5. Since unreserved demand is typically more

price-sensitive than reserved demand, we set βu
n � 1.1 � β̂. The base-attraction parameters are set

as follows: αn,m � β̂ � p̂n for 1 ¤ n ¤ 10 and 1 ¤m ¤ 5, and αu
n � 1.1 � αn,m for 1 ¤ n ¤ 10. For

5 Data obtained from the Central Japan Railway Company; https://global.jr-central.co.jp/en/info/fare/.

6 Data obtained from West Japan Marketing Communications Inc. records (https://www.jcomm.co.jp/transit/
price/databook/pdf/19D 41.pdf) and Ministry of Land, Infrastructure and Transport (http://www.mlit.go.jp/
common/001193645.xlsx), and the procedure described in Konno and Raghunathan (2020).

https://global.jr-central.co.jp/en/info/fare/
https://www.jcomm.co.jp/transit/price/databook/pdf/19D_41.pdf
https://www.jcomm.co.jp/transit/price/databook/pdf/19D_41.pdf
http://www.mlit.go.jp/common/001193645.xlsx
http://www.mlit.go.jp/common/001193645.xlsx
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all the other parameters in our model, we choose the same values as those in Section 5.1.1. As

discussed above, we generate three full-scale instances corresponding to three different demand

levels – low, medium, and high.

5.1.3. A Test Bed of Smaller Instances To demonstrate robustness of the performance

of our four policies, we also generate a test bed of smaller instances. For this test bed, we set

L � 2, N � 3, M � 3, co � 65,000, cs � 1000, bm � 5, bm � 1 for 1 ¤ m ¤ 3, and δn,1 � 0.25,

δn,2 � 0.35, δn,3 � 0.4 for 1¤ n¤ 3. The prices of a reserved ticket for the three itineraries (denoted

by p̂n, n � 1,2,3) are 3010, 11300, and 10640, respectively. The average number of passengers

traveling over the three trains on each of the three itineraries (denoted by d̂n, n � 1,2,3) are

52, 406, and 75, respectively. As before, we generate problem instances with multiple levels of

demand; here, we choose six values of a demand-scaling factor η (namely, 0.5, 1.0, 2.0, 3.0, 4.0,

5.0) and set Γn � η � d̂n for 1¤ n¤ 3. For each value of η, we generate 30 instances by randomly

choosing the remaining parameters (that appear in the demand functions for the reserved and

unreserved tickets) as follows: βn,m is drawn randomly from U[0.00095,0.00105] for 1¤ n¤ 3 and

1¤m¤ 3, βu
n is drawn randomly from U[0.00105,0.00115] for 1¤ n¤ 6, αn,m is drawn randomly

from U[0.0009�p̂n,0.0011�p̂n] for 1 ¤ n ¤ 3 and 1 ¤ m ¤ 3, and αu
n,m is drawn randomly from

U[0.001�p̂n,0.0012�p̂n] for 1¤ n¤ 3.

5.2. Results and Insights

For each problem instance, we simulate 100 sample paths (where each path corresponds to a

specific realization of the arrival of customers over the sales horizon) to compute the expected

profit (J π
S ) obtained by a policy (say π) in problem PS. Using the optimal profit (JD) of the

upper-bound problem PD, we compute the optimality gap of policy π relative to the upper bound

as follows:

%Gapπ � JD�J π
S

JD

� 100.

Table 2 shows the performance of our policies on the three full-scale instances described in

Section 5.1.1, and Table 3 shows the performance on the three full-scale instances based on

Yan et al. (2022) and described in Section 5.1.2: All the optimality gaps are less than 5%,

demonstrating excellent performance.

Table 4 shows the performance of our policies on the smaller instances described in Sec-

tion 5.1.3. For each of the six values of the demand-scaling factor η and for each of the four

Demand Static Price Static Price Dynamic Price Dynamic Price
Level Fixed Capacity Flexible Capacity Fixed Capacity Flexible Capacity

(π1) (π2) (π3) (π4)

Low 3.400 % 1.711 % 5.055 % 4.026 %
Medium 2.352 % 0.621 % 2.206 % 1.472 %
High 2.381 % 2.322 % 1.619 % 1.617 %

Table 2 The performance of our policies on the three full-scale instances
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policies, the table shows the average of the percentage optimality gaps over the corresponding 30

instances. For each of the four policies, the average optimality gap over the 6�30 = 180 instances

is less than 5%, again establishing the effectiveness of our policies. In Appendix E, we verify the

robustness of the performance of our policies by testing with multiple combinations of values for

the cost parameters co and cs. In Appendix F, we demonstrate that the superior theoretical (i.e.,

asymptotic) performance of our dynamic-pricing policies relative to our static-pricing policies

translates into a superior practical (i.e., non-asymptotic) performance.

Remark 3. (Re-Solving Based Dynamic Pricing Policies) In our dynamic-pricing poli-

cies π3 and π4 we examined in Section 4, the price of a ticket on any itinerary can change (via

a linear rate-correction algorithm) in every period of the sales horizon. In Appendix D, we also

develop and evaluate dynamic-pricing policies for problem PS that are based on re-solving its

deterministic variant PD once at the midpoint of the sales horizon.

Value of Dynamic Pricing and Value of Flexible Capacity

We now examine the “value of dynamic pricing” under fixed capacity and under flexible capacity.

Then, we also examine the “value of flexible capacity” under static pricing and under dynamic

pricing. Finally, among our policies, we discuss the firm’s preference between moving from static

pricing to dynamic pricing and/or fixed capacity to flexible capacity.

The value of dynamic pricing under fixed capacity is defined as the percentage improvement in

profit when the firm moves from static pricing to dynamic pricing, under fixed capacity. The value

of dynamic pricing under flexible capacity is analogously defined. For our test bed of instances

described in Section 5.1.3, Figure 2 shows the value of dynamic pricing as demand varies, both

under fixed capacity and under flexible capacity. Specifically, the left-hand-side plot shows the

percentage improvement in profit (average over the 30 instances in the test bed) when the firm

moves from static pricing to dynamic pricing, as a function of the demand-scaling factor. There

are several interesting observations:

1. When demand is low, our static-pricing policies perform better than our dynamic-pricing

policies. We now discuss the intuition. Recall that the prices used in the static-pricing policies

are obtained from the optimal solution to the deterministic upper-bound problem PD. For the

static-pricing policies, under uncertain demand, the sales on some sample paths are lower (resp.,

higher) than those in the optimal solution to PD, eventually resulting in an expected revenue close

to the optimal revenue of PD. Here, higher sales than those in the solution to PD occur on some

Demand Static Price Static Price Dynamic Price Dynamic Price
Level Fixed Capacity Flexible Capacity Fixed Capacity Flexible Capacity

(π1) (π2) (π3) (π4)

Low 2.303 % 2.303 % 4.995 % 4.995 %
Medium 2.142 % 0.606 % 1.223 % 0.588 %
High 1.948 % 1.656 % 1.524 % 1.358 %

Table 3 The performance of our policies on the three full-scale instances based on Yan et al. (2022)
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Demand-Scaling Static Price Static Price Dynamic Price Dynamic Price
Factor (η) Fixed Capacity Flexible Capacity Fixed Capacity Flexible Capacity

(π1) (π2) (π3) (π4)

0.5 5.840 % 4.950 % 7.813 % 7.349 %
1 3.498 % 2.194 % 4.323 % 3.925 %
2 3.493 % 3.017 % 2.962 % 2.838 %
3 4.475 % 4.475 % 2.971 % 2.972 %
4 4.083 % 4.081 % 2.580 % 2.580 %
5 3.564 % 3.562 % 2.403 % 2.403 %
6 3.219 % 3.188 % 2.100 % 2.100 %

Table 4 The average optimality gaps of our policies on the smaller instances

sample paths because there is a sufficient amount of slack capacity in the solution of PD, due to

low demand. By slack capacity, we refer to the extra capacity resulting from the discreteness of

capacity in our model, since railway coaches can only be added in integer numbers (i.e., capacity

can only be added in discrete chunks). We elaborate using an example.

Suppose that the number of seats in a coach is 100 and a maximum of 5 coaches are allowed

on a train. Under low demand, say the optimal solution to the deterministic problem uses 320

seats, i.e., 3.2 coaches. Then, due to the discreteness restriction on capacity, we choose r3.2s� 4

coaches as the capacity in our policies. Thus, although the capacity decision here is endogenous,

discreteness leads to a slack of 80 seats in the system. This slack enables the static-pricing policies

to achieve higher sales on some sample paths than those in the deterministic solution and hence,

an overall revenue that is close to the optimal revenue in PD. In contrast, our dynamic-pricing

policies are heuristics based on linear rate-correction, which start the sales horizon using prices

obtained from the solution to PD and subsequently adjust these prices through time such that, on

each sample path, sales are close to those in the solution to PD. Therefore, our dynamic-pricing

policies do not exploit the slack in the system and hence, may be outperformed by our static-

pricing policies under low demand. The slack capacity is, however, absent under high demand.

This is because, under high demand, the optimal solution to the deterministic problem uses all

available capacity (e.g., 500 seats in the example above). Therefore, our dynamic-pricing policies

can outperform our static-pricing policies.

2. The value of dynamic pricing is more pronounced under fixed capacity when compared to

that under flexible capacity. The intuition is as follows. If one views static pricing and fixed

capacity as a “base” setting, then the firm has two levers to improve profit, namely using dynamic

pricing and/or using flexible capacity. If the firm chooses not to exploit one of the levers, then

the other lever becomes more potent. Thus, as shown in Figure 2, if the firm chooses to continue

with fixed capacity, then the value of dynamic pricing is higher relative to the case where the

firm uses flexible capacity.

We now discuss the value of flexible capacity. We define the value of flexible capacity under

static pricing as the percentage improvement in profit when the firm moves from fixed capacity

to flexible capacity, under static pricing. The value of flexible capacity under dynamic pricing
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Figure 2 The value of dynamic pricing and flexible capacity as a function of the demand-scaling factor.

is analogously defined. For the test bed of instances described in Section 5.1.3, Figure 2 shows

the value of flexible capacity as demand varies, both under static pricing and under dynamic

pricing. The right-hand-side plot shows the percentage improvement in profit (average over the

30 instances in the test bed) when the firm moves from fixed capacity to flexible capacity, as a

function of the demand-scaling factor. We note the following observations:

1. The value of flexible capacity is high when demand is low to moderate. The fixed-capacity

policies decide capacity at the beginning of the sales horizon, while the flexible-capacity policies

have the luxury of adjusting capacity, either upward or downward, based on the realized demand.

The benefit of this flexibility is significant when demand is low. When demand is high, both

fixed- and flexible-capacity policies typically use the maximum feasible capacity leaving little or

no potency in capacity adjustments and hence, the value of flexible capacity is minimal.

2. The value of flexible capacity is higher under static pricing as compared to that under

dynamic pricing. As discussed above, when the firm does not exploit the dynamic-pricing lever,

the value of using the flexible-capacity lever is higher.

Among our policies, we now examine the firm’s preference between moving from static to

dynamic pricing or moving from fixed to flexible capacity (or both), and the effect of demand on

Figure 3 The relative benefit of dynamic pricing and flexible capacity, as a function of the demand-scaling

factor.
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these decisions. If one views the static-price fixed-capacity policy as our “base” policy, then the

firm has three options:

(a) Change only the pricing decisions. That is, move from the static-price fixed-capacity policy

to the dynamic-price fixed-capacity policy.

(b) Change only the capacity decisions. That is, move from the static-price fixed-capacity

policy to the static-price flexible-capacity policy.

(c) Change both the pricing and capacity decisions. That is, move from the static-price fixed-

capacity policy to the dynamic-price flexible-capacity policy.

Figure 3 shows the relative performance of these three options for the test bed of instances

described in Section 5.1.3. The figure plots the percentage increase in profit (average over the 30

instances in the test bed) as the firm shifts from our static-price fixed-capacity policy to each

of our other three policies, as a function of the demand-scaling factor. Under low demand, as

discussed in detail above, static pricing is relatively attractive, and the benefit under flexible

capacity is high. Thus, our static-price flexible-capacity policy is the most attractive. When

demand is sufficiently high, dynamic pricing outperforms static pricing, whereas the marginal

benefit offered by flexible capacity reduces since there is little potency in capacity adjustments.

Therefore, the performance of the dynamic-price fixed-capacity policy is as good as that of the

dynamic-price flexible-capacity policy. Consequently, it is sufficient to switch only the pricing

decisions from static to dynamic.

We discuss additional insights in the supplementary appendix. In Appendix I, we examine

limited flexible-capacity policies, where capacity decisions are delayed to an intermediate point

in the sales horizon. In Appendix J, we study the impact of prohibiting unreserved travel.

5.3. Congestion Management

We examine the impact of the per-person per-leg penalty cost for standing (cs) on the congestion

in the unreserved coaches and also on the profit of the firm. For an instance in our test bed

described in Section 5.1.3, Figure 2 illustrates the behavior of the expected profit, revenue, and

congestion as a function of cs, under our static-price fixed-capacity policy (π1). The left-hand-side

plot in Figure 4 shows the behavior of the expected net profit (objective of PS, i.e., expected

revenue less operational costs and total penalty cost from standing), the expected revenue in PS,

and the net upper-bound profit (objective of PD), as a function of cs.

An interesting observation is that the expected revenue can increase with an increase in cs.

This can happen due to several reasons, two of which we mention here. Consider two values of

the penalty cost, namely cs1 and cs2 with cs1   cs2 : (a) An increase from cs1 to cs2 can lead to

an increase in the number of coaches used (to reduce congestion) and also an increase in the

sales of unreserved tickets. This increases both the expected revenue and operational cost. (b) An

increase from cs1 to cs2 can lead to an increase in the prices used by our policy (obtained from the
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Figure 4 An examination of congestion and profit as a function of penalty for standing (cs).

solution to PD) keeping the number of coaches unchanged, leading to a decrease in the unreserved

demand but possibly an increase in the expected revenue. The non-monotone behavior in the

expected revenue also translates to the expected profit computed by ignoring the penalty cost

for standing passengers, as shown in the right-hand-side plot of Figure 4.

Let the “congestion ratio” be defined as the expected number of people traveling in unreserved

coaches divided by the total number of unreserved seats. Figure 2 also illustrates the behavior

of the congestion ratio and the expected profit as a function of cs. Such plots can serve as useful

tools for railway administrators as they attempt to arrive at an appropriate value of cs to strike

a balance between profit and congestion.

6. Concluding Remarks

Revenue management in railways distinguishes itself from that in traditional applications such

as airlines, hotels, and fashion retail, in several ways, including the viability of jointly optimizing

pricing and capacity, capacity acquisition in discrete chunks, the existence of unreserved capacity,

standing travel, and the need for congestion management. Based on our work with a railway com-

pany in Japan, we analyze a joint pricing and capacity problem, and develop four asymptotically

optimal policies to cater to different practical needs (static or dynamic price, and fixed or flexible

capacity). Table 5 offers a succinct summary of our results. Our numerical study demonstrates

the excellent performance of our policies on instances based on real-world rail operations.

To demonstrate the broader applicability of our analysis, we briefly discuss two potential

applications beyond railways.

Joint Pricing and Capacity Decisions in Delivery Services: Consider a platform that offers

product delivery services, say the delivery of groceries, and consider a single day of operations.

The platform receives customer requests in advance for deliveries to be made on the focal day.

The platform accepts these requests until midnight of the previous day – we refer to the duration

until this deadline as the request horizon. Customers have the option to choose one from several

available time windows for their delivery; for example, 9am–12noon, 12noon–3pm, or 3pm–6pm.

Throughout the request horizon, the platform can dynamically vary the delivery prices for the
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Policy π1 (Section 3.1) Policy π3 (Section 4.1)

Asymptotic Optimality: Yes Asymptotic Optimality: Yes

Flexible Convergence Rate:
?
κ Convergence Rate: logκ

Capacity Capacity Decision: End of sales horizon Capacity Decision: End of sales horizon

Pricing Decision: State Independent Pricing Decision: State Dependent

Computation: Uses solution to PD and Qπ1 Computation: Uses solution to PD and Qπ3

Policy π2 (Section 3.2) Policy π4 (Section 4.2)

Asymptotic Optimality: Yes Asymptotic Optimality: Yes

Fixed Convergence Rate:
?
κ Convergence Rate: logκ

Capacity Capacity Decision: Start of sales horizon Capacity Decision: Start of sales horizon

Pricing Decision: State Independent Pricing Decision: State Dependent

Computation: Uses solution to PD Computation: Uses solution to PD

Static Price Dynamic Price

Table 5 Overview of our four policies for problem PS (κ PN is the demand and capacity scaling factor)

different time windows, depending on demand. The requests for deliveries arrive randomly at

rates that depend on the delivery prices. Simultaneously, on the supply side, the firm reserves

delivery drivers to fulfill delivery requests on the focal day. This supply is also uncertain – drivers

are available at a rate that depends on the daily wages set by the platform. The platform’s

objective is to maximize its profit by dynamically optimizing delivery prices for the different

delivery windows and the daily driver wages. Several elements in this setting are similar to those

in the problem we analyzed in this paper – for example, on the demand-side, delivery windows

are similar in spirit to multiple choices of trains for an itinerary, while on the supply-side, delivery

windows are conceptually similar to legs in train-travel. As another example, the number of

deliveries that can be made by a driver over a time window is akin to the number of seats in a

coach. Our analysis can be used as a stepping stone to develop effective policies for this setting.

Joint Pricing and Capacity Decisions in the Movie-Theater Industry: Here, each movie

is similar to an itinerary for which tickets are sold. The different time-slots for shows correspond

to different trains. For a given time-slot and a given movie, the number of (parallel) screens on

which the movie is shown is the capacity decision for that movie and time-slot combination.

Finally, pricing decisions are to be made for each movie and time-slot combination; these prices

can vary throughout the sales horizon.
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