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Abstract
In this paper, we aim to recover a cloud-free optical image from a cloudy optical image and
aligned synthetic aperture radar (SAR) image using a deep neural network. In contrast to
previous approaches, we make the observation that satellite image features generally have
no preferred orientation. This insight can be incorporated into the design of the neural ar-
chitecture by making the network layers obey the geometric constraint that changing the
orientation of an input image should only change the orientation of the corresponding output
image, without otherwise affecting the quality or details of the reconstruction. We build
a multimodal rotation-equivariant neural network, called EquiCR (Equivariant Cloud Re-
moval), that encodes this geometric prior exactly. When trained on the public SEN12MSCR
dataset, we observe improvements in reconstructed image quality using EquiCR, compared to
using deep learning without built-in rotation equivariance. Interestingly, EquiCR results in
greater improvements over the baseline method in the more difficult cases—when the amount
of cloud cover is high or when the training dataset is small.
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Abstract—In this paper, we aim to recover a cloud-free optical
image from a cloudy optical image and aligned synthetic aperture
radar (SAR) image using a deep neural network. In contrast to
previous approaches, we make the observation that satellite image
features generally have no preferred orientation. This insight
can be incorporated into the design of the neural architecture
by making the network layers obey the geometric constraint that
changing the orientation of an input image should only change the
orientation of the corresponding output image, without otherwise
affecting the quality or details of the reconstruction. We build a
multimodal rotation-equivariant neural network, called EquiCR
(Equivariant Cloud Removal), that encodes this geometric prior
exactly. When trained on the public SEN12MSCR dataset, we
observe improvements in reconstructed image quality using
EquiCR, compared to using deep learning without built-in
rotation equivariance. Interestingly, EquiCR results in greater
improvements over the baseline method in the more difficult
cases—when the amount of cloud cover is high or when the
training dataset is small.

I. INTRODUCTION

Nearly 70% of the earth’s surface is covered by clouds
on average [1]. This hinders important remote sensing ap-
plications that use optical images in areas such as disaster
management, agriculture, and ecological monitoring. Thus,
being able to effectively remove clouds from satellite imagery
is of vital importance. While optical images are affected by
the presence of clouds, radar can penetrate through clouds and
provide some information about edges and materials that lie
beneath the clouds, providing important side information for
remote sensing applications.

Recently, with the help of the Sentinel 1 and 2 mis-
sions [2], large amounts of Synthetic Aperture Radar (SAR)
and multispectral data are easily available. By carefully com-
bining the data from different times and using multimodal
registration, large datasets such as SENMS12CR [3], [4]
and SENMS12CR-TS [5] are now publicly available that
come with triplets of aligned images (SAR, cloudy optical,
and cloud-free optical images). By treating the cloud-free
optical imagaes as ground truth, we can use these datasets to
train large supervised deep learning models. Even with large
datasets, the problem remains challenging, especially when
there is significant cloud cover. Since the cloudy and cloud-
free images in the datasets were captured at different times,
the cloud-free images do not provide a perfect ground truth

Fig. 1: As features in satellite images do not have canonical or
preferred orientations, we build an equivariant cloud removal
network, EquiCR, that has the property that the quality and
details of reconstruction are the same even when the input is
rotated. This is achieved by enforcing the constraint that (a)
applying a rotation on both the SAR and cloudy optical image
and then passing through EquiCR must yield the same result
as (b) feeding the SAR and cloudy image through EquiCR
first and then rotating the output image.

for the cloudy images, which adds to the challenge of the
problem.

Several works employ deep learning for cloud removal,
using methods such as deep ResNets [6], adversarial learn-
ing [4], or diffusion models [7]. These methods take in a
cloudy optical image and a corresponding SAR image and
feed them through a series of neural network layers to produce
an estimated cloud-free image. In this paper, we make the
observation that features in satellite images can appear in any
orientation. Thus, the output of the neural network should be
of the same quality irrespective of the rotation applied to the
input image. In terms of network architecture, this requirement
translates to having constraints on each of the layers that they
are rotation-equivariant. This means that a rotation applied
to the input images should be reflected exactly in the output
estimated image, as illustrated in Figure 1.

We build a multimodal rotation-equivariant deep neural
network for cloud removal, which we call EquiCR. The
proposed model shows improved results, both qualitatively and



quantitatively, compared to a conventional neural network that
does not have built-in rotation-equivariance. Additionally, we
show that the improvements due to EquiCR are greater in the
more difficult cases: when the training dataset is small, and
when the amount of cloud cover is higher.

II. RELATED WORK

A. Deep learning techniques for cloud removal

Several works using deep learning for cloud removal employ
image-to-image translation such as pix2pix [8], [9] or Cycle-
GAN [4]. The model DSen2-CR [6] is a simple convolutional
neural network with residual connections that map SAR and
cloudy optical images to an estimate of the cloudless optical
image, and it has been shown to outperform other deep
learning methods including U-Nets [6], [10]. However, unlike
our architecture, this method is not equivariant to rotations of
the image. We use DSen2-CR [6] as the baseline method for
our work. Other works such as UncertainTS [11] are designed
to work with a sequence of multimodal inputs taken at multiple
times to enable easier cloud removal. In this paper, we focus
on the more challenging cloud removal task in which there
is a single snapshot in each modality. More recent work uses
diffusion models [7] for performing cloud removal. However,
such models are computationally slow due to the reverse
diffusion sampling process.

B. Equivariant neural networks

We start with a brief introduction to group theory. A set G
with a binary operation · is called a group if the following
properties hold:

1) Closure: ∀ g, h ∈ G, g · h ∈ G
2) Associativity: ∀ g1, g2, g3 ∈ G, g1 ·(g2 ·g3) = (g1 ·g2)·g3
3) Existence of identity: ∃ e ∈ G such that g · e = e · g =

g,∀ g ∈ G
4) Existence of inverse: For each g ∈ G,∃ g−1 such that

g · g−1 = g−1 · g = e.
We are interested in group elements that act on other objects

such as images and neural network features. This is called
group action. For a deep neural network represented as a
function f that maps input images to output images, let ρg(x)
denote the way a group element g acts on an input image x,
and let ρ′g(f(x)) denote how the same group element g acts
on the output image1. The function f is said to be equivariant
to G if f(ρg(x)) = ρ′g(f(x)),∀ g ∈ G.

Conventional convolutional neural networks (CNNs) used
for image restoration techniques including cloud removal are,
in principle, only equivariant to the translation group, because
each individual convolutional layer is equivariant to the group
of translations. In order to design networks to have equivari-
ance to other transformations, a more general class of group
convolutional neural networks (GCNNs) can be designed for
the transformation group of interest [12]. This generally boils
down to constraining the learned filters in each layer to
obey the desired equivariance property [13] or by different

1ρg(x) and ρ′g(f(x)) are technically known as group representations.

weight sharing mechanisms, depending on the group [14]. It
is important to note that designing exact equivariant layers
is different from data augmentation. In general, not only does
equivariance perform better than data augmentation, but it also
provides guaranteed robustness, which is not possible with just
data augmentation [15].

In the case of satellite images, based on the insight that
there are no canonical orientations of these images or their
features, we build a multimodal rotation-equivariant network.
Our network is designed to take in SAR inputs and cloudy
optical images such that if the input SAR and cloudy optical
images are rotated, then all of the intermediate feature maps as
well as the output of the network rotate by the same amount.
We refer the reader to [16] for a longer introductory treatment
of group equivariant neural networks.

III. PROPOSED METHOD

We now describe the rotation-equivariant network we build
for cloud removal from satellite images. To test the effect
of incorporating rotation equivariance, we closely follow the
baseline architecture of DSen2-CR [6] except for the rotation-
equivariance. The input to our neural network is a combination
of a SAR image and the corresponding aligned cloudy optical
image. We concatenate the two inputs in the channel dimen-
sion and feed the result to the network. The network consists
of series of rotation-equivariant convolutional blocks, each
of which consists of rotation-equivariant group convolutional
layers, which are described next.

As mentioned earlier, conventional 2D convolutions are
equivariant to the translation group. Recall that in a conven-
tional CNN, given a single-channel input x and a single filter
Ψ, the convolution operation2 is defined as

[x ∗Ψ](t) =
∑
τ∈Z2

x(τ)Ψ(t− τ) (1)

In this paper, we build our network using convolutions that
are equivariant to the p4 group. For ease of presentation,
we refer to these as rotation-equivariant convolutions. Each
element of the p4 group is a composition of a translation τ
and rotation r ∈ {0◦, 90◦, 180◦, 270◦} acting on a square 2D
image grid [12]. We choose this group as it provides a good
trade-off between benefits of equivariance and computational
complexity for the cloud removal problem, similar to what
has been observed in some earlier studies for other applica-
tions [13]. The idea of convolution (or cross-correlation) in
Equation (1) can be generalized to the p4 group. We first “lift”
the input to the p4 group and then perform group convolutions
in the subsequent layers. The lifting convolution in the first
layer is given by

x(1) = [x ∗Ψ(1)](g) =
∑
τ∈Z2

x(τ)Ψ(1)(g−1τ). (2)

2In implementation, the cross-correlation operation is used instead of
convolution, but this is a minor detail.



TABLE I: The proposed rotation-equivariant EquiCR outperforms the baseline CNN DSen2-CR for cloud removal.

Architecture Rotation
Equivariance? Inputs PSNR (dB) ↑ MAE ↓ SSIM ↑ SAM (degrees) ↓

DSen2-CR ✗ SAR + Optical 31.84 0.0193 0.9309 5.58
DSen2-CR ✗ Optical only 31.08 0.0213 0.9283 6.43
DSen2-CR ✗ SAR only 29.32 0.0260 0.8815 7.50

EquiCR (ours) ✓ SAR + Optical 32.06 0.0190 0.9351 5.31
EquiCR (ours) ✓ Optical only 31.64 0.0201 0.9313 5.91
EquiCR (ours) ✓ SAR only 29.60 0.0262 0.8808 7.42

TABLE II: Effect of training dataset size on performance. Full, 104 and 103 refer to the training set size.

Architecture Rotation
Equivariance?

PSNR (dB) ↑ MAE ↓ SSIM ↑ SAM (degrees) ↓
Full 103 102 Full 103 102 Full 103 102 Full 103 102

DSen2-CR ✗ 31.84 29.42 26.90 0.0193 0.0257 0.0349 0.9309 0.8938 0.7778 5.58 7.96 11.07
EquiCR (ours) ✓ 32.06 29.57 27.69 0.0190 0.0257 0.0315 0.9351 0.9127 0.8770 5.31 8.36 10.27

where g is an element of the p4 group. Note that the output of
the first layer is now a feature defined on the p4 group. The
rest of the intermediate layers l > 1 are group convolutions
mapping feature maps defined on the p4 group to other feature
maps on p4 group. This is given by

x(l+1) = [x(l) ∗Ψ(l)](g) =
∑
h∈p4

x(l)(h)Ψ(l)(g−1h) (3)

For simplicity, the above equations consider each layer to
have a single-channel input and single-channel output, which
can be easily generalized to multiple input and output chan-
nels. Additionally, pointwise nonlinearities such as Rectified
Linear Units (ReLUs), and optionally some normalization
layers and residual connections that maintain the required p4-
equivariance, can also be included in the group convolutional
neural network architecture.

Finally, to create an equivariant output given features on the
p4 group, pooling is performed along the rotation dimension:

y(τ) =
∑

r∈{0,90,180,270}

x(L)(τ, r). (4)

We use the ℓ1 loss between the estimated cloud-free image ŷ
and the ground-truth y to train the parameters of the network,
using mini-batch gradient descent:

Loss =
1

B

B∑
j=1

||y(j) − ŷ(j)||1 , (5)

where B is the number of examples in a batch.

IV. EXPERIMENTAL DETAILS AND RESULTS

A. Dataset details

For our experiments, we use the SEN12MSCR dataset [4]
and we follow their recommended training, validation, and test
splits. The training, validation, and test sets contain 114056,
7176, and 7899 examples, respectively, belonging to 169
different regions of interest around the globe and captured
during different seasons and years. Each example in the dataset
is a triplet consisting of (a) a SAR image, which is a 2-
channel image that consists of σ0 backscatter coefficients in

VV and VH polarization, (b) a multispectral cloudy optical
image, which is a multispectral image with 13 bands ranging
from 443 nm to 2190 nm, and (c) a cloud-free multispectral
image for the same region. The input and output patches are
256× 256.

B. Network architecture details

We use the network from DSen2-CR as our baseline method
as it is simple to train, effective, and allows for demonstrating
the utility of adding rotation-equivariance priors into the
network. We change the number of filters in each layer from
256 in DSen2-CR to 156 so as to keep the total number of
trainable parameters about the same for the baseline network
(18.9× 106 parameters) and the proposed rotation-equivariant
network (18.7 × 106 parameters). As in DSen2-CR, we use
16 residual convolutional blocks, each with 4 convolutional
layers, a residual connection, and 3×3 filters. We use a batch
size of 8 for training the network, an initial learning rate of
3×10−4, and Adam optimizer, as used in the baseline. All of
these hyperparameters are inherited from DSen2-CR and not
tuned for our method. We use the escnn package to build
EquiCR [17], [13].

C. Metrics to quantify performance

Following [4], we use four commonly used metrics to evalu-
ate the methods. Denoting the multispectral cloudless ground-
truth image as y and denoting the network’s estimate as ŷ,
both of size NH ×NW ×NC pixels, where NC is the number
of multispectral channels. We denote N = NH ×NW ×NC .
The metrics are defined as follows.

1) Peak Signal-to-Noise Ratio (PSNR):

PSNR = −20 ∗ log(
√

1

N

∑
i,j,k

(yi,j,k − ŷi,j,k)2. (6)

2) Mean Absolute Error (MAE):

MAE =
1

N

∑
i,j,k

|yi,j,k − ŷi,j,k|. (7)

3) Structural Similarity Index Measure (SSIM): We use the
implementation in scikit image[18] that computes



Fig. 2: Some qualitiative results on the SENMS12CR dataset. We see that using the proposed rotation-equivariant EquiCR
model, the estimated cloudless image has better quality than the baseline DSEN2-CR output.

SSIM as the average over M window-wise SSIMs as
shown below. Windows are indexed by (h,w):

SSIM =
1

M
SSIMwin(h,w), (8)

SSIMwin(h,w) =
(2µyµŷ + c1)(2σyŷ + c2)

(µy + µŷ + c1)(σy + σŷ + c2)
.

(9)
4) Spectral Angle Mapper (SAM)3:

SAM =
1

NHNW

NH∑
i=1

NW∑
j=1

cos−1

 ∑NC
k=1 yijkŷijk√

(
∑NC

k=1 y
2
ijk)⊙ (

∑NC
k=1 ŷ

2
ijk)


(10)

3The expression for SAM in [4] is not correct. We use the correct expression
for SAM based on the code of UnCRtainTS [19].

In these equations, the images have normalized intensities
between 0 and 1. In Eq. (9), µy and σy are the mean and
standard deviation of an image window respectively. c1 and
c2 are constants to avoid numerical errors in the division
operation. In Eq. (10), ⊙ denotes element-wise multiplication.
Both the division in the fraction and arccos operation are also
performed element-wise. The above metrics are computed for
each test-set example, and the reported metrics are averaged
over the full test set.

D. Results

We present the main quantitative results in Table I. We
observe that using rotation equivariance results in improved
performance in terms of all quantitative metrics. Figure 2
shows qualitative comparisons between the reconstructions
obtained from the baseline DSen2-CR network those from



Fig. 3: Performance comparison between the baseline DSen2-CR network and the proposed EquiCR networks as a function of
amount of cloud cover in the image. Our method (orange bars) outperforms the baseline (blue bars) generally across all cloud
cover percentages. Interestingly, the performance gap generally increases when the amount of cloud cover is higher.

our proposed rotation-equivariant EquiCR by displaying just
the red, green, and blue channels of the multispectral images.
We generally observe improvements in reconstruction quality,
especially when there is a large amount of cloud cover, and
the features and edges tend to be sharper with our equivariant
network. In some cases, rotation equivariance leads to better
reconstruction of some colors and better removal of cloud
shadows.

Table I also contains results when only optical images or
only SAR images are available as inputs. As expected, using
both optical and SAR images yields the best performance.
However, the performance improvement of EquiCR over the
baseline is greater when only optical images are used as input
to the cloud removal networks.

In Table II, we examine the effect of dataset size on the
performance of the conventional CNN baseline model and the
proposed EquiCR model. We trained three sets of models—
using (a) the full dataset, (b) 10000 training examples, or (c)
1000 training examples. We see that when the dataset size is
small, the overall performance is lower, but the performance
improvement of EquiCR over the baseline is greater when the
training dataset size is small.

Finally, we test how the amount of cloud cover affects
performance. We use the S2Cloudless cloud detector [20] to
detect the binary masks of clouds and compute the percentage
of cloud pixels in each of the test set cloudy images. We
then compute the median quantitative metrics for 10 different
levels of cloud cover, from 0–10% to 90–100%. The results
are shown in Figure 3. As expected, the performance of both
DSen2-CR and the proposed equivariant model gradually drop
as the amount of cloud cover in the image goes up, because
the task gets harder with more cloud cover. More interestingly,
the rotation-equivariant model provides greater performance
improvements over the baseline when the amount of cloud
cover is higher.

V. CONCLUSION AND FUTURE WORK

In this paper, we showed that by incorporating the geometric
prior that satellite image features do not have a canonical
orientation, we can boost performance relative to a conven-
tional neural network. We designed a multimodal rotation
equivariant network that produces superior cloud removal
results, especially in harder cases that have high cloud cover
or few training samples. We believe that applying these ideas
to other types of restoration paradigms, such as diffusion
models, and to other applications involving satellite images,
are important directions for future research.

REFERENCES

[1] Michael D King, Steven Platnick, W Paul Menzel, Steven A Ackerman,
and Paul A Hubanks, “Spatial and temporal distribution of clouds
observed by modis onboard the terra and aqua satellites,” IEEE
transactions on geoscience and remote sensing, vol. 51, no. 7, pp. 3826–
3852, 2013.

[2] European Space Agency, “Sentinel overview,” https://sentinels.
copernicus.eu/web/sentinel/missions, 2016, Available online: (accessed
on 20 November 2024).

[3] Michael Schmitt, Lloyd Haydn Hughes, Chunping Qiu, and Xiao Xiang
Zhu, “SEN12MS–a curated dataset of georeferenced multi-spectral
sentinel-1/2 imagery for deep learning and data fusion,” arXiv preprint
arXiv:1906.07789, 2019.

[4] Patrick Ebel, Andrea Meraner, Michael Schmitt, and Xiao Xiang Zhu,
“Multisensor data fusion for cloud removal in global and all-season
sentinel-2 imagery,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 59, no. 7, pp. 5866–5878, 2020.

[5] Patrick Ebel, Yajin Xu, Michael Schmitt, and Xiao Xiang Zhu,
“SEN12MS-CR-TS: A remote-sensing data set for multimodal multi-
temporal cloud removal,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 60, pp. 1–14, 2022.

[6] Andrea Meraner, Patrick Ebel, Xiao Xiang Zhu, and Michael Schmitt,
“Cloud removal in sentinel-2 imagery using a deep residual neural
network and sar-optical data fusion,” ISPRS Journal of Photogrammetry
and Remote Sensing, vol. 166, pp. 333–346, 2020.

[7] Xuechao Zou, Kai Li, Junliang Xing, Yu Zhang, Shiying Wang, Lei
Jin, and Pin Tao, “Diffcr: A fast conditional diffusion framework for
cloud removal from optical satellite images,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 62, pp. 1–14, 2024.

[8] JD Bermudez, PN Happ, DAB Oliveira, and RQ Feitosa, “SAR to
optical image synthesis for cloud removal with generative adversarial
networks,” ISPRS Annals of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, vol. 4, pp. 5–11, 2018.

https://sentinels.copernicus.eu/web/sentinel/missions
https://sentinels.copernicus.eu/web/sentinel/missions


[9] Claas Grohnfeldt, Michael Schmitt, and Xiaoxiang Zhu, “A conditional
generative adversarial network to fuse SAR and multispectral optical
data for cloud removal from sentinel-2 images,” in IGARSS 2018-2018
IEEE International Geoscience and Remote Sensing Symposium. IEEE,
2018, pp. 1726–1729.

[10] Olaf Ronneberger, Philipp Fischer, and Thomas Brox, “U-net: Con-
volutional networks for biomedical image segmentation,” in Medical
image computing and computer-assisted intervention–MICCAI 2015:
18th international conference, Munich, Germany, October 5-9, 2015,
proceedings, part III 18. Springer, 2015, pp. 234–241.

[11] Patrick Ebel, Vivien Sainte Fare Garnot, Michael Schmitt, Jan Dirk
Wegner, and Xiao Xiang Zhu, “UnCRtainTS: Uncertainty quantification
for cloud removal in optical satellite time series,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2023, pp. 2086–2096.

[12] Taco Cohen and Max Welling, “Group equivariant convolutional
networks,” in International conference on machine learning. PMLR,
2016, pp. 2990–2999.

[13] Maurice Weiler and Gabriele Cesa, “General E(2)-equivariant steerable
cnns,” Advances in neural information processing systems, vol. 32, 2019.

[14] Siamak Ravanbakhsh, Jeff Schneider, and Barnabas Poczos, “Equiv-
ariance through parameter-sharing,” in International conference on
machine learning. PMLR, 2017, pp. 2892–2901.

[15] Bastiaan S Veeling, Jasper Linmans, Jim Winkens, Taco Cohen, and Max
Welling, “Rotation equivariant CNNs for digital pathology,” in Medical
Image Computing and Computer Assisted Intervention–MICCAI 2018:
21st International Conference, Granada, Spain, September 16-20, 2018,
Proceedings, Part II 11. Springer, 2018, pp. 210–218.

[16] Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković,
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