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ABSTRACT We introduce Self-Monitored Inference-Time INtervention (SMITIN), an approach for
controlling an autoregressive generative music transformer using classifier probes. These simple logistic
regression probes are trained on the output of each attention head in the transformer using a small dataset
of audio examples both exhibiting and missing a specific musical trait (e.g., the presence/absence of drums,
or real/synthetic music). We then steer the attention heads in the probe direction, ensuring the generative
model output captures the desired musical trait. Additionally, we monitor the probe output to avoid adding
an excessive amount of intervention into the autoregressive generation, which could lead to temporally
incoherent music. We validate our results objectively and subjectively for both audio continuation and
text-to-music applications, demonstrating the ability to add controls to large generative models for which
retraining or even fine-tuning is impractical for most musicians.
Audio samples of the proposed intervention approach are available on our demo page.
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I. Introduction
Dynamic control of an audio signal can be considered a fundamental
job of most audio professionals. Musicians must precisely control
their instruments, and recording studio engineers manipulate various
controls to achieve a desired result. Recent advances in the generative
modeling of text and images have also been applied to audio signals,
leading to an emerging body of literature on how to condition and
control audio generative models [1]–[7].

Among possible conditioning inputs, describing the audio a user
wishes to generate in terms of natural language arguably provides
the most flexibility. Such text-to-music models, however, lack the
fine-grained temporal control often desired by audio professionals.
This has led to training text-to-music models that allow additional
conditioning inputs, such as melody sequences [2], or other types of
sequential input [8]–[11], but these models still suffer from the fact
that, once trained, the type of conditioning input is fixed. To alleviate
this limitation, some works have explored the addition of new
types of control inputs without requiring retraining [4], [12]–[16].
The standard approach in most previous work trains supplementary
adapters (e.g., LoRA [17]) atop the foundational generative model
to introduce additional control, but once the adaptation is complete,
it is often not straightforward to vary the strength of the control at
inference time. Our goal is to build “knob-like” variable strength

controls given only a small number of audio examples both with
and without a desired musical trait (i.e., binary labels).

Audio “language models” typically work by first tokenizing
chunks of an audio waveform, for example by passing them
through the encoder of a pre-trained residual vector quantized
autoencoder [18]–[20], and then pass these audio tokens through
an autoregressive transformer trained to predict the next token.
Finally, a decoder converts the generated token back into audio.
While not state-of-the-art in terms of generation quality compared
to latent diffusion [21], [22] or masked token models [5], [23],
autoregressive audio generative models are still useful for many real-
time and interactive applications. Furthermore, because this class
of text-to-music models shares many architectural characteristics
with large language models (LLMs), it is interesting to explore
whether techniques developed to provide inference-time control of
LLMs [24]–[26] may also be effective for audio. In particular, we
take inspiration from recent work attempting to make text language
models more truthful by taking advantage of the fact that the learned
internal representations of these models are able to represent the
concept of truthfulness [27]. Classifier probes [28]–[30] applied
to each attention head are used to determine whether or not that
attention head has learned to represent truthfulness, and inference-
time intervention (ITI) is then used to surgically modify the outputs
of only the most truth-correlated attention heads, resulting in an LLM
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FIGURE 1: Overall pipeline of SMITIN for inference-time inter-
vention on a pre-trained music generative transformer. The process
attempts to enforce specific musical factors (e.g., presence of a
particular instrument) during the generation process. SMITIN utilizes
a self-monitoring technique to dynamically adjust the intervention
strength at each generation step, enabling precise control over the
inclusion of the target characteristic while preserving the musical
integrity of the output.

that hallucinates less. Previous work [31] has shown that classifier
probes trained on the internal representations of generative music
transformers can lead to strong performance across a wide variety
of music classification tasks. However, these probes were trained
using the learned representation from entire layers, not individual
attention heads.

We first show using classifier probes that individual self-attention
heads in a pre-trained autoregressive music transformer, Music-
Gen [2], have indeed learned to represent aspects of music we may
wish to build control knobs for, making it a priori suitable for ITI
approaches such as in [27]. However, we find that direct application
of this particular approach to a music transformer is sub-optimal
because of the difficulty in generating long temporally coherent
music samples, as too much intervention causes the generated music
to quickly become incoherent. Furthermore, the method asks for the
empirical tuning of the number of heads selected for intervention,
impeding the ability to implement multiple intervention kinds at
scale. To remedy this, we propose the inclusion of a self-monitoring
process into the intervention operation, such that we only apply the
intervention when the learned classifier probes tell us it is necessary
based on the state of the generation network. Crucially, this self-
monitoring technique enables real-time assessment of whether the
current generated sample incorporates the target factor, allowing
for the generation of musically aligned samples without a costly
retraining or fine-tuning process. We also propose to weigh all
heads as a function of their learned probe performance, removing
the need for empirical head selection tuning. The overall idea of
the self-monitoring process is outlined in Fig. 1.

The remainder of the paper is organized as follows. In Section II,
we evaluate whether the internal representations from individual
attention heads of the pre-trained MusicGen model are suitable
for downstream music classification tasks by training simple linear
classifier probes. Then, in Section III, we describe SMITIN, where
these classifier probes are used to build custom “knobs” for inference-

FIGURE 2: Overview of probing MusicGen. Each audio sample
in a labeled dataset is converted to EnCodec tokens and input into
MusicGen to predict the next token. The activations for the last time
step (orange dots) for each attention head in each layer (blue dots)
are used to train a logistic regression classifier (probe).

time control of MusicGen. In Section IV, we assess our proposed
approach both objectively and subjectively in terms of intervention
success and overall audio quality. Furthermore, we study in Section V
several important practical aspects of our approach, such as the
number of audio examples required to obtain classifier probes
sufficient for intervention, whether multiple interventions can be
used simultaneously, and the ability of the intervention to prevent
the autoregressive generative process from diverging over time into
unrealistic and temporally incoherent music. In the Appendix, we
additionally provide probing experiments on more downstream tasks
and additional details of our subjective and objective results. Our
source code will be available online1.

II. Understanding MusicGen
In this section, we seek to investigate and quantify the comprehension
of music by each attention head within MusicGen [2]. MusicGen is a
pre-trained and publicly accessible generative music transformer that
uses an EnCodec encoder [19] to create discrete audio tokens, an
autoregressive transformer to predict the next token, and an EnCodec
decoder to output an audio signal. This analysis will provide insights
into the model’s potential for fine-grained control via attention-head
steering. We use a probing task designed to assess the model’s ability
to distinguish musical pieces based on the presence or absence of
specific instruments, and explore further downstream tasks in the
Appendix.

1https://github.com/merlresearch/smitin
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A. Autoregressive Transformer Models
Architectures such as MusicGen are characterized by the autoregres-
sive generation of a sequence of audio frames by transformer models.
They include a collection of L multi-head self-attention layers
(residual connections, normalization layers, and fully-connected feed-
forward layers are employed as usual and not described here). At
current time step t in the generated sequence, the l-th self-attention
layer computes H self-attention heads zl,h(t) ∈ RD from an input
vector xl(t) ∈ RDH as

zl,h(t) = Att(WQ
l,hxl(t),W

K
l,hxl(1 : t),W

V
l,hxl(1 : t)), (1)

where xl(1 : t) = [xl(1), . . . , xl(t)], WQ
l,h, WK

l,h, and WQ
l,h denote

the head-specific query, key, and value projection matrices, all in
RD×DH , and Att denotes the attention operator [32]. The output
vector yl(t) ∈ RDH is obtained by projecting back each head into
DH-dimensional space and summing:

yl(t) =

H∑
h=1

WO
l,hzl,h(t), (2)

where WO
l,h ∈ RDH×D is a projection matrix.

B. Probing MusicGen
We describe the methodology of probing MusicGen by evaluating
the capability of its self-attention heads in recognizing instruments
(i.e., determining whether a target instrument is present in the
audio stream). The overview of the probing procedure is shown as
Fig. 2. We create a dataset by curating data from MUSDB [33] and
MoisesDB [34], which offer multi-track recordings with isolated
instrument stems. For a given target stem, we form a positive class
of mixtures where the target stem is present, and a negative class
of corresponding mixtures with the target stem removed as follows.
First, we remove from every multi-track recording the time regions
where the target stem is silent. Then, out of this pruned recording,
the mixture of all of its stems is added to the positive class data,
while the mixture of all of its stems except its target stem is added
to the negative class data. Subsequently, we process 3-second-long
segments of these tracks for training (and testing), passing them
through MusicGen to extract the intermediate activation zl,h(T ) at
the last time step T for every self-attention layer l and head h.
This forms the basis for the training (and testing) sets of the probe
classifier, wherein a simple logistic regression model is employed
to distinguish the presence of the instrument.

The testing accuracy of probes from MusicGenlarge (3.3B param-
eters) across all self-attention layers l and heads h is illustrated
in Fig. 3. We observe that specific subsets of heads outperform
others in detecting the presence of each target stem. While certain
attention layers show better performance, it is notable that not all
heads within each layer result in uniform performance; rather, their
effectiveness varies considerably. This variation underscores the
utility of head-wise probing in achieving precise control over the
transformer’s behavior. Furthermore, MusicGen’s proficiency varies
across instruments; it demonstrates a strong understanding of drums
and bass, whereas its accuracy on guitar and piano is comparatively
lower. This discrepancy suggests a potential bias in MusicGen’s
training dataset (see [2], Fig. A.3).

III. Self-Monitored Inference-Time Intervention
A. Inference-time Intervention (ITI)
Reference [27] first recognized that the output of the model could be
somewhat controlled at inference by intervening in (i.e., modifying)
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FIGURE 3: Instrument recognition performance of individual
attention head probes from the MusicGenlarge model activations,
sorted by accuracy, with all colorbars normalized to the same
range. The values in brackets indicate the highest accuracy of the
probe classifier for each respective instrument task, followed by the
threshold value τ , which is defined in Section III-D.

the computation of the output of the multi-head self-attention layer
in Eq. (2). This intervention is done by adding a term to the heads
zl,h(t) ∈ RD before the projection:

yl(t) =

H∑
h=1

WO
l,h (zl,h(t) + αwl,h · σl,hθl,h) , (3)

where θl,h ∈ RD is a vector representing the head-specific ITI
“direction” in the D-dimensional head-specific space, σl,h ∈ R+ is
a head-specific normalization of θl,h, α ∈ R+ is the system-wide ITI
strength, and wl,h ≥ 0 is a head-specific strength weighting. While
the formulations are equivalent, we depart somewhat from [27] by
introducing wl,h as a separate term, whereas it was factored into
θl,h in their notations. This helps to disambiguate the dual function
played by θl,h in their formulation.

The head-specific ITI directions θl,h are obtained through
classifier probes. Following [27], we find an auxiliary probing dataset
suited to train a classifier mirroring our ITI goal (e.g., drum classifier
if the goal is to add drums). We then run the dataset through our
(frozen) generation network and collect a set of heads zl,h(t) for
all l, h. For each l and h, we then train a distinct logistic regression
classifier probe with parameters θ̃l,h, whose prediction is obtained
as sigmoid(⟨θ̃l,h, zl,h(t)⟩). Once probe training is complete, we set
ITI direction θl,h as the final θ̃l,h, and σl,h as the standard deviation
of ⟨θl,h, zl,h(t)⟩ for all zl,h(t) obtained on the combined probing
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training and testing data. We also take note of the final classifier
accuracy accl,h on the probing test data. In the case of MusicGen,
we apply the generative model in unconditional generation mode
for probing, as our probing dataset generally lacks text queries for
its audio samples.

In [27], head-specific weights wl,h are set by finding the top-K
heads in terms of classifier probe accuracy accl,h, setting their wl,h

to 1 and the others to 0. The most effective α and K are found by
hyperparameter grid search.

B. Sparse intervention
In music generation, the approach above may present some lim-
itations. For example, for the task of audio continuation, we
observe that ITI often leads to changes that are too abrupt to be
musically plausible (see Section IV-B). As mitigation, we propose
to diminish the ITI frequency across time steps, potentially allowing
the generation process to better align with the underlying rhythmic
structure of the generated music. This corresponds to replacing
the ITI weights wl,h in Eq. (3) by time-varying weights wl,h(t),
which can only be non-zero for t = t0 + is, i ∈ N, where t0 is an
intervention start time and s represents the number of steps between
each ITI (e.g., s = 5 to perform ITI every 5 time steps). The value
of wl,h(t) for t = t0 + is can be set by another criterion, such as
the original one based on top-K heads.

C. Soft-weighting
One crucial limitation of [27] is that K, the number of heads
on which ITI is performed (i.e., the number of pairs (l, h) for
which wl,h(t) ̸= 0), is a hyperparameter that must be tuned. We
additionally propose a hyperparameter-free soft-weighting approach
based on the collected probe accuracies accl,h, and show that it
is sufficient to perform effective ITI (see Appendix Table 15). In
practice, we propose setting the weights as

wl,h(t) =

(
accl,h − accmin

accmax − accmin

)c

, (4)

with accmin and accmax the minimum and maximum accuracies
recorded across all l and h, and c a power factor allowing to modulate
the relative weights of heads with accurate vs. inaccurate classifier
probes (we use c = 3). By construction, wl,h(t) is guaranteed to
fall between 0 and 1.

D. Automated Intervention Modulation by Self-monitoring
Ideally, we would expect a system capable of modulating the ITI
strength to be most effective, as systems with time-invariant wl,h(t)
make no use of (and, as such, cannot react to) the state of the
inference model during generation.

As our core contribution, we propose to use the classifier probes
to drive such a modulation. We first define as HK the set of top-K
heads (l, h) by probe classifier accuracy. For each new generation
time step t, we collect the set C(t) of output predictions of the
classifier probes for all heads in HK before intervening on them,
i.e.,

C(t) = {sigmoid (⟨θl,h, zl,h(t)⟩) | (l, h) ∈ HK} . (5)

The statistics of C(t) reflect the confidence of the probes regarding
the success of the intervention. By comparing them to the baseline
accuracies obtained on the probing training data, we can devise
a modulation scheme to update wl,h(t). We compute the median
C̄(t) = med(C(t)) and the change in this median since the prior
generation step with intervention, ∆(t) = C̄(t)− C̄(t−s). We then

define a threshold based on the median and standard deviation of
the set A of probe accuracies accl,h on the probing training data
over the same heads HK ,

A = {accl,h | (l, h) ∈ HK}, (6)

setting the threshold as τ = med(A)− std(A).
The update algorithm is then defined following:

• For the first generation time step with ITI t0, wl,h(t0) is set
following Eq. (4), and we set ∆(t0)← 0,
• For each subsequent generation time step with ITI t+s, we have

3 cases:
1) if C̄(t)<τ and wl,h(t)>0, we set

wl,h(t+ s)← wl,h(t) · (1−∆(t)), (7)

2) if C̄(t)<τ and wl,h(t) = 0, we reset to the initial value

wl,h(t+ s)← wl,h(t0), (8)

3) if C̄(t) ≥ τ , we set wl,h(t+ s)← 0.

IV. Controlled Experiments on Instrument Addition
Here, we validate the effectiveness of our proposed contribution
by presenting a thorough investigation of ITI applied to the music
generative task of instrument addition, a task for which evaluation is
relatively straightforward. This section outlines methods to quantify
the effectiveness of ITI techniques objectively, complemented by a
subsequent subjective evaluation.

A. Setup
For the evaluation of ITI on MusicGen, we utilize the large mono
configuration, which is composed of 48 layers with 32 attention
heads each, amounting to a total of 1,536 heads. Unless otherwise
noted, the self-monitoring configuration of SMITIN is set to an
intervention strength of α = 5.0, a sparse intervention rate of s = 5,
and K = 16 for the selection of monitoring probes.

For the instrument addition task, we curate probing datasets
for drums, bass, guitar, and piano detection from MUSDB [33]
and MoisesDB [34], both of which provide multi-track recordings
with isolated instrument stems. Stems from their training (resp.
testing) partitions are used to form the probing training (resp. testing)
partition. To create positive and negative classes, i.e., one including
and one excluding the target instrument, we proceed as follows.
We collect a first set consisting of the mixed audio from each
track recording after removing the target instrument stem, and trim
silent sections. We then collect a second set consisting of the target
instrument stems, and trim silent sections. We then generate negative
samples using audio segments randomly sampled from the first set,
and positive samples by randomly mixing a mixture without the
target instrument (from the first set) with a stem of the target
instrument (from the second set). Following silence trimming, the
datasets amount to 8.3, 8.0, 13.1, and 5.7 hours for drums, bass,
guitar, and piano, respectively. These durations represent the total
amount of paired data available for probing. Since the negative
samples are more abundant, we balanced the dataset to ensure an
equal number of positive and negative samples, based on the total
duration of positive samples.

1) Generation Approach
Our experimental setup includes two contexts in which to perform
ITI: audio continuation and text-to-music. In both cases, the objective
is to perform the task while adding the target instruments (drums,
bass, guitar, and piano) into the music pieces through ITI.
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Audio continuation: Given an input music signal, we continue to
generate a music piece while trying to add the target instrument.
The input segment is a 3-second-long music segment obtained from
the MUSDB and MoisesDB test datasets, which does not contain
the target instrument.
Text-to-music: This task uses text prompts from the MusicCaps [35]
dataset to guide the generation process, allowing us to evaluate the
effectiveness of ITI in the context of text-conditioned generation.
We use the aspect list (e.g., “pop, tinny wide hi hats, mellow piano
melody”) over the free text caption to further investigate the impact
of adding simple instructions, e.g., “add inst.” to the tag list.

2) Objective Metrics
Our objective evaluation comprises three metrics designed to assess
the effectiveness of the ITI process. We generate 1,000 music pieces,
each 30 seconds long, for each experimental configuration.

Success Rate: We introduce Success Rate to quantify the efficacy
of ITI in successfully adding the desired instrument to the music.
This metric is derived from our self-monitoring technique from
Section III-D, which measures the likelihood of the target musical
factor based on the timewise probability inferred by the top-K best-
performing probes, where K = 16. For each audio, the success rate
is calculated as nsuccess/N , where nsuccess is the number of samples
t after the start of the intervention for which C̄(t) > τ , and N is
the total number of time steps generated after the intervention. The
reliability of this metric is contingent upon the top-K probes’ test
performance in the probing task.

Although the probing technique performs well on real-world audio
samples, as demonstrated in Section II, there is some uncertainty
regarding its effectiveness on generated samples. Also, because the
Success Rate metric uses the same internal monitoring probes of
MusicGen as the proposed intervention techniques, there is some
concern that it may overestimate success in a way other instrument
recognition models would not. Thus, to further validate the Success
Rate, we compared its results on all the generated samples used
for subjective evaluation in Section IV-D against decisions from
other instrument recognition models. Specifically, we measured the
Spearman correlation between the logits produced by our internal
probes and those produced by external models such as YAMNet [36],
PaSST [37], CLAP [38], and ConvNeXt [39]. YAMNet and PaSST
were both trained on AudioSet [40], with PaSST further fine-tuned
using the OpenMIC dataset [41]. For CLAP-based recognition, we
trained a two-layer MLP to classify the embeddings generated by the
frozen CLAP encoder, training on the same dataset as our internal
probes. ConvNeXt was trained and tested using the same dataset
as well (see Appendix A1 for detailed setup). We used publicly-
available weights for YAMNet2, PaSST3, and CLAP4.

The results in Table 1 demonstrate a strong positive correlation,
confirming that our internal probes align with external models in
recognizing the desired musical traits. Furthermore, as we show
in the analysis of subjective evaluation in Section IV-D, all the
instrument recognition methods also correlate well with human
decisions, providing additional validation of the models’ alignment
with perceptual recognition.

A key advantage of using the Success Rate metric with Music-
Gen’s internal probes is that it allows for frame-wise recognition
during generation, offering precise detection of musical traits

2https://github.com/tensorflow/models/tree/master/research/audioset/yamnet
3https://github.com/kkoutini/PaSST
4https://github.com/LAION-AI/CLAP

TABLE 1: Spearman correlation between the Success Rate and other
instrument recognition methods. All p-values are below 1e-5.

Correlation Coefficient ρ (↑)

Method drums bass guitar piano avg.

YAMNet [36] 0.71 0.50 0.58 0.33 0.53
PaSST [37] 0.69 0.73 0.63 0.40 0.63
CLAP [38] 0.82 0.74 0.68 0.66 0.75
ConvNeXt [39] 0.73 0.84 0.70 0.74 0.75

throughout the entire sample. For example, consider a 10-second
music sample where drums are only present in the last 3 seconds.
External instrument recognition models, which often operate with
larger window sizes, may struggle to accurately identify that drums
are only present in 30% of the sample. In contrast, our internal
probes can precisely distinguish such temporal details, identifying
the proportion of the sample that contains the target instrument. This
level of granularity is particularly important in controlled generation
tasks, where it is critical to accurately capture the presence and
distribution of musical traits in the generated audio.

Fréchet Audio Distance (FAD): FAD [42] is used to compare
generated music with real music datasets, which helps ensure that
the intervention does not cause an unrealistic shift in MusicGen’s
output distribution. Instead of the conventional approach of using
VGGish [43] as the deep encoder, we use L-CLAP mus [38]
for dimension reduction, as it has been shown to offer a more
accurate representation of music [44]. As the real music datasets,
we adopt MUSDB (drums/bass) or MoisesDB (guitar/piano) for
audio continuation and MusicCaps for text-to-music generation.

Similarity Measurement in audio continuation: For the audio
continuation task, we measure the musical similarity between input
and generated samples. We employ the Music Effects Encoder [45],
a model trained with self-supervised contrastive learning designed to
encode song identity. The encoder is used to embed both input and
generated samples, and their cosine similarity is calculated. This
metric assesses how well the identity of the input music is preserved
in the generated output.

B. Qualitative Evaluation
We qualitatively analyze the performance of top-K probes’ moni-
toring capability through Fig. 4. The red dashed line in each plot
indicates the threshold value τ , as mentioned in Section III-D. From
the left side of the figure, it is apparent that the median prediction
(yellow line) more closely aligns with the actual presence of the
target instrument than the mean prediction (green line). Consequently,
we use C̄(t) = med(C(t)) to monitor during inference time.

The sub-plots on the right illustrate how the hyper-parameter s
influences the outcome of the audio continuation task. We observe
a relationship between the intervention frequency s and the rapidity
with which the model aligns toward the target factor. This suggests
that more frequent interventions cause the transformer to prioritize
the target factor more heavily in subsequent token generation,
potentially at the expense of referencing the similarity to previous
musical context. We discuss this trade-off between intervention
quantity and musical coherence throughout this section.

C. Objective Evaluation
Utilizing the metrics introduced in Section IV-A2), we objectively
evaluate our methods on audio continuation and text-to-music. We
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FIGURE 4: Inferred prediction of the top-K probes’ monitored decision along the time axis. The yellow line, green line, and the shaded
blue region denote the median, mean, and standard deviation of inferred outputs by the probes, respectively. The red dashed line indicates
threshold value τ of the current monitoring probes. (Left) Monitored result on a real-world music sample. The high prediction (close to
1.0) until 3.5 seconds reflects the actual presence of drums, which aligns with the audio sample where drums are present only up to
that point. (Right) The four sub-plots display the results of audio continuation on the same input music with varying ITI frequencies
(s = [1, 5, 10, 20]). These illustrate that more frequent intervention leads to a swifter convergence towards the target musical factor, at the
expense of losing musical consistency with the input music.

TABLE 2: Objective evaluation on audio continuation. FADL-CLAP mus is computed with MUSDB (drums/bass) and MoisesDB (guitar/piano).

Method Success Rate [%] (↑) FADL-CLAP mus (↓) Similarity (↑)

ITI Configuration drums bass guitar piano avg. drums bass guitar piano avg. drums bass guitar piano avg.

X unconditioned 12.5 13.5 3.6 0.0 7.4 0.326 0.253 0.377 0.320 0.319 0.864 0.933 0.929 0.941 0.916
“add <inst.>” 16.6 27.4 5.5 1.7 12.8 0.364 0.301 0.385 0.351 0.350 0.833 0.905 0.929 0.936 0.900

✓

original ITI 21.3 76.0 17.2 85.2 49.9 0.358 0.510 0.447 0.368 0.420 0.868 0.858 0.919 0.939 0.896
weight decay ITI 13.2 17.5 15.4 3.1 12.3 0.336 0.259 0.378 0.337 0.327 0.871 0.927 0.933 0.941 0.918
SMITIN 20.6 30.4 33.8 8.7 23.3 0.346 0.267 0.397 0.337 0.336 0.857 0.922 0.935 0.938 0.913
SMITIN + “add <inst.>” 16.9 28.0 16.9 17.4 19.8 0.381 0.303 0.391 0.374 0.362 0.839 0.909 0.929 0.942 0.904

compare with baseline methods that do not incorporate ITI, such
as MusicGen’s standard unconditional and text-prompt conditioned
generations. Additionally, we benchmark against the original ITI
method, which applies a uniform intervention at every time step
(i.e., s = 1) with a configuration of α = 5.0 and K = 64 to apply
the intervention with the equal amount α to each of the K selected
heads. For audio continuation, we examine another ITI approach,
weight decay, where α is progressively reduced across time steps
during the generation process. For text-to-music, our evaluation
includes both our default configuration (α = 5.0) and a stronger
intervention level of α = 10.0 to observe the trade-off between the
intervention strength and the preservation of musical fluency within
the generated samples.

Table 2 presents the objective evaluation for the audio continu-
ation task. The baseline methods reveal that MusicGen inherently
tends to add certain instruments without explicit direction with
varying success rates across instruments; drums and bass are
more easily added compared to guitar and piano. Intriguingly,
text-prompted generation does not consistently achieve the target
instruction. Intervention methods, on the other hand, consistently
outperform baseline approaches in successfully directing MusicGen
toward adding the desired instruments, as indicated by the success

rate. The original ITI, applying a constant level of intervention at
each generation step, leads to a higher success rate but significantly
alters the distribution of generated content, which can be observed
via the similarity score for maintaining musical consistency. In
contrast, the weight decay ITI approach has a subtler influence on
the quality but produces a lower success rate. Our proposed SMITIN
shows a notable 10.5% jump over text-prompt conditioning and is
better at retaining the model’s output distribution and generating
consistent music. When SMITIN is deployed in conjunction with
text conditioning, it outperforms text-based instructions, but not to
the same extent as when used independently (likely because we do
not intervene on the text cross-attention layers).

For the text-to-music task, we explore the interplay of ITI with text
prompts, as shown in Table 3. In this context, we utilize MusicCaps
text prompts as the basis of MusicGen’s performance. Consistent
with earlier observations, the original ITI method, despite showing
the highest success rate in instrument addition, performs the lowest
in terms of FAD, indicating a more pronounced shift from the natural
music distribution. SMITIN, in its base configuration (α = 5.0),
achieves an average performance on par with additional text guidance.
We further analyze SMITIN with an increased intervention strength
of α = 10.0 and observe that a clear trade-off emerges between
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TABLE 3: Objective evaluation on text-to-music. FADL-CLAP mus is computed with MusicCaps.

Method Success Rate [%] (↑) FADL-CLAP mus (↓)

ITI Configuration drums bass guitar piano avg. drums bass guitar piano avg.

X text 29.9 50.4 17.4 7.1 26.2 0.482 (indep. of inst.)
text + “add <inst.>” 34.4 56.1 22.5 10.5 30.8 0.474 0.481 0.473 0.488 0.479

✓
text + original ITI 44.3 79.6 33.4 51.0 52.0 0.506 0.577 0.555 0.517 0.538
text + SMITIN (α = 5.0) 29.9 53.4 23.1 12.5 29.7 0.471 0.493 0.499 0.487 0.487
text + SMITIN (α = 10.0) 40.9 60.7 35.4 21.0 39.5 0.481 0.516 0.507 0.485 0.497

TABLE 4: Average and 95% confidence interval of subjective
listening tests for overall audio quality across four instrument
addition interventions for audio continuation and text-to-music.

Method Continuation Text-to-Music

No intervention 3.35± 0.10 3.67± 0.09
“add <inst.>” 3.27± 0.10 3.61± 0.09
original ITI 3.28± 0.11 3.55± 0.09
SMITIN 3.34± 0.10 3.80± 0.09

MoisesDB 3.98 ± 0.29

TABLE 5: Subjective results across multiple algorithms, comparing
human (Hum.) detection on the presence of instruments added by
intervention, with Success Rate (Alg.). All Spearman correlation
coefficients (ρ) have p-values less than 1e-5.

Audio continuation Text-to-music

Top Bottom Top Bottom

Inst. ρ Hum. Alg. Hum. Alg. ρ Hum. Alg. Hum. Alg.

drums 0.76 0.88 0.81 0.19 0.13 0.80 0.95 0.95 0.16 0.18
bass 0.42 0.78 0.89 0.48 0.06 0.58 0.80 0.96 0.38 0.13
guitar 0.40 0.78 0.76 0.52 0.15 0.67 0.86 0.88 0.34 0.14
piano 0.32 0.60 0.72 0.33 0.32 0.55 0.70 0.79 0.31 0.23
avg. 0.48 0.76 0.80 0.39 0.17 0.67 0.83 0.90 0.30 0.17

the success rate and the naturalness of the generated music. This
outcome highlights the flexibility of SMITIN, offering users a tunable
“knob” to balance between precision in achieving specific musical
characteristics and maintaining the authenticity of the musical piece.

D. Subjective Evaluation
To further validate our intervention techniques on MusicGen, we
performed a subjective listening test through Amazon Mechanical
Turk following the best practices from [46]. The purpose of this
test was not to evaluate the quality and relevance of MusicGen as
this was already explored in [2], but rather to provide evidence
that: (1) our proposed success rate objective metric correlates with
human perception, and (2) our proposed intervention techniques are
not detrimental to overall audio quality. To do this, we assessed
whether humans could detect the presence of the instruments added
by our intervention technique, and asked them to rate samples in
terms of overall quality on a scale of 1-5. We also included real
music samples from MoisesDB to provide a performance baseline.
In selecting files for each algorithm and instrument, we randomly
selected 20 files above the median objective success rate and 20
files below the median. This leads to 1280 generated files to be
rated (20 files x 2 top/bottom x 4 instruments x 4 algorithms x 2
audio continuation/text-to-music). All files in the listening test were
ten seconds long and normalized to -12 loudness units full scale
(LUFS) [47]. We obtain at least 3 ratings per file. For the audio
continuation experiments, we ask raters to ignore the first 3 seconds

TABLE 6: Spearman correlation of instrument recognition between
human decisions and recognition models. All correlations have p-
values less than 1e-5.

Correlation Coefficient ρ (↑)

Method drums bass guitar piano avg.

Success Rate 0.78 0.48 0.57 0.45 0.58
YAMNet 0.80 0.37 0.56 0.33 0.57
PaSST 0.79 0.49 0.59 0.43 0.57
CLAP 0.80 0.53 0.56 0.52 0.65
ConvNeXt 0.69 0.52 0.51 0.46 0.57

TABLE 7: Ablation study on multi-directional ITI (performance
averaged over all instruments)

Success Rate [%]

Method indiv. simult. FADL-CLAP mus Similarity

unconditioned 11.1 0.1 0.419 0.781
text 27.8 0.4 0.369 0.664
SMITIN 25.3 1.2 0.445 0.734

of each audio file, as that conditioning signal intentionally does not
include the target instrument.

Table 4 displays the overall objective quality results. In general,
the performance of all algorithms is quite similar, with SMITIN and
no intervention having the best overall quality. In addition to overall
quality, we also ask whether listeners can detect the presence of the
instruments targeted by our intervention. This serves to help validate
our success rate objective metric. We also compare the average
human score with the average success rate objective metric (Alg.)
for the top-ranked and bottom-ranked files selected for the listening
test on each generation task in Table 5. For the top-ranked files the
scores appear to match quite well, while for the bottom-ranked files,
it seems human raters tend to overestimate the presence of most
instruments compared to the objective metric. We also hypothesize
that the lower match for audio continuation compared to text-to-
music may be due in part to the test being more subjectively difficult
as raters have to focus on the end of the audio file under test.

Table 6 compares the Spearman correlation coefficient ρ computed
between each of the instrument recognition systems discussed in
Section IV-A2) and the average human rating computed across all
processing algorithms. Notably, using CLAP embeddings yielded
the highest ρ value with human decisions, while the other methods
produced similar values. This result further supports the validity
of using the Success Rate on generated samples. Not only does
the Success Rate show a strong correlation with other recognition
models, but the high correlation observed between the Success Rate
and CLAP in Table 1 strengthens its reliability as an objective metric
for controlling and evaluating generative music.
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TABLE 8: Ablation on amount of probing data (performance is
averaged over all instruments, ∗shows full-set success rate).

Number of
Paired Data

Success
Rate∗ [%] FADL-CLAP mus Similarity

Probes Max.
Acc. [%]

n = 10 31.0 0.357 0.909 79.1
n = 100 31.8 0.349 0.914 82.6
n = 500 27.3 0.341 0.915 84.4
n = 1000 25.5 0.340 0.914 84.8

n = full 23.3 0.336 0.913 85.1

V. Ablations and Practical Considerations
Intervention with Multiple Directions. We explore ITI in scenarios
where multiple musical elements are introduced simultaneously.
We focus on the continuation of music that has one instrument
present and assesses the addition of three others. For instance, the
intervention task generates a continuation with drums, bass, and
piano when the input music only has guitar. We consider two types
of success rates, an individual one for each instrument as before,
and a simultaneous one to assess how often all 3 target instruments
were added together. We consider a successful case for a song if
each instrument is deemed present more than 50% of the time.

The summarized results in Table 7 reveal that while text prompts
yield higher success rates for individual instruments, their generated
output diverges from the input music’s characteristics. This indicates
that text conditioning may not adequately consider the input and
opts to generate new content based solely on the given instruction.
Without ITI, MusicGen tends to produce continuations focused on a
single instrument, which deviates from the desired complex mixtures,
as evidenced by the FAD scores. SMITIN, however, significantly
outperforms text prompts in preserving input music similarity, and
further enables more granular control over each musical aspect,
leading to a higher success rate of jointly generating all desired
instruments. This fine-grained control mechanism bolsters SMITIN’s
potential as a robust tool for complex music generation tasks where
maintaining the essence of the input is crucial.
Generating “Realistic” Music. To generate more realistic music
through ITI, we fit probes to discern between real music (DISCO-
10M dataset’s DISCO-200K-high-quality subset [48]) and synthetic
outputs from MusicGen itself. Despite MusicGen being trained only
on real music, the probing showed high performance with the best-
performing probe achieving a 96.2% accuracy rate and an average
accuracy of 77.5% in distinguishing real from synthetic music.
Leveraging this result, we steer MusicGen in an audio continuation
task, using real-world music inputs from the DISCO-10M dataset
to generate continuations that maintain the “realistic” quality.

Analyzing the quantitative results depicted in Fig. 5, simple
text prompts prove insufficient in preserving the realistic nature
of the music; however, ITI emerges as a more effective approach.
Regarding FAD scores, configurations of SMITIN with α values of 1
and 5 yield smaller deviations in distribution compared to text-based
methods. Even with an increased intervention strength (α = 10),
SMITIN does not shift the distribution more than that of the text
prompt “high-quality realistic music.”
Effects of Number of Probing Data. To investigate the influence of
probing data quantity on SMITIN, we test the system with varying
sizes of probing datasets randomly selected from the complete
set. These subsets consist of n = 10, 100, 500, and 1000 data
pairs, equivalent to music durations of 1, 10, 50, and 100 minutes
respectively. The results are presented in Table 8, where we show
the “full-set success rate” which is computed using the classifier
probes trained with the full dataset.
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FIGURE 5: Temporal dynamics of maintaining “realism” in audio
continuation of real music sample. The graph tracks the probability
of generated music being classified as ⟨real⟩ over time, where all
configurations of SMITIN demonstrate an enhanced capacity to
preserve realistic music qualities over time.

The results indicate that the system demonstrates reasonable
results even with a minimal dataset of just 1 minute. As the data
size increases to n = 500 (50 minutes), the objective metrics
stabilize, indicating an optimal data quantity threshold for effective
probe training. An interesting observation from our results is the
higher full-set success rates associated with smaller datasets. This
trend suggests that probes trained on limited data may have lower
confidence in their decisions, prompting them to recommend more
interventions during the ITI process to meet the success threshold.
At the same time, we observe a clear correlation between better
probes (represented here through the accuracy of the best probe)
and better ITI performance, whether measured as a higher full-set
success rate or similarity, or lower FAD.

This suggests that users can effectively leverage ITI with only a
small amount of data to control generation. It means that effective
ITI for controlling any musical trait can be accessible and achievable
without the need for extensive datasets, which is particularly
beneficial for individual artists or smaller studios. This broadens the
potential for creative and personalized applications of ITI in music
generation, making it a versatile tool for a wide range of users.

VI. Conclusions and Future Work
We proposed a novel approach for inference-time control of
generative music transformers, which self-monitors probe accuracy to
impose desired musical traits while maintaining overall music quality.
A limitation of our approach is the dependence of performance
on probe accuracy, that is, if the pre-trained transformer has
not accurately learned a concept, or if the probe training set is
inadequate, the success rate of our intervention technique may
suffer (although it still could be creatively useful). In the future, we
plan to explore different generative model architectures [5], [21],
[49] and interventions using musical traits such as genre, emotion,
etc. Furthermore, we hope to investigate building “knobs” for
interactively controlling the hyper-parameters necessary for inference-
time control to enable new technical and creative interactions.
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[48] L. A. Lanzendörfer, F. Grötschla, E. Funke, and R. Wattenhofer,
“DISCO-10M: A large-scale music dataset,” in Proc. NeurIPS, 2023.

[49] J. Hewitt, J. Thickstun, C. D. Manning, and P. Liang, “Backpack
language models,” in Proc. ACL, 2023, pp. 9103–9125.

[50] J. Koo, Y. Chae, C.-B. Jeon, and K. Lee, “Self-refining of pseudo
labels for music source separation with noisy labeled data,” in Proc.
ISMIR, 2023, pp. 716–724.

[51] E. Law, K. West, M. I. Mandel, M. Bay, and J. S. Downie, “Evaluation
of algorithms using games: The case of music tagging.” in Proc. ISMIR,
2009, pp. 387–392.

9

https://doi.org/10.5281/zenodo.3338373
https://tfhub.dev/google/yamnet/1
https://tfhub.dev/google/yamnet/1


Koo et al.:

TABLE 9: Comparison of multi-label instrument recognition for head-wise probing on MusicGen and a supervised model.
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Appendix
A. Analytical Insights from Probing
Following the probing method outlined in the main paper, we
investigate additional downstream tasks through probing to present
more objective results and enhance our understanding. First, we
assess MusicGen’s probing capabilities by comparing them to Con-
vNeXt [39], a model trained via supervised learning. Subsequently,
we contrast our results with prior work on music probing [31] which
uses entire attention layer outputs from Jukebox, another generative
music transformer model.

1) Multi-label Instrument Recognition
Following up on the performance of single-instrument recogni-
tion, we compare the capabilities of individual attention heads
in MusicGen against a supervised model trained for the multi-
label instrument recognition task, i.e, identifying the presence of
all instruments of a given music clip. This is achieved by fitting
multiple logistic regression classifiers (probes) for each instrument
class using again the extracted intermediate MusicGen activations
at the last time step. For the final evaluation, we select the best-
performing probe for each instrument class, noting that these may
originate from different attention layers (l) and heads (h). Following
the methodology described in [50], we conduct recognition tasks
on 3-second music segments from the MUSDB dataset [33]. We
also report the performance of a model trained in a supervised
manner specifically for instrument recognition [50], utilizing the
‘tiny’ configuration of ConvNeXt [39].

The objective results for multi-label instrument recognition are
detailed in Table 9. We find that the performance of MusicGen’s
probes is comparable to that of the supervised method. However,
across all configurations of MusicGen, we note strong performance
in terms of the F1 score. Specifically, MusicGen exhibits exceptional
performance in recognizing drums, whereas its least effective
performance is observed in the other category. This discrepancy
likely arises from the ambiguous definition of the other category
in the MUSDB18 dataset, with the supervised method gaining
an advantage by explicitly training on the dataset’s label, thereby
enhancing its ability to identify other.

2) Various Music Downstream Tasks
To expand our understanding of MusicGen’s capabilities beyond
instrument recognition, we conducted probing on a set of more
general music understanding tasks. These include music tagging
(MTT) [51], genre classification (GTZAN) [52], key detection (GS)
[53], and emotion recognition (EMO) [54]. We adopt appropriate
regression models for probing for these tasks: multinomial logistic
regression for multi-class classification tasks, multiple logistic
regressions for multi-label classification tasks, and linear regression
for regression tasks. For these tasks, we set the input duration as
29.0 seconds, and let the probes take the last time step activation
output for classification.

Table 10 presents the probing results for various configurations
of MusicGen using our attention head probing, and a prior music
probing work [31] that relies on a comparative model, Jukebox [1],
but uses a different probing methodology:
1) [31] probed Jukebox using entire intermediate attention layers,

whereas our approach evaluates performance based on individual
attention heads.

2) [31] employed a one-layer MLP with 512 hidden units. In
preliminary experiments, using a one-layer MLP for head-wise
probes showed limited benefits, possibly because the attention
dimension per head that we use is 75 times smaller than that of
Jukebox.

Jukebox probing typically shows superior performance, maybe due to
the model’s larger number of parameters and activation dimension.
In music tagging, we present both the performance of the best-
performing probe across all classes and the ensemble result of the
best-performing probes for each class, indicated within parentheses.
We observe an improved performance with the ensemble technique,
though the improvement is typically not substantial. Interestingly,
this means that we can find a single head capable of understanding
multiple attributes simultaneously, a notable feature given the MTT
dataset comprises 188 different tags. While a larger number of
parameters generally correlates with enhanced performance, the
melody configuration outperforms others in key detection. This
superior performance is likely attributed to the model’s training with
a melody conditioning objective [2].

Figure 6 provides a qualitative visualization of the performance
of MusicGenlarge probes across various music understanding tasks,
alongside histograms representing the distribution of head-wise
performance. In tasks such as multi-label instrument recognition and
music tagging, there is a noticeable similarity in the trends observed
both in the histograms and the layer-wise performance distributions.
For key detection, the results indicate that comprehension is limited
to only a few heads. On the other hand, emotion recognition
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TABLE 10: Performance comparison of layer-wise and head-wise probing on generative music transformers. For music tagging, we report
the performance of the best-performing probe across all classes, with the ensemble result of the best-performing probes for each class
indicated within parentheses.

Dataset MTT GTZAN GS EMO
Task Tagging Genre Key Emotion

Num.
Param.Metrics AUC AP Acc Accref. R2A R2V Avg. Dim.

Jukebox 91.5 41.4 79.7 66.7 72.1 61.7 69.9 4.8K 5B

MusicGensmall 85.5 (86.7) 34.1 (37.5) 66.2 46.6 64.2 43.5 55.2 64 300M
MusicGenmedium 85.9 (87.3) 33.9 (38.4) 69.7 57.4 65.3 51.6 59.6 64 1.5B
MusicGenlarge 85.1 (87.2) 32.9 (38.5) 71.0 58.5 69.1 49.3 60.3 64 3.3B
MusicGenmelody 85.8 (87.1) 33.3 (38.1) 65.2 62.1 64.7 44.8 58.8 64 1.5B
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FIGURE 6: Probe performance on various music understanding tasks. Each set of figures shows the performance on each task with probes
fitted with MusicGenlarge model output activations. Histograms in the bottom row show the distribution of head-wise probes according to
their performance.

demonstrates a relatively uniform performance across the majority of
heads in the earlier layers, particularly layer 7. However, the highest-
performing head for emotion recognition is located in a middle layer,
specifically at the 27th layer. This analysis underscores the nuanced
role that different attention heads play in music understanding,
highlighting the potential for precise control on each attention head
to optimize performance for specific tasks within generative music
models.

B. Subjective Listening Test Setup and Detailed Results
In selecting files for the listening test discussed in the main paper, for
each algorithm and instrument addition intervention, we randomly
select 20 files above the median objective success rate, and 20
files below the median. This leads to 1280 generated files to be
rated (20 files x 2 top/bottom x 4 instruments x 4 algorithms x 2
audio continuation/text-to music). We additionally include real music
samples from MoisesDB as references. All audio files included in
the listening test were ten seconds in length and normalized to -12
loudness units full scale (LUFS) [47]. We obtain at least 3 ratings per
file. For the audio continuation experiments, we ask raters to ignore
the first 3 seconds of each audio file, as that conditioning signal
intentionally does not include the target instrument. In addition to
following the best practices from [46], we limited participation to

“Mechanical Turk Masters” for which Amazon charged a $0.005 fee
per assignment, and paid $0.10 per rated file.

Table 11 displays the overall objective quality results broken out
by instrument and algorithm. In general, the performance of all
algorithms are quite similar, with SMITIN an no intervention having
the best overall quality.

In addition to overall quality, we also ask whether listeners can
detect the presence of the instruments targeted by our intervention.
This serves to help validate our success rate objective metric, which
was shown and discussed in the main paper.

C. Intervention with Multiple Directions
We explore the application of ITI in scenarios where multiple musical
elements are introduced simultaneously. In our setup, we focus on the
continuation of music that has one instrument present and assesses
the addition of three others. For instance, the intervention task is to
generate a continuation with drums, bass, and piano when the input
music only has guitar. We consider two types of success rates, an
individual one for each instrument as before, and a simultaneous one
to assess how often all 3 target instruments were added together. We
consider a successful case for a song if each instrument is deemed
present more than 50% of the time.

The summarized results in Tables 12 and 13 reveal that while text
prompts yield higher success rates for individual instruments, their
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TABLE 11: Average and 95% confidence interval of subjective listening tests for overall audio quality across four instrument addition
interventions for both audio continuation and text-to-music experiments.

Audio continuation Text-to-music

Method drums bass guitar piano avg drums bass guitar piano avg

No intervention 3.22± 0.21 3.75± 0.18 3.26± 0.22 3.16± 0.18 3.35± 0.10 3.63± 0.18 3.66± 0.20 3.70± 0.19 3.70± 0.17 3.67± 0.09
“add <inst.>” 3.31± 0.21 3.41± 0.18 3.06± 0.21 3.31± 0.22 3.27± 0.10 3.78± 0.18 3.61± 0.18 3.54± 0.21 3.50± 0.19 3.61± 0.09
original ITI 3.42± 0.22 3.04± 0.21 3.54± 0.20 3.12± 0.22 3.28± 0.11 3.62± 0.19 3.61± 0.18 3.65± 0.19 3.33± 0.20 3.55± 0.09
SMITIN 3.40± 0.20 3.45± 0.18 3.27± 0.21 3.23± 0.19 3.34± 0.10 3.93± 0.18 3.75± 0.17 3.77± 0.18 3.73± 0.17 3.80± 0.09

MoisesDB 3.98 ± 0.29

TABLE 12: Intervention with Multiple Directions (Individual Success Rate).

Individual Success Rate [%]

start with drums start with bass start with guitar start with piano

Method bass guitar piano avg. drums guitar piano avg. drums bass piano avg. drums bass guitar avg. total

unconditioned 29.0 4.3 0.2 11.1 17.7 10.6 1.4 9.9 18.8 18.4 1.9 13.0 11.9 10.4 9.1 10.4 11.1
text 58.4 2.6 5.2 22.0 45.7 2.8 2.9 17.1 45.5 67.0 4.8 39.1 42.9 50.4 6.6 33.3 27.8
SMITIN 48.3 16.1 1.6 22.0 25.4 23.6 4.1 17.7 41.1 49.0 3.3 31.1 30.2 35.7 26.2 30.7 25.3

TABLE 13: Intervention with Multiple Directions (Simultaneous Success Rate, FAD, and Similarity).

Simultaneous Success Rate [%] (↑) FADL-CLAP mus (↓) Similarity (↑)

Method drums bass guitar piano avg. drums bass guitar piano avg. drums bass guitar piano avg.

unconditioned 0.0 0.0 0.2 0.2 0.1 0.442 0.517 0.280 0.440 0.419 0.884 0.580 0.844 0.817 0.781
text 0.3 0.0 0.5 0.9 0.4 0.364 0.426 0.376 0.312 0.369 0.847 0.565 0.589 0.655 0.664
SMITIN 0.1 0.4 0.5 3.9 1.2 0.467 0.562 0.300 0.452 0.445 0.837 0.549 0.790 0.763 0.734

TABLE 14: Objective evaluation on Instrument Removal.

Method Success Rate [%] (↑) FADL-CLAP mus (↓) Similarity (↑)

ITI Configuration drums bass guitar piano avg. drums bass guitar piano avg. drums bass guitar piano avg.

X
unconditioned 2.2 16.2 14.1 31.6 16.0 0.442 0.517 0.338 0.513 0.452 0.884 0.579 0.847 0.816 0.781
“remove <inst.>” 1.8 4.8 19.2 23.2 12.2 0.568 0.634 0.420 0.789 0.602 0.871 0.545 0.795 0.808 0.754
“no <inst.>” 7.3 10.8 17.0 32.5 16.9 0.267 0.267 0.307 0.289 0.282 0.934 0.889 0.937 0.943 0.925

✓
original ITI 11.5 0.0 84.9 95.3 47.9 0.508 0.598 0.686 0.565 0.589 0.833 0.835 0.702 0.867 0.809
SMITIN 9.1 5.1 79.9 78.4 43.1 0.481 0.538 0.481 0.455 0.488 0.779 0.545 0.691 0.778 0.698

generated output diverges from the input music’s characteristics. This
indicates that text conditioning may not adequately consider the input
and opts to generate new content based solely on the given instruction.
Without ITI, MusicGen tends to produce continuations focused on a
single instrument, which deviates from the desired complex mixtures,
as evidenced by the FAD scores. SMITIN, however, significantly
outperforms text prompts in preserving input music similarity, and
further enables more granular control over each musical aspect,
leading to a higher success rate of jointly generating all desired
instruments. This fine-grained control mechanism bolsters SMITIN’s
potential as a robust tool for complex music generation tasks where
maintaining the essence of the input is crucial.

D. Instrument Removal
We explore an additional application: removing the target instrument
during audio continuation using the same probes employed for instru-
ment addition. To accomplish this, we apply negative intervention
strength α to eliminate the target instrument from the given input
music. The hyperparameter settings for this task are configured as
α = −10.0 for both original ITI and SMITIN, with s = 1 and

τ = 0.5 for SMITIN. The success rate in this context is defined as
C̄(t) < τ , where τ = 0.5.

Table 14 reveals an inverse tendency for each instrument’s
removal: drums and bass tend to be continuously generated, whereas
guitar and piano are more likely to be omitted during the generation
process. Moreover, we find that both text-conditioning prompts:

“remove <inst.>”, and “no <inst.>” are ineffective in removing
the target instrument. This outcome suggests another aspect of
controllability that is challenging to achieve with text prompts alone.

E. Soft-weighting
This ablation study justifies the soft-weighting technique over
selecting top-K heads for ITI. The rationale for soft-weighting arises
from the observation that the optimal set of top K heads varies
depending on the task or instrument. By adopting soft-weighting,
we can bypass the need for hyper-parameter tuning specific to each
task, simplifying the ITI process.

To validate this approach, we compare the performance of the
full SMITIN (with soft-weighting) against SMITIN where the initial
weights wl,h(t0) are instead 1 for the top-K most accurate heads
according to probing (i.e., (l, h) ∈ HK ), and 0 otherwise. Results
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TABLE 15: Ablation study: top-K head selection vs. head soft-weighting

Top-K
Interventions

Success Rate [%] (↑) FADL-CLAP mus (↓) Similarity (↑)

drums bass guitar piano avg. drums bass guitar piano avg. drums bass guitar piano avg.

K = 16 14.9 24.8 11.9 3.9 13.8 0.327 0.249 0.392 0.335 0.325 0.864 0.929 0.931 0.941 0.916
K = 32 14.4 20.2 16.9 5.6 14.2 0.325 0.259 0.393 0.334 0.327 0.867 0.928 0.934 0.941 0.917
K = 64 15.3 26.5 17.4 11.0 17.5 0.335 0.267 0.390 0.336 0.332 0.869 0.923 0.934 0.942 0.917
K = 128 18.2 33.6 27.4 13.8 23.2 0.352 0.277 0.411 0.327 0.341 0.860 0.924 0.932 0.944 0.915
K = 256 23.9 36.0 36.8 16.8 28.3 0.370 0.283 0.405 0.332 0.347 0.848 0.920 0.933 0.944 0.911
K = 512 30.0 50.5 47.8 29.7 39.5 0.386 0.300 0.411 0.339 0.359 0.837 0.917 0.932 0.942 0.907
K = 1024 32.9 79.0 61.1 43.5 54.1 0.560 0.355 0.417 0.363 0.423 0.823 0.895 0.930 0.936 0.896

soft-weighting 20.6 30.4 33.8 8.7 23.3 0.346 0.267 0.397 0.337 0.336 0.857 0.922 0.935 0.938 0.913

TABLE 16: Comparison with different intervention directions on Audio continuation.

Success Rate [%] (↑) FADL-CLAP mus (↓) Similarity (↑)

ITI Direction drums bass guitar piano avg. drums bass guitar piano avg. drums bass guitar piano avg.

θ̃l,h 20.6 30.4 33.8 8.7 23.3 0.346 0.267 0.397 0.337 0.336 0.857 0.922 0.935 0.938 0.913
mass mean shift 17.0 48.6 36.0 9.7 27.8 0.355 0.291 0.398 0.323 0.341 0.855 0.923 0.928 0.941 0.911

TABLE 17: FAD compared with the distribution of unconditioned generation on audio continuation and text-to-music.

FADL-CLAP mus(↓) w/. unconditioned

Method Audio continuation Text-to-music

ITI Configuration drums bass guitar piano avg. drums bass guitar piano avg.

X “add <inst.>” 0.042 0.026 0.026 0.064 0.030 0.013 0.009 0.011 0.009 0.010

✓
original ITI 0.039 0.206 0.066 0.039 0.087 0.018 0.056 0.031 0.017 0.030
SMITIN (α = 5.0) 0.022 0.017 0.018 0.010 0.016 0.012 0.009 0.010 0.006 0.009
SMITIN (α = 10.0) 0.079 0.042 0.033 0.014 0.042 0.045 0.017 0.019 0.008 0.022

from Table 15 indicate that while top-K selection can yield good
performance, it often requires task-specific tuning of K. In contrast,
soft-weighting demonstrates a well-balanced performance across
various metrics without necessitating such tuning. This balance is
crucial because it means soft-weighting can adapt to various musical
tasks and preferences, making ITI more flexible and user-friendly.
However, it is important to acknowledge that soft-weighting may
not always be the optimal choice for every ITI application. Users
might prefer the top-K approach depending on their specific needs
and the nature of their musical goals.

F. Intervention with Different Directions
Following [27], we compare results using different intervention
directions: logistic regression classifiers weights θ̃l,h and mass mean
shift. The intervention direction for mass mean shift is determined
during probing as a vector that directs from the centroid of negative
activations to the centroid of positive activations. The results are
shown in Table 16. Similar to [27], we observe that using mass mean
shift as the intervention direction better achieves the target musical

factor (according to success rate). However, we again observe a
trade-off between controllability and generation distribution shift.
Considering that generation quality is crucial in the music generation
task, we adopt θ̃l,h as the final intervention direction.

G. FAD Compared with Unconditioned Generation
To support the claim that SMITIN does not significantly alter the
original distribution of MusicGen, we compute the FAD score using
the distribution of music outputs from unconditioned generation. For
text-to-music, the comparison distribution is that of text-conditioned
generation using MusicCaps text prompts, as discussed in the main
paper. According to Table 17, the FAD score of “add <inst.>”
is significantly lower in text-to-music than in audio continuation,
indicating that the output distribution between unconditional and
conditional generation experiences a significant shift. We observe that
SMITIN with α = 5.0 exhibits the closest distribution distance to the
original MusicGen. This supports the claim that SMITIN achieves
the desired controllability while retaining MusicGen’s generation
capability.
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