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Abstract
Signal compression based on implicit neural representation (INR) is an emerging technique to
represent multimedia signals with a small number of bits. While INR-based signal compres-
sion achieves high-quality reconstruction for relatively low-resolution signals, the accuracy of
high-frequency details is significantly degraded with a small model. To im- prove the compres-
sion efficiency of INR, we introduce quantum INR (quINR), which leverages the exponentially
rich expressivity of quantum neural networks for data compression. Evaluations using some
benchmark datasets show that the proposed quINR-based compression could improve rate-
distortion performance in image compression compared with traditional codecs and classic
INR-based coding methods, up to 1.2dB gain.
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Abstract

Signal compression based on implicit neural representa-
tion (INR) is an emerging technique to represent multimedia
signals with a small number of bits. While INR-based sig-
nal compression achieves high-quality reconstruction for rel-
atively low-resolution signals, the accuracy of high-frequency
details is significantly degraded with a small model. To im-
prove the compression efficiency of INR, we introduce quan-
tum INR (quINR), which leverages the exponentially rich
expressivity of quantum neural networks for data compres-
sion. Evaluations using some benchmark datasets show that
the proposed quINR-based compression could improve rate-
distortion performance in image compression compared with
traditional codecs and classic INR-based coding methods, up
to 1.2dB gain.

Background
Representing multimedia signals (such as images and video
frames) in a compact format is an important task for com-
municating and storing such signals. Implicit neural repre-
sentation (INR) is an emerging memory-efficient format to
compress data. Most INR architectures exploit a small and
simple multi-layer perceptron (MLP)-based neural network
(NN) architecture and train the coordinate-to-value map-
pings using the target signals. For example, COmpression
with Implicit Neural representations (COIN) (Dupont et al.
2021, 2022) has been designed for image coding, and Neu-
ral Representations for Videos (NeRV) (Chen et al. 2021)
variants have considered 3D video coding.

A key issue in such INR-based signal compression meth-
ods is the inaccurate representation of high-frequency de-
tails in a small MLP-based NN architecture. Some studies
have developed sinusoidal coding (Mildenhall et al. 2021)
and activation functions (Sitzmann et al. 2020) to approx-
imate high-frequency details even in a small NN architec-
ture. In this paper, we introduce a new hybrid quantum-
classical INR architecture, namely, quantum INR (quINR),
for signal compression. The proposed quINR integrates fea-
ture embedding and quantum neural network (QNN) (Farhi
and Neven 2018) for training the coordinate-to-value map-
ping. Since QNN is a promising technique for accelerating
computation and saving parameters, our quINR may have
the potential to reconstruct accurate high-frequency repre-
sentations with fewer parameters.

Experiments using the range image (RI) dataset in
the KITTI Light Detection and Ranging (LiDAR) point
cloud (Geiger et al. 2013) and Kodak color image
dataset (Eastman Kodak Company 1999) show that the pro-
posed quINR-based compression can provide better coding
efficiency compared to the existing compression methods.

Related Work
Implicit Neural Compression
Recent studies exploit INR architectures for data com-
pression by overfitting a small NN for a particular multi-
dimensional sample. The INR architecture (Dupont et al.
2021, 2022) takes the pixel coordinate as input to reconstruct
the corresponding pixel value. It was extended to video cod-
ing (Chen et al. 2021; Zhang et al. 2024b) by feeding the
frame index for frame generation.

Quantum Neural Network
QNN (Biamonte et al. 2017; Schuld, Sinayskiy, and Petruc-
cione 2015; Farhi and Neven 2018) is an emerging paradigm
exploiting the quantum physics for neural network design,
where classical data and weight values are embedded into
a variational quantum circuit to control the measurement
outcomes. QNN provides universal approximation prop-
erty (Pérez-Salinas et al. 2020) and exponentially rich ex-
pressibity (Sim, Johnson, and Aspuru-Guzik 2019). In addi-
tion, it is analytically differentiable, enabling stochastic gra-
dient optimization (Schuld et al. 2019).

Various frameworks were migrated into a quantum do-
main: autoencoders (Romero, Olson, and Aspuru-Guzik
2017); graph neural networks (Zheng, Gao, and Lü 2021);
generative adversarial networks (Lloyd and Weedbrook
2018; Dallaire-Demers and Killoran 2018); contrastive
learning (Chen, Tsai, and Huang 2024); diffusion mod-
els (Parigi, Martina, and Caruso; Zhang et al. 2024a). As
QNN is extremely parameter-efficient, it was applied to fine-
tuning (Chen et al. 2024; Koike-Akino et al. 2024) and im-
plicit representation (Yang and Sun 2022; Zhao et al. 2024).

Our study is the first attempt to demonstrate the poten-
tial of the QNN architecture for signal compression. Specif-
ically, we design signal encoding and decoding procedures
using QNN architecture, inspired by an existing implicit rep-
resentation (Zhao et al. 2024). Experiments using image and
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Figure 1: Overview of the proposed scheme for data compression using hybrid quantum-classical implicit neural representation.

LiDAR datasets show that the proposed quINR yields better
reconstruction quality at a small data size.

Quantum INR for Data Compression
Encoding and Decoding Process
Fig. 1 (a) shows the end-to-end operations of the quINR-
based encoder and decoder. Given the target multimedia sig-
nal, we construct a dataset D = {(xi,yi)} for training the
quINR Φ(xi;θ). Here, xi ∈ RNin is the ith coordinate,
yi ∈ RNout is its corresponding signal value, and θ is the
learnable parameter set.

In the encoding process, the proposed quINR Φ(xi;θ) is
trained to obtain the optimized parameter set θ to express the
coordinate-to-value relationships contained in the dataset D.
Here, we use the mean squared error (MSE) as the loss func-
tion to obtain the optimized parameters θ:

θ⋆ = argmin
θ

MSE
(
yi,Φ(xi;θ)

)
. (1)

This training process is coordinate-wise, i.e., the parameters
are trained to obtain a mapping from each coordinate xi to
their corresponding signal values yi. The well-trained pa-
rameters θ⋆ after this encoding process are stored in storage

or transmitted to the decoder as the lightweight format of the
target signal.

The decoder uses the parameters θ⋆ for reproducing the
target signal through the forward process of the quINR
Φ(xi;θ

⋆). The target signal ŷi is reconstructed by feed-
ing the coordinates xi to the quINR architecture Φ(xi;θ

⋆).
Likewise the encoding process, it sequentially feeds coordi-
nates xi to the quINR to collect all estimated signal values
ŷi, which are then reshaped to the shape of the target signal
as ŷ.

Model Architecture
Fig. 1 (b) shows the proposed INR architecture. The archi-
tecture takes the coordinates of the multimedia signals as
inputs and generates the corresponding signal values as out-
puts. The quINR Φ(xi;θ) is a hybrid quantum-classical ar-
chitecture integrating QNN layers with a classical NN.

The input layer consists of a linear layer with a sinusoidal
activation to obtain an embedding vector hi ∈ RM from
each coordinate pair xi as follows:

hi = sin(ω0Wxi + b), (2)

where W ∈ RM×Nin and b ∈ RM are trainable parameters
of the linear layer and ω0 = 30.0 is a constant hyperparam-
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(a) Folded-angle embedding layer

|𝜙!⟩

|𝜙"⟩

|𝜙#⟩

|𝜙$⟩

𝑅!

𝑅!

𝑅!

𝑅!

𝑅"

𝑅"

𝑅"

𝑅"

𝑅"

𝑅"

𝑅"

𝑅"

𝑅"

𝑅" 𝑅"

𝑅"

𝑅"

𝑅"

𝑅"

𝑅"

𝑅!

𝑅!

𝑅!

𝑅!

𝑅"

𝑅"

𝑅"

𝑅"

(b) Entangling layer

Figure 2: Exemplar architecture of QNN layer.

eter. The embedding vector hi is then fed into the QNN lay-
ers. The QNN layers consist of embedding and entangling
layers, as shown in Fig. 2.

For embedding layer, we propose folded-angle embed-
ding to encode an arbitrary size of embedding vector hi into
a finite number of qubits. The conventional angle embedding
has a restriction that the number of qubits must be no lower
than the size of the embedding vector, while the amplitude
embedding provides too small quantum space having little
expressivity. To make the QNN compact yet expressive, the
folded-angle embedding uses alternating RX and RZ gates
to pack more angle parameters. Fig. 2 (a) shows an example
of 3-folded embedding with four qubits to encode twelve
variables.

The entangling layer is based on a parameterized quantum
circuit in (Sim, Johnson, and Aspuru-Guzik 2019). Specifi-
cally, the parameterized circuit sequentially carries out RZ

and RX rotation gates for each qubit, two-qubit controlled
Z-rotation (CRZ) for each two-qubit combination, and fi-
nally uses Z-rotation and X-rotation. Here, each rotation
gate is controlled based on the parameter set θ. A few num-
ber of entangling layers are sequentially cascaded. These
embedding and entangling layers are iterated over a few
layers, with a shuffled extension of the data re-uploading
trick (Pérez-Salinas et al. 2020).

Finally, we measure the probability value of 2Nq quan-
tum states. The output layer selects the last Nout state
with the activation function of quantum rectified linear unit
(QReLU) (Parisi et al. 2022), regarded as the estimated sig-
nal value ŷi. The above structure can be further iterated
over layers to improve the capacity. Here, the number of
the required quantum shots is approximately O(2Nq ). Even
for high image resolutions, the complexity of the proposed
quINR may remain practical, as it represents clean multime-
dia signals using a small QNN architecture, i.e., with a Nq ,
as demonstrated in the evaluations.
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Figure 3: PSNR vs. bpp for RI.
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Figure 4: PSNR vs. bpp for Kodak color image.

Experiments

Settings

Datasets: In this paper, we consider grayscale and color
images to discuss the potential of the proposed quINR
architecture. For the grayscale image, we use LiDAR
RI (Zhao et al. 2022) derived from the KITTI point cloud
dataset (Geiger et al. 2013). RI can be mapped from three-
dimensional (3D) Cartesian coordinate x-y-z to spherical
coordinate ρ-ϕ-θ, and then mapped to the two-dimensional
(2D) image coordinate system with the resolution of 1024×
64 pixels. Here, each pixel value of RI is the distance ρ
with floating-point precision. Specifically, we use LiDAR
sequence 00-00 for comparison. For the color image, we
perform experiments on the Kodak image dataset (Eastman
Kodak Company 1999), which consists of 24 images of
768 × 512 pixels. We selected one image from the dataset,
Kodim02.



Metric: Regarding the metrics for the decoded color and
grayscale images, we use peak signal-to-noise ratio (PSNR)
for comparison. Given an original image I and a recon-
structed image Î , MSE can be defined as:

MSE =
1

WH

H∑
i=1

W∑
j=1

(
I(i, j)− Î(i, j)

)2

. (3)

PSNR is then obtained as:

PSNR = 10 · log10
(

MAX2

MSE

)
, (4)

where MAX represents the maximum pixel value of the im-
age.

Baseline: We compare with baseline methods: Joint
Photographic Experts Group 2000 (JPEG2000) and
COIN (Dupont et al. 2021). JPEG2000 is a typical image
compression method, requiring conversion to 8-bit precision
in advance for compression. COIN is an INR–based image
compression baseline. The INR architecture is trained to
obtain a direct mapping from the 2D pixel coordinate to the
pixel value of grayscale and color images.

Implementation: NNs for COIN and our proposed quINR
architectures are implemented, trained, and evaluated using
PyTorch 2.0 with Python 3.9. The quantum circuit simu-
lations are performed by PennyLane 0.35. We use Adap-
tive moment estimation (Adam) with decoupled weight de-
cay (AdamW) for optimizer with 1e-1 learning rate for both
classical and quantum architectures.

Performance Comparison
Fig. 3 shows the PSNR performance for RI as a function of
bit per pixel (bpp). Here, we vary hyperparameters such as
embedding size M to show the Pareto frontier curves for
each baseline. The results show that the proposed quINR
achieves better image quality at a small bpp regime, how-
ever, the quality improvement is saturated at a large bpp
regime compared with COIN architecture. It suggests that
the proposed quINR may have the potential to reconstruct
clean signals at band-limited and storage-limited environ-
ments.

Fig. 4 shows the PSNR performance for the Kodak color
image as a function of bpp. For this case, JPEG2000 offers
much better performance than RI case as the target signal is
a natural image. Nevertheless, the proposed quINR architec-
ture can be better than the other baselines in low to medium
compression regimes with up to 1.2dB gain.

Conclusion
This paper highlights the potential of quantum techniques
in advancing multimedia signal compression. The proposed
quINR architecture demonstrated good PSNR performance,
particularly in compressing LiDAR RI, leveraging the ex-
pressive power of QNN. Nevertheless, its rate-distortion per-
formance for color image compression was limited, indicat-
ing the need for further improvements, e.g., with quantum
network architecture search (NAS) and distillation.
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