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mance and avoiding exhaustive grid value search. DiPE can be applied along with either
pre-fixed (e.g., sinusoidal) or learnable positional embeddings, achieved by multiplying dual
differentiable masks over the depth and angular positional embedding vectors. Comprehen-
sive evaluations on the open MMVR dataset demonstrate that the proposed DiPE not only
simplifies the determination of the TPE ratio but also enhances the overall detection perfor-
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Abstract—The Radar dEtection TRansformer (RETR) has re-
cently been introduced to fuse multi-view millimeter-wave radar
heatmaps by leveraging the detection transformer architecture
and a geometric learning framework for indoor radar perception.
A notable feature of RETR is its tunable positional encoding
(TPE), which allows for adjusting the significance of depth
positional embedding across multiple views to promote depth-
prioritized feature association. However, the TPE ratio is pre-
determined, rather than being optimized during the training
process. In this paper, we propose a differentiable positional
encoding (DiPE) scheme for RETR by automatically adjusting
the TPE ratio during the training for enhanced performance and
avoiding exhaustive grid value search. DiPE can be applied along
with either pre-fixed (e.g., sinusoidal) or learnable positional em-
beddings, achieved by multiplying dual differentiable masks over
the depth and angular positional embedding vectors. Comprehen-
sive evaluations on the open MMVR dataset demonstrate that the
proposed DiPE not only simplifies the determination of the TPE
ratio but also enhances the overall detection performance.

Index Terms—Indoor radar perception, object detection, de-
tection transformer, positional encoding.

I. INTRODUCTION

Compared to cameras and LiDAR, radar provides safer
and more reliable perception in low light, harsh weather,
and hazardous conditions, all at lower cost. Its applications
now extend beyond outdoor automotive sensing [1]–[5] to
indoor use cases like elder care, energy management, and
navigation [2], [6]–[8]. However, a key limitation of indoor
radar perception is coarse semantic features extractable from
radar signals. Early efforts use low-resolution point clouds
from radar sensors with an angular resolution of 15◦, mainly
for supporting simple classification tasks [9]–[12]. For more
fine-grained downstream tasks such as object detection, pose
estimation, and segmentation, recent approaches favor low-
level representation formats such as radar heatmaps and even
raw analog-to-digital (ADC) data from high-resolution radar
sensors such as cascading radar chips with an angular resolu-
tion of 1.3◦ or sub-1-deg [13]–[17].

RF-Pose employs an autoencoder architecture to fuse radar
heatmaps from horizontal and vertical planes, directly re-
gressing keypoint heatmaps for pose estimation in the 2D
image plane [18]. This autoencoder-based RF-Pose directly
incorporates the intrinsic radar-to-camera coordinate transfor-
mation as part of the model’s inductive bias. RFMask identifies
candidate regions on the horizontal plane and assigns a fixed-
height to each candidate region, generating 3D bounding boxes
(BBoxes) in the 3D radar coordinate space [16].
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Fig. 1. The DiPE scheme. Depth and angle positional embeddings at a
full dimension are multiplied respectively with a differential mask and its
complementary. The blended positional embedding is obtained by summing
these two embeddings. The overall RETR loss is backpropagated to the
learnable mask parameters to dynamically adjust the dimension ratio.

More recently, [19] introduces a radar detection transformer
(RETR) by leveraging the detection transformer (DETR) ar-
chitecture [20] and the attention mechanism [21] to fuse radar
features from two views and connect them with learnable
object queries, while incorporating learnable radar-to-camera
coordinate transformation, a tri-plane loss function on both
radar and camera coordinate spaces, and a tunable positional
encoding (TPE). Particularly, the TPE is designed to promote
higher similarity scores for keys and queries with similar depth
position than those far apart in depth by allowing for adjustable
dimensions between depth and angular embeddings. However,
determining the optimal dimension ratio is challenging and
may be dataset-dependent, as it requires exhaustive search and
evaluation over a set of grid values in [0, 1].

In this paper, we propose a Differentiable Positional Encod-
ing (DiPE) scheme for RETR by automatically adjusting the
TPE dimension ratio during training for enhanced performance
and avoiding the exhaustive grid search. As illustrated in
Fig. 1, this is achieved by introducing a monotonically decreas-
ing differential mask function and its complementary, referred
to as the dual masks, and multiplying them respectively over
depth and angle embeddings at a full dimension. Besides the
learnable RETR weights, the tri-plane loss is backpropagated
to the mask parameters to dynamically adjust the dimensions
of the depth and angle positional embedding during training.
We consider both pre-fixed (e.g., sinusoidal) or learnable
positional embeddings for the initial depth and angle positional
embeddings.



II. RADAR PERCEPTION WITH MULTI-VIEW RADAR

A. Radar Perception

Consider a pair of horizontal and vertical antenna arrays
sending frequency modulated continuous waveform pulses
and denote the horizontal (azimuth-depth) radar heatmaps
Yhor ∈ RT×W×D and the vertical (elevation-depth) radar
heatmaps Yver ∈ RT×H×D with a shared depth axis by
including T consecutive frames, where W , H and D denote
the number of cells of width (azimuth), height (elevation) and
depth, respectively. We are interested in detecting objects in
the image plane by taking the two radar heatmaps as inputs

Fimage = projimage (T (f (Yhor,Yver))) , (1)

where Fimage denotes predicted bounding boxes (BBoxes) in
the image plane, f denotes the 3D object detection module
in the radar coordinate system, T denotes the radar-to-camera
coordinate transformation, and projimage denotes the 3D-to-
2D image projection.

B. Radar Detection Transformer

In [19], RETR employs the detection transformer with both
transformer encoder and decoder modules for f , a learnable
geometry-preserving coordinate transformation for T , and a
known pinhole camera model for the projection projimage.

In the module f , we obtain the feature embeddings:
Zhor/ver = backbone

(
Yhor/ver

)
with ResNet18 [22]. A

transformer encoder expects a sequence of features as input.
This is done by mapping the feature maps into a sequence of
2K multi-view radar features: H0 = [Hhor,Hver] ∈ RC×2K

where Hhor/ver can be extracted from Zhor/ver with top-
K selection, and C is the number of channels. Then, we
obtain the memory with transformer encoder layers: Hl+1 =
encoder

(
Hl

)
(l = 0, 1, · · · , Lself − 1). For each decoder

layer, it takes N object queries: Ql ∈ RC×N as its input,
and consists of a self-attention layer, a cross-attention layer
and a feed forward network (FFN). It updates all queries
through multi-head self-attention: Q̄l = decoderself

(
Ql

)
and through multi-head cross-attention with the memory:
Ql+1 = decodercross

(
Q̄l,HLself

)
(l = 0, 1, · · · , Lcross −

1). Each decoder embedding q ∈ QLcross is converted to
3D BBox: ḡ = {cx, cy, cz, w, h, d}⊤ with FFN, where
(cx, cy, cz) is the 3D center and w, h and d are the sizes.

Each 3D BBox ḡ is transformed to 3D camera coordi-
nate with learnable rotation matrix R and translation vector
t: gi

camera =
{
xi
camera, y

i
camera, z

i
camera

}⊤
= T

(
gi
radar

)
=

Rgi
radar + t (i = 1, 2, · · · , 8) for each 3D corner point:

gi
radar =

{
xi
radar, y

i
radar, z

i
radar

}⊤
of the 3D BBox cor-

responding to ḡ. Finally, we obtain the corresponding 2D
BBox on the image plane: b̂image = {cx, cy, w, h}⊤ =

projimage (Gcamera) where Gcamera =
{
gi
camera

}8

i=1
.

Since the multi-view radar features lack positional infor-
mation and the self-attention is permutation-invariant, we
supplement Hl and Ql with positional encoding concatenated
to the input of each encoder and decoder layers. In RETR,
fixed sine/cosine positional encoding along the depth and
angular (azimuth or elevation) dimension is used as the specific
embedding, and it can be easily extend to other positional
encoding approach such as learning based embedding.
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Fig. 2. The factorization of tunable positional encoding (TPE).

C. Tunable Positional Encoding
Positional encoding has a crucial role to give the spatial

positional information to each feature (embedding h ∈ Hl

or decoder embedding q ∈ Ql) in the transformer. RETR
exploited the fact that the two radar views share the depth
axis and introduced a tunable positional encoding (TPE) as
the inductive bias to prioritize the relative importance of depth
and avoid exhaustive correlations between the views. TPE
is composed of a depth and an angular (either azimuth or
elevation) axes. As such, p = d ⊕ a ∈ Rdpos with d ∈ Rddep

representing the depth positional embedding, a ∈ Rdang the
angular positional embedding, and the concatenation ⊕ similar
to conditional DETR [23]. TPE is built on the concatenation
between the content embedding c (token) and positional
embedding p, that is c ⊕ d ⊕ a. TPE can promote higher
similarity scores with similar depth embeddings than those far
apart in depth, especially for the ones from different views, by
allowing for adjustable dimensions between depth and angular
embeddings as shown in Fig. 2:

ddep = αdpos, dang = (1− α)dpos, ddep + dang = dpos, (2)

where α is the tunable dimension ratio and is in the range
[0, 1]. This α has to be determined by exhaustive pre-
experiments. Therefore, automatic determination method is
desired for α.

III. DIFFERENTIABLE POSITIONAL ENCODING

A. Differentiable Mask Function
Assume that we consider a function h : [a, b] → R, which

we desire to be non-zero only in a subset [c, d] ⊆ [a, b]. To this
end, we can multiply h with a mask m whose values are non-
zero only on [c, d], e.g., a rectangular mask Π[c,d](x) = 1[c,d].
However, as the gradient of the mask is either zero or non-
defined, it is not possible to learn the interval in which it is
non-zero by backpropagation. To overcome the limitation, we
use a parametric smooth mask m (·,θ) which interval of non-
zero values is defined by its parameters θ. By using this mask,
we can apply the backpropagation to learn the interval on
which it is non-zero as the mask is differentiable and learnable.
Specifically, we design the mask m parameterized by its offset
and its temperature θ = {µ, τ}, inspired by [24]:

m (x;θ) = 1− 1

1 + exp (−τ (x− µ))
, s.t. µ ≥ 0. (3)

B. Dual Masking
To automatically determine the parameter α in TPE, we

propose a differentiable positional encoding (DiPE) using a
mask m. In the TPE, the dimensions ddep and dang are deter-
mined based on the α, and after computing the embeddings for



each axis, the two embeddings are concatenated to generate
a positional embedding with dimension dpos. In our DiPE,
we first generate positional embeddings of dimension dpos
for each axis in advance. Then, using the parameters θ, we
generate a mask and apply the dual masking:

p = mdual (θ)⊙ d+ (1−mdual (θ))⊙ af, (4)

where mdual (θ) =
{
m (1;θ) , ...,m

(
dpos;θ

)}⊤
is the vector

collected with each dimension i, 1 is a vector with all elements
of 1, ⊙ represents Hadamard product, and f is an operation
that flips the order of the vector’s elements: a(i)f = a(dpos+1−i).
An example of the implementation of Eq. 4 is to use a fixed
sine/cosine positional encoding:

p(2i)=m (2i) sin

(
pdep

T
2i

dpos

)
+(1−m (2i)) sin

(
pang

T
2i

dpos

)
, (5)

p(2i+1)=m (2i+1) cos

(
pdep

T
2i

dpos

)
+(1−m (2i+1)) cos

(
pang

T
2i

dpos

)
,

where i = 0, 1, · · · , dpos/2− 1, pdep/ang is the position index,
and T = 104 is a temperature. The attention weight is based
on the dot-product between query (q) and key (k):

(mdual (θ)⊙ dq + (1−mdual (θ))⊙ af,q
)⊤

(mdual (θ)⊙ dk + (1−mdual (θ))⊙ af,k)

=
(
d̄q + af,q − āf,q

)⊤ (
d̄k + af,k − āf,k

)
(6)

= d̄⊤
q d̄k + ā⊤f,qāf,k + a⊤f,qd̄k − ā⊤f,qd̄k + d̄⊤

q af,k

− d̄⊤
q āf,k + a⊤f,qaf,k − a⊤f,qāf,k − ā⊤f,qaf,k, (7)

where x̄ = mdual (θ)⊙x. Eq. 6 contains blended components
according to τ .

Fig. 3 illustrates the DiPE. The mdual is a monotonically
decreasing function with θ, and applying this mask has the
effect of attenuating the influence of the latter dimensions of
d. Conversely, the 1 − mdual is a monotonically increasing
function with θ that is in a dual relationship, and applying this
mask attenuates the influence of the former dimensions of a.
Therefore, adding these two vectors together effectively blends
the elements of d and a using θ, replacing the adjustable
dimension with α described in Eq. 2 with the learnable θ.

C. Architecture
The simplest way to implement the mask is to use θ =

{µ, τ} as learnable parameters and flows gradients for each of
them. However, since these parameters are constrained within
a specific range and may become large (e.g., µ ∈

[
1, dpos

]
),

it is essential to take these factors into account. Therefore,
we apply a sigmoid function and scaling factor s = dpos to
unconstrained parameters θ̄ = {µ̄, τ̄}, allowing the mask to
effectively operate across each dimension of the embedding:

µ = s× sigmoid (µ̄) , τ = sigmoid (τ̄) , (8)

where sigmoid (x) = 1
1+exp(−x) . On the other hand, depend-

ing on the initial values of θ̄ and the learning rate, the learning
process may either fail to converge if the values are far from
optimal, or the values may exhibit little change from their
initial values (see Section IV-B). To address this issue, we
design a module using a multi-layer perceptron (MLP):

θ̄ = {µ̄, τ̄} = MLP (e) , s.t. e ∈ Rde , (9)
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Fig. 3. Scheme of DiPE. (a) DiPE blends the depth and the angle ingredients
with learnable mask parameters θ = {µ, τ}; (b) TPE uses the fixed α.

where e is a learnable parameters for generating θ̂ and is
initialized with normal distribution. We set de = 32. We
construct MLP via three linear layers and apply leaky ReLU
function [25] after the first two layers. As a result, θ becomes
more sensitive in the learning process, making it easier to
obtain optimal parameters.

D. Loss
We calculate a matching cost matrix with a loss L con-

structed from a classification loss Lclass and a tri-plane BBox
loss Ltri

box which is sum of BBox losses from the three types
of planes (horizontal, vertical and image planes):

Ltri
box =

∑
p∈{hor,ver,image}

Lbox

(
bp, b̂p

)
, (10)

Lbox(bp, b̂p) = λGIoULGIoU(bp, b̂p) + λL1LL1(bp, b̂p), (11)

where bp is the ground truth, b̂p is the prediction and each λ
is the weight coefficient. LGIoU and LL1 denote the generalized
intersection over union (GIoU) loss [26] and the ℓ1 loss,
respectively. To optimize θ = {µ, τ}, we need to compute
the gradient ∇L (θ). Our mask m is differentiable for µ and
τ , respectively, and the derivatives are:

dm

dµ
=

τ exp (−τ (x− µ))

(1 + exp (−τ (x− µ)))
2 , (12)

dm

dτ
= − (x− µ) exp (−τ (x− µ))

(1 + exp (−τ (x− µ)))
2 . (13)

The gradient ∇L (θ) can be backpropagated to Eq. 12 and
Eq.13 by auto-differentiation, and thus the optimal θ∗ can be
determined by learning.

IV. EXPERIMENTS

A. Experimental Setup
We use the indoor radar dataset: MMVR [17] as same

as [19]. MMVR includes multi-view radar heatmaps collected
from 25 human subjects across 6 rooms over a span of 9 days.
In our implementation, we use data from Protocol 2 (P2) which
includes 237.9K frames capturing multiple subjects. For the
training-validation-test split, we follow the data split S1 as
defined in MMVR.

We implemented two positional encodings: sine/cosine en-
coding (Sinusoid) and learnable embedding (Learned), and
we consider RFMask [16], DETR [20] and RETR [19] as the



TABLE I
DETECTION RESULTS ON MMVR. RFMASK DOES NOT HAS PE. FOR RETR WITH TPE, Trained θ CORRESPONDS TO A RATIO α.

Model PE Trained θ = {µ, τ} AP AP50 AP75 AR1 AR10

RFMask - - 31.37 61.50 27.48 33.23 38.41
DETR Sinusoid - 29.38 62.31 25.35 31.32 43.06
DETR Learned - 29.05 62.84 23.85 31.11 42.73

RETR with TPE Sinusoid 0.60 / - 46.75 83.80 46.06 42.19 57.39
RETR with TPE Learned 0.60 / - 46.71 82.27 45.09 41.61 56.22

RETR with DiPE (Ours) Sinusoid 0.90 / 0.94 47.09 84.15 46.14 44.43 59.18
RETR with DiPE (Ours) Learned 0.67 / 0.32 47.75 83.72 46.31 42.11 56.37

TABLE II
ABLATION STUDY OF MASK MODULE ON MMVR.

Mask Parameters AP AP50 AP75 AR1 AR10

Scalar 44.93 83.31 43.19 42.11 55.52
MLP 47.09 84.15 46.14 44.43 59.18
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Fig. 4. Comparison of training curves on mask parameters. MLP is highly
flexible and can be easier to obtain optimal parameters.

baseline methods. For DETR and RETR, we set the embedding
dimension to dpos = 256, and the ratio at α = 0.6 which was
determined in [19]. Other hyper-parameters are same as [19]
including learning rate, early stopping, etc.

To evaluate the performance of object detection, we adopt
average precision at two IoU thresholds of 0.5 (AP50) and 0.75
(AP75) and its mean (AP) over thresholds [0.5 : 0.05 : 0.95]
as the metrics. We also consider average recall when it is
restricted to making only one detection (AR1) or up to 10
detections (AR10) per input.

B. Results
Table I shows the comparison of the detection models. “PE”

and “Trained θ = {µ, τ}” denote the type of positional
encoding and the parameters θ obtained after training, respec-
tively. For RETR with TPE, the value of α from Eq. 2 is
shown as µ, while for Ours, µ (Note that we show the value
before scaling in Eq. 8) and τ are displayed. The results show
that Ours provides a finer optimal value, which is not always
consistent with the α used in [19] because of the blending
with τ . The main advantage of Ours is the ability to easily
optimize and simplify the determination for the θ, which also
contributes to improved detection performance.

Table II shows the comparison of the results when θ̄ is
directly used as a parameters (Scalar) and when Eq. 9 is used
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Fig. 5. Visualization of the object detection. GT denotes the ground truth,
and each row represents a different room environment.

(MLP). We used RETR with DiPE and Sinusoid as the base-
method. It is evident that using MLP leads to an improvement
in detection performances. Fig. 4 compares the training curves
of Scalar and MLP. Note that the final number of steps differs
due to the use of early stopping. It can be observed that
Scalar shows minimal change from the initial value, with
slight fluctuations. On the other hand, MLP includes significant
fluctuations, indicating that it finds an optimal value regardless
of the initial values. This fact demonstrates that using the
designed architecture effectively activates our method.

We show the visualization in Fig. 5. Compared to RETR
with TPE, RETR with DiPE demonstrates an improved abil-
ity to correct subtle positional discrepancies of BBoxes and
effectively reduces the occurrence of transient false positives.
This improvement is attributed to its more efficient use of the
depth axis from the heatmaps, allowing for a more accurate
representation of the 3D positions derived from the two views.

V. CONCLUSION

To realize the indoor monitoring, we focused on radar
perception using multi-view radar. Our approach is based on
the RETR and aimed to obtain an optimal ratio with learning
which is an issue of TPE. To achieve this, we introduced a
dual masking and proposed the DiPE with the masks. This
can not only determine the ratio of each axis, but also show
the improvement of the detection performance. Comprehensive
evaluations on the open MMVR dataset demonstrate that the
DiPE not only simplifies the determination of the TPE ratio
but also enhances the overall detection performance.
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