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Abstract—Single-photon lidar (SPL) can achieve high-accuracy, low-

light ranging; however, velocity estimation typically requires regression

over multiple distance measurements. Here, we introduce Doppler SPL,

which enables joint instantaneous velocity and range estimation. First, we

derive a measurement model for SPL, showing that a target moving at a

constant velocity introduces a Doppler shift into the sequence of photon

detection times. We then introduce estimators for range and velocity

based on Fourier analysis of the detection time sequence. Simulations

show improved accuracy of our method over baseline approaches, and

we further validate our approach on experimental SPL data for a moving

target.

Index Terms—Single-photon lidar, Doppler shift, velocity estimation,

Fourier analysis

I. INTRODUCTION

Lidar is a powerful technology for high-accuracy distance measure-

ment, with a broad set of applications related to mapping, navigation,

and 3D sensing. Velocity information is increasingly desired, for

example in autonomous vehicle settings, where it can help distinguish

moving cars and pedestrians from static backgrounds [1]–[4]. The

ability to simultaneously measure range and velocity is an oft-cited

advantage of coherent lidar systems over more conventional time-of-

flight (ToF) lidar [5]–[7]. In frequency-modulated continuous wave

(FMCW) lidar, for instance, radial velocity is encoded in the Doppler

shift of the optical frequency and can be recovered jointly with the

range measurement.

In contrast, the classical approach to velocity estimation for ToF

lidar is to make two or more separate distance measurements and then

use regression to compute the rate of change [8]–[12]. Unfortunately,

tracking changes in distance across multiple measurement frames is

challenging if targets also have lateral motion, and assuming the scene

is quasi-static within an acquisition frame degrades the performance

for fast-moving targets. Heide et al. [13] demonstrated that radial

velocity can be measured in indirect ToF, or amplitude-modulated

continuous wave (AMCW) lidar, due to the Doppler shift in the

modulation frequency. Distance and radial velocity can be recovered

by combining homodyne and heterodyne measurements [13], [14].

So far, however, there has been no equivalent approach for direct

ToF, also known as pulsed lidar.

Single-photon lidar (SPL) is a type of pulsed lidar that detects

photons with a single-photon-sensitive detector, such as a single-

photon avalanche diode (SPAD), and time-stamps the detections with

picosecond-resolution, enabling superior long-distance and low-light

ranging ability compared to FMCW and AMCW [15], [16]. Unlike

other pulsed lidar, which measures range from a single pulse, SPL

uses a sequence of pulses to increase the probability of detecting

photons. In this paper, we recognize that the periodic illumination of

SPL can be considered to be a form of AMCW, where the amplitude

modulation is a pulse train rather than a sinusoid. Thus, the velocity

of an illuminated target likewise causes a Doppler shift, which we
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Fig. 1: A schematic portraying a moving target moving toward an

SPL system with a constant relative velocity. The repetition period

of the detection intensity (bottom right) is shorter than that of the

transmitting signal (bottom left) due to the Doppler shift. Note the

scale is exaggerated for illustration.

observe as a change in the pulse repetition frequency. Wei et al. [17]

recently showed Fourier analysis of detection time sequences could

be used for passive single-photon imaging. Inspired by [17], we show

that similar analysis applied to a synchronized SPL system enables

range and velocity estimation from the amplitude and phase of the

detection sequence spectrum. In summary, we make the following

contributions:

1) We derive an SPL measurement model for a moving target with

a constant velocity.

2) We propose a method for simultaneously estimating the target’s

instantaneous velocity and distance based on Fourier analysis

of the detection times.

3) We show that our proposed method improves the accuracy of

velocimetry and ranging over baseline methods that assume

quasi-static frames. We also demonstrate that the proposed

method is applicable to real SPL measurements.

The accuracy of our method is invariant to velocity, whereas the

quasi-static baseline methods become less accurate as the speed in-

creases. The main limitation of our proposed method is its sensitivity

to ambient light, particularly for range estimation.

II. PHOTON DETECTION MODEL

Fig. 1 depicts a sketch of an example acquisition scenario. Suppose

a laser emits nr periodic pulses with repetition period tr and pulse

shape h(t), where
∫

∞

−∞
h(t)dt = 1. Then the intensity of the periodic

illumination pulse train is given as

µ(t) = γ

nr−1∑

n=0

h(t− ntr), (1)

where γ is a scaling factor related to the illumination power. It is well-

established that if an illuminated target is static, photon detection

is an inhomogeneous Poisson process whose intensity function is



an attenuated and time-shifted version of µ(t) [18]. SPL distance

estimates usually harness the statistics of detection times relative

to the most recent pulse time, discarding the absolute detection

sequence.

Instead, we consider that the target could be moving with constant

velocity v over the acquisition interval [0, ta), where ta = nrtr. Let

the starting distance of the target be z0, so the time-of-flight in a

static setting would be τ0 = 2z0/c, where c is the speed of light.

Let S denote the signal flux, i.e., the mean number of back-reflected

photons detected per illumination cycle, which is proportional to γ,

the target albedo, the detector efficiency, and a radial fall-off factor.

Let b denote the intensity of the ambient background light. The signal-

to-background ratio (SBR) is given as S/(btr). Due to the motion of

the target, the photon detection intensity accounting for the Doppler

shift is given as

λ(t) = S

[
nr−1∑

n=0

h

(
t−

c

c− v
τ0 − n

c+ v

c− v
tr

)]
+ b. (2)

We observe that the target velocity not only affects the time-of-flight

of photons after each illumination pulse but also effectively changes

the periodicity of the detections. We can thus define τ = cτ0/(c−v)
as the initial delay in the acquisition interval and t′r = c+v

c−v
tr to be

the repetition period of the detection process, as shown in Fig. 1. We

suppose a SPAD detects N photons over [0, ta), and we record the

detection times T := (Ti)
N
i=1 relative to t = 0. We assume that the

total flux is low enough that dead-time effects are negligible.

III. METHOD

We propose to estimate the velocity v by exploiting the difference

between the transmitting frequency fr = 1/tr and the Doppler-shifted

receiving frequency f ′
r = 1/t′r. The phase of the detection times will

also reveal the time-of-flight τ . We first discuss spectral analysis of

photon detection times and then describe the estimators for v and

initial distance z0.

A. Flux Probing

The intensity spectrum, i.e., the Fourier transform of the detection

intensity (2), is

λ̃(f) = Sf ′
rta

∞∑

k=−∞

{
e−j2π[kf ′

r
τ+ ta

2
(f−kf ′

r
)]h̃(kf ′

r)

sinc[ta(f − kf ′
r)]

}
+ btae

−jπftasinc(taf)

(3)

where h̃(f) is the Fourier transform of h(t). The magnitude |λ̃(f)|
has local maxima near the harmonics of the receiving frequency f ′

r .

We propose to estimate f ′
r by identifying these local maxima. By

applying flux probing to the detection times T [17], we form an

estimate of the intensity spectrum called the probed spectrum:

φT (f) :=
∑

T∈T

exp(−j2πfT ). (4)

Fig. 2(a) shows the magnitudes of the detection and probed spectra.

According to Wei et al. [17], φT (f)/ta converges in probability

to λ̃(f)/ta as ta → ∞. However, we observe significant differences

between the expected and empirical spectra due to the finite acqui-

sition interval and randomness of detection times. For instance, the

background contribution to the intensity spectrum is negligible for

frequencies greater than a few multiples of 1/ta, which is typically

much smaller than f ′
r . However, we observe significant background

in the probed spectrum even at high frequencies, as demonstrated

in Figure 2(a). Our estimators, which are based on the assumption

b = 0, are thus affected by the presence of background detections.
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Fig. 2: Magnitude of the intensity spectrum λ̃(f) and the probed

spectrum φT (f) at frequencies spanning the first harmonics (a) and

around the 50th harmonic (b) for a target with velocity 50m/s. The

vertical line in (b) denotes 50fr, from which the spectrum’s local

maximum 50f ′
r deviates.

B. Velocimetry with Probed Spectral Magnitude

We aim to estimate the target velocity from the Doppler shift of

fr relative to f ′
r . We propose a receiving frequency estimator

f̂ ′
r = argmax

f∈[fmin,fmax]

∑

k∈K

|φT (kf)|2 , (5)

where K is a set of positive integers indexing the harmonics of f ′
r , and

fmin and fmax bound the search region. Because of the multimodal

spectrum, as shown in Fig. 2(b), the optimization objective in (5)

is typically nonconcave. In our implementation, we initialize the

maximization with a coarse grid search in [fmin, fmax] and then refine

the peak estimate using the L-BFGS-B algorithm [19]. To determine

the search range, we choose an a priori maximum speed vmax and

compute the minimum and maximum of possible Doppler-shifted

frequencies:

fmin =
c− vmax

c+ vmax
fr, fmax =

c+ vmax

c− vmax
fr. (6)

Given f̂ ′
r , the corresponding velocity estimate is then

v̂ = c(fr − f̂ ′
r)/(fr + f̂ ′

r). (7)

When K = {1}, our estimator is identical to maximizing the

Bartlett periodogram for Poisson processes [20], which has been

proven to yield a consistent estimator for certain classes of intensity

functions [21]. Because the pulse h(t) is narrow, its spectrum

decays slowly, and we can use a large set of harmonics K =
{1, 2, . . . , kmax} to reduce the variance of the estimate f̂ ′

r . The

reliability of the higher harmonics is limited by the timing resolution

of the SPL system, which depends on the quantization of the time-

stamping electronics, time jitter, and the laser pulse width. Assuming

the overall timing resolution can be approximated as a Gaussian func-

tion with scaling parameter σ, we approximate the effective resolution

as tres ≈ 4σ. We then ensure the highest probe frequency kmaxfmax

does not exceed the Nyquist rate fNyquist = 1/(2tres) [17].

C. Ranging with Probed Spectral Phase

The phase of the probed spectrum reveals the target’s distance.

Suppose that b = 0, and assume h(t) is real and even. Then, the

phase of the intensity spectrum (3) at the receiving frequency f ′
r is

dominated by the k = 1 term:

arg
[
λ̃(f ′

r)
]
≈ (−2πf ′

rτ) mod 2π. (8)



By replacing arg[λ̃(f ′
r)] with the probed phase arg[φT (f)] at the

estimated receiving repetition frequency f̂ ′
r computed with (5) and

using t̂′r := 1/f̂ ′
r , we can estimate the pulse return time as

τ̂ =
{
−t̂′rarg

[
φT (f̂ ′

r)
]
/(2π)

}
mod t̂′r. (9)

Assuming the modulo has not caused aliasing [22], estimates τ̂0 and

ẑ0 can be computed through the relations τ0 = (c − v)τ/c and

z0 = cτ0/2. Note that this estimator ignores the effect of background,

which also contributes to the phase.

D. Baseline Methods

Previous methods estimate the velocity and distance of a mov-

ing target by regressing estimated distances over multiple time

frames [8]–[12]. While there are variations in how the frames are

processed, they all rely on the common assumption that dynamic

scenes can be considered quasi-static over short time frames [23]–

[28].

Following previous works, our baseline method divides the ac-

quisition time into subframes and applies linear regression to the

estimated distances. We take the slope as the velocity estimate, and

the intercept as the initial distance estimate. Suppose the acquisition

time [0, ta) is divided into F equal subframes
{[

ℓ−1
F

ta,
ℓ
F
ta
)}F

ℓ=1
.

Let ẑℓ denote a distance estimate from a quasi-static estimator using

only the detection times within the ℓth subframe Tℓ. We associate

ẑℓ with the center of the ℓth subframe tℓ = ta(ℓ− 1/2)/F for any

ℓ ∈ {1, . . . , F}. The baseline method estimates the velocity and

initial distance using linear regression:

v̂, ẑ0 = argmin
v,z0

F∑

ℓ=1

[(z0 + vtℓ)− ẑℓ]
2 . (10)

In this paper, we use two quasi-static distance estimators. The first

is a log-matched filter:

ẑℓ = argmax
z

∑

T∈Tℓ

log h

(
Tℓ mod tr −

2z

c

)
, (11)

which is the maximum likelihood (ML) estimator of the distance

when b = 0 and the target is static [18]. The second is the ML

estimator when b > 0:

ẑℓ = argmax
z,S,b

∑

T∈Tℓ

log

[
Sh

(
Tℓ mod tr −

2z

c

)
+ b

]
. (12)

Even though the optimization objective is nonconcave, the estimate

can be computed efficiently by using alternating maximization [29].

IV. EXPERIMENTS

A. Simulation Results

For all simulations, we set tr = 1 µs and nr = 104. The pulse

shape is Gaussian with width σ = 100 ps. The Nyquist rate for the

proposed method, limited by the pulse width, is fNyquist = 2.5GHz.

To determine the search region for the proposed method as described

in (6), we assume that the target does not move faster than vmax =
150m/s. Although kmax could be as high as 1249, we set kmax =
200 to reduce the computation time.

1) No Ambient Light: We simulate detection times from SPL for

a moving target based on the intensity function (2) and compute esti-

mates of the velocity v and initial distance z0 using the proposed and

baseline methods. We compute the root mean square error (RMSE) of

each estimator for a given simulation setting from 1000 Monte Carlo

trials. We first demonstrate that the proposed estimators (5) and (9)

improve velocimetry and ranging over the baseline when there is no
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Doppler F = 2 F = 10
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Fig. 4: RMSE of velocity and distance estimates when SBR = 10.

Doppler denotes the proposed method. MF ranging uses (11), and

ML ranging uses (12); both baseline methods use 10 subframes.

ambient light, i.e., b = 0. The target velocity ranges from −50 to

50m/s, and we set S = 0.1. Since b = 0, we use the log-matched

filter (11) for the baseline method. As shown in Fig. 3, the proposed

method yields more accurate velocity and distance estimates than

the baseline method at any velocity and is equally accurate at any

velocity. The accuracy of the baseline method improves by increasing

the number of subframes, but the baseline performance still degrades

as the speed increases due to the quasi-static assumption.

2) Low Ambient Light: Next, we evaluate the estimators when

there is ambient light. The simulation settings are the same as those

described above but now with b = 104 counts/s, corresponding to

SBR = 10. We also compare the two baseline distance estimators—

the log-matched filter (11) and the ML estimator (12)—using F = 10
subframes. As shown in Fig. 4, the proposed velocity estimator yields

lower RMSE than the baseline methods and remains equally accurate

at any velocity in presence of ambient light, though its RMSE slightly

increases from when b = 0. The baseline velocity estimator with ML

ranging achieves slightly higher RMSE than the proposed method at

v = 0m/s, and the error again increases with the target’s speed.

The baseline with log-matched filter completely fails in presence

of ambient light. While ambient light slightly increases the RMSE

of the proposed velocity estimator, it increases the RMSE of the

proposed distance estimator by 2 orders of magnitude. This result is

not surprising, since the background level changes the phase of the

intensity spectrum (3). On the contrary, the baseline with ML ranging,

which implicitly censors the background detections [29], has similar

RMSE as when b = 0.

3) Imaging Example: We simulate SPL measurements of a 3D

scene with three moving targets in front of a static background when

b = 0 (SBR = ∞) and b = 1.63×103 counts/s, corresponding to an
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signal photons nrS increases from left to right, as shown in the bottom left plot. The pixels on the targets have higher nrS than those on

the static background. The numbers above each estimate plot are the RMSE for all pixels (before /) and for only the moving targets (after /).

average SBR of 10. We design the signal flux in the scene to increase

from left to right to demonstrate the effect of varying number of signal

detections. The ground truth and the estimates are shown in Fig. 5

and confirm our observations from the numerical evaluations. When

SBR = ∞, the proposed method yields more accurate estimates of

both velocity and distance than the baseline methods. At SBR = 10,

our proposed velocity estimates are fairly robust to the background

detections and still outperform the baseline methods, whereas our

distance estimates incur significant error. As expected, the accuracy

increases with the number of photon detections.

At SBR = ∞, increasing the number of frames reduces the

RMSE of the baseline estimator. However, when SBR = 10, the

baseline method with F = 10 yields higher RMSE than with

F = 2 due to many erroneous pixels with low nrS on the left-

hand side of the image. This result demonstrates a weakness of the

baseline method: using more subframes reduces high-velocity errors,

but dividing the acquisition into too many subframes may result in

insufficient numbers of signal photons in some subframes, leading to

distance—and ultimately velocity—estimation errors. In contrast, our

proposed method uses the full detection sequence without dividing

into subframes, and the accuracy is not velocity-dependent.

B. Experimental Results

We further validate our approach on real SPL measurements.

Our experimental setup consists of a pulsed laser at 450 nm with

repetition frequency fr = 25MHz and pulse width σ = 97ps,
corresponding to the Nyquist rate fNyquist = 2.58GHz and the

highest allowed harmonics kmax = 51. The target is a white card

fixed to a 3m linear translation stage controlled by a stepper motor. A

draw-wire linear encoder is synchronized to the time-tagging module

to provide a reference distance measurement of the moving target.

We take the differential velocity from adjacent distance readings as

the reference velocity. The detection times are grouped into frames

of duration 25ms, corresponding to a 40 frames/s acquisition, and

we estimate the distance and velocity for each frame. The result
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Fig. 6: Estimated velocity and distance using the proposed method

with real SPL measurements. The number of photon detections, and

thus the accuracy, decreases as the distance increases.

is shown in Fig. 6. Our velocity and distance estimates track the

reference measurements from the linear encoder well. We remark

that the velocity estimates become less accurate as the target moves

farther away, because fewer photons are reflected back to the SPAD

due to the distance fall-off. The estimated SBR during the acquisition

decreases from 15 to 7 as the target moves away from the detector.

V. CONCLUSION

We derive a photon detection model for SPL when the target

is moving at a constant velocity. We propose a velocity estimator

that quantifies the Doppler shift due to movement and an initial

distance estimator based on the phase of the detection times. Our

method enables simultaneous velocity and range measurements that

remain accurate even for fast moving targets. Some future directions

include improving the robustness of the estimators against ambient

light, incorporating velocity estimation in tracking algorithms for SPL

measurements, and modeling the target’s acceleration and higher-

order derivatives of position.
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