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Abstract—We introduce O-EENC-SD: an end-to-end online speaker
diarization system based on EEND-EDA, featuring a novel RNN-based
stitching mechanism for online prediction. In particular, we develop a
novel centroid refinement decoder whose usefulness is assessed through a
rigorous ablation study. Our system provides key advantages over existing
methods: a hyperparameter-free solution compared to unsupervised clus-
tering approaches, and a more efficient alternative to current online end-
to-end methods, which are computationally costly. We demonstrate that
O-EENC-SD is competitive with the state of the art in the two-speaker
conversational telephone speech domain, as tested on the CallHome
dataset. Our results show that O-EENC-SD provides a great trade-off
between DER and complexity, even when working on independent chunks
with no overlap, making the system extremely efficient.

Index Terms—Online speaker diarization, conversational telephone
speech (CTS), CallHome, EEND-EDA

I. INTRODUCTION

Speaker diarization (SD) is an important speech processing task
which aims at estimating the speech activities of each speaker in a
real-world recording [1]. In online SD, data is processed on-the-fly
in a streaming fashion and predictions must be causal. In contrast,
in traditional or offline SD, the whole recording is available as the
input of the system.

While SD is traditionally framed as a clustering problem [2], [3],
recent developments pushed forward a novel end-to-end paradigm
[4]–[6]. The benefits of the end-to-end neural diarization (EEND)
family of models include the direct optimization of the diarization er-
ror and better handling of overlapped speech. Nevertheless, clustering
remains a flexible tool both for offline and online inference. In offline
SD, clustering has been used to reduce the computational burden of
end-to-end models [7], [8] or to solve the empirical limitations on the
maximum number of speakers the models can handle [9]. Clustering
has also been used to adapt models to work in an online fashion [10],
[11]: rather than the entire sequence being processed altogether, it is
split into chunks whose predictions are then stitched back together.
As end-to-end models are commonly trained under a permutation-
invariant training (PIT) paradigm [12], the order of speaker activities
in the output is unknown. In this context, the role of clustering is to
solve the speaker permutation problem in-between blocks.

Another approach to solve the permutation problem is to include an
overlap between consecutive blocks, as the shared portion can be used
to reorder the speakers. This shared portion is commonly referred
to as the buffer. The drawback of this approach is the repeated
computation on the overlap region, which can be reduced with
the use of more advanced buffering strategies [13], [14]. Buffering
strategies encompass different sampling techniques to compose the
shared portion between chunks, reaching performances competitive
to fully causal models [15]. Even so, the buffer size considered in
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Fig. 1. Outline of O-EENC-SD, detailing the processing of a single chunk.

state-of-the-art systems tends to be quite large (>= 100s), which
entails a substantial computational cost (in terms of operations per
second), thereby hindering their applicability to settings requiring
efficient realizations, typically when the solution needs to run at the
edge. This leaves the need for robust lightweight online variants,
especially variants exploiting smaller buffers.
Contributions: In this work, we present a novel online speaker di-
arization system based on end-to-end neural diarization with encoder-
decoder attractors (EEND-EDA) [5] and leveraging online neural
clustering to solve the speaker permutation problem between pre-
dictions of consecutive chunks. The system, illustrated in Fig. 1, is
competitive with the state of the art on online speaker diarization
in the two-speaker conversational telephone speech (CTS) domain,
as measured by the diarization error rate (DER). The strength of
this work relies on the improved trade-off between performance and
computational complexity, as shown by the marginal degradation of
the DER when constraining the computational budget. A particular
contribution of this work is the introduction of a new centroid
refinement decoder, used to improve the accuracy of the neural
clustering. To show the importance of each component of the model,
we conduct an ablation study under different settings of latency and
computational budget. Finally, we analyze the performance of O-
EENC-SD when neither data nor computation is shared between
subsequent chunks, opening the path to future works focusing on
real-time SD on edge devices. The code to reproduce the results of
this work is freely available.1

II. RELATED WORK

In speaker diarization, few models are online by nature [16], [17].
More commonly, online SD is performed with offline models adapted

1https://github.com/egruttadauria98/O-EENC-SD
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Fig. 2. Left: High-level view of the stitching process on non-overlapping chunks. The EEND-EDA model estimates Ŷn (I) and the relative attractors, matched
to the centroids (II). Based on the optimal permutation between centroids and attractors, the local predictions are permuted accordingly and stitched to the
previous chunks to form the clustering output (III). Right: Zoom on the matching process for the second chunk (enclosed in dashed box, n = 2). Two
attractors need to be matched: the second is matched to the only centroid (green), while the first is matched to h0 (grey), creating a new centroid.

to handle streaming data [10], [11], [13]–[15]. To do so, the data is
divided into chunks to be processed “locally”, before combining the
output of local (chunk-level) predictions through a stitching process.

In recent years, the end-to-end paradigm has gained a lot of
traction in the landscape of offline SD. Currently, several alternative
methods are available to adapt end-to-end diarization (EEND) models
to operate online. Coria et al. [10] proposed using a stitching method
based on unsupervised online clustering of the speaker embeddings
associated with each predicted speech activity. The advantage of
clustering is to enable handling more speakers in the whole recording
than what is allowed by the EEND model in a single chunk. As an
unsupervised method, clustering can be extremely flexible, but also
hard to optimize, and a gap between training and inference is usually
observed. Furthermore, clustering usually requires extensive domain-
specific hyperparameter tuning to achieve high performance.

To optimize an EEND model to work online in an end-to-end
fashion, a speaker-tracing buffer (STB) [13], [14] can be used.
In its simplest form, using a first-in-first-out (FIFO) strategy, it is
comparable to having an overlap between consecutive chunks with
a hop size smaller than the chunk size. More advanced strategies
involve heuristics for selecting past frames to summarize as much
information into a limited buffer. In [15], using speaker-balanced
sampling probabilities with a 100-s long frame-wise STB was shown
to even improve the DER on CallHome compared to a fully causal
model, from 15% to 14.93%. Unfortunately, using a 100-s buffer
with a hop size of 1 s is not feasible for many applications with
limited computational resources. As the buffer needs to preserve
the information of all the speakers seen so far in the form of
acoustic features to be further processed, the buffer size is critical
for performance (see Table 3 of [15]). In contrast, neural clustering
[9] stores speaker information in a much more compact format: a
centroid for each seen speaker, evolving from step to step.

III. PROPOSED SYSTEM

The proposed system processes the data in chunks, as shown in
Figs. 1 and 2. Online diarization is obtained by sequentially stitching
the chunk-predictions together, thereby solving the speaker permuta-
tion problem. New speakers might also be found as data is processed.
Roughly, the system is composed of two main components: an
EEND-EDA model [5] to obtain local predictions from each chunk,
and a recurrent neural network (RNN) [18] that performs online
neural clustering for the stitching. To refine the latent representation
of the speakers, two transformer decoders [19] are used: an attractor
refinement decoder and a centroid refinement decoder. The latter is
one of the novel contributions of this work.

A. EEND-EDA

The EEND-EDA model processes acoustic features X ∈ RD′×Tn

into frame embeddings En ∈ RD×Tn , where n is the chunk

index and Tn is the number of frames in a chunk. The EDA
component estimates attractors An = [a

(n)
1 , . . . , a

(n)
Sn

] ∈ RD×Sn in
an autoregressive fashion, where Sn is the number of speakers in the
chunk. To let the network determine that there are no more speakers,
existence probabilities Ẑn = [ẑ

(n)
1 , . . . , ẑ

(n)
Sn+1] ∈ (0, 1)Sn+1 are

computed. The speaker probabilities are estimated for each frame as
the dot product between the frame embeddings and the attractors,
followed by a sigmoid activation: Ŷn = σ(A⊤

nEn) ∈ (0, 1)Sn×Tn ,
where Ŷn = [ŷ

(n)
1 , . . . , ŷ

(n)
Tn

]. To train the model, two losses are used:
an existence loss Lchunk

exist on the attractors and a diarization loss Lchunk
diar .

Both losses are implemented using the binary cross-entropy (BCE):

Lchunk
exist =

1

N

N∑
n=1

BCE(Ẑn, Zn), Zn = [1, . . . , 1︸ ︷︷ ︸
Sn

, 0], (1)

Lchunk
diar =

1

N

N∑
n=1

1

TnSn
min
ϕ∈Φn

Tn∑
t=1

BCE(ŷ(n)
t , Pϕy

(n)
t ), (2)

Lchunk
EEND-EDA = Lchunk

diar + Lchunk
exist , (3)

where N is the total number of chunks, Φn is the set of all
permutations ϕ of Sn speakers, and Pϕ denotes the permutation
matrix associated with ϕ. During training, the EEND-EDA model
is also run on the entire audio and the losses are applied globally,
similarly to [15]:

Lglobal
exist = BCE(Ẑ, Z), Z = [1, . . . , 1︸ ︷︷ ︸

S

, 0], (4)

Lglobal
diar =

1

TS
min
ϕ∈Φ

T∑
τ=1

BCE(ŷτ , Pϕyτ ), (5)

Lglobal
EEND-EDA = Lglobal

diar + Lglobal
exist , (6)

where T and S are the number of frames and the number of speakers
in the entire recording, respectively.

B. Online neural clustering

Online diarization is performed by finding the correspondence of
attractors across consecutive chunks. Neural clustering [9] leverages
RNNs to model the evolution of speaker centroids, each modeled by a
different RNN. The hidden state of the RNN represents the centroid
of the cluster. All RNNs are initialized with a common trainable
embedding h0. Rather than using a fixed rule to update the centroids,
RNNs can provide a more robust and flexible alternative. Specifically,
we use gated recurrent units (GRUs) [20].

The online neural clustering is trained by classifying each attractor
of the chunk to one of the known C centroids or to h0, meant to
represent an average speaker. Using h0 as an option also allows
online clustering to be framed as a closed set and fully differentiable



problem. A cross-entropy loss is used to learn the correct assignment
of chunk attractors to centroids:

Lcluster
CE =

1

N

N∑
n=1

( 1

Sn

Sn∑
i=1

C∑
j=1

−r
(n)
ij · log(p(n)

ij )
)
, (7)

with (p
(n)
ij )j=1,...,C = σc

(
H⊤

n−1a
(n)
i

)
, where σc denotes the softmax

over the centroids and Hn−1 = [h
(n−1)
1 , . . . , h

(n−1)
C ] ∈ RD×C the

hidden states of the previous step. For an attractor i whose speaker
identity is represented by centroid j, r

(n)
ij is 1, otherwise it is 0.

Another option that we propose to supervise the learning of the neural
clustering is to apply Lglobal

diar to the output of the stitching process,
depicted in Fig. 2. We will refer to this loss as Lcluster

diar .
At the end of each step, the GRUs of the active speakers are up-

dated with the matched attractor using a teacher-forcing strategy [21].
The hidden states corresponding to the GRU of non-active speakers
are not updated. Thus,

h
(n)
j =

{
h
(n−1)
j if ∀i, r

(n)
ij = 0

GRU(a
(n)
i , h

(n−1)
j ) if ∃i, r

(n)
ij = 1

, (8)

where 1 ≤ i ≤ Sn and 1 ≤ j ≤ C.

C. Refinement decoders

In the EEND-EDA model, the frame features are encoded by a
stack of transformer layers [19]. Attractors are then estimated in an
autoregressive fashion using an LSTM [22] encoder-decoder system.
As attractors are optimized to minimize the diarization error within
a chunk, [15] suggested using a transformer decoder to refine the
attractors for inter-chunk stitching. Rather than using all past frame
embeddings, we use only the ones of the current chunk as input to
the decoder to make computation lightweight:

A′
n = TransformerDecoder(An, En, En) ∈ RD×Sn . (9)

A novel contribution of this work is the centroid refinement
decoder. In online clustering, the update of the centroids usually
happens after the new data points have been assigned to their
corresponding clusters. The idea of the centroid refinement decoder
is to perform a contextual update given the current attractors to be
matched. To do so, the decoder uses a cross-attention mechanism
between the centroids Hn−1 and the concatenation of a trainable
embedding gspk ∈ RD , referred to as ghost speaker, with the attractors
in the new chunk An:

H ′
n−1 = TransformerDecoder(Hn−1, A

+
n , A

+
n ) ∈ RD×Sn , (10)

where A+
n = Concat(gspk, A

′
n) ∈ RD×(Sn+1).

The rationale behind the use of a ghost speaker is to add a degree
of freedom to the refinement of the centroids of non-active speakers.
In the latent space of the attention mechanism, queries are updated
as a convex combination of keys and values. For active speakers,
the decoder can push the centroid towards the correct attractor
to facilitate the stitching step. For non-active speakers, the ghost
speaker represents an extra option to attend to rather than the chunk’s
attractors.

IV. EXPERIMENTAL SETUP

A. Data

As we focus on conversational telephone speech (CTS), we
evaluate O-EENC-SD on the CallHome corpus [23], using a 0.25-
s tolerance collar to compare our results to previous works. For
training, we distinguish between pretraining on simulated data and

fine-tuning on real data. For the simulated data, we rely on the
licence-free CallHome and CallFriend corpora available on TalkBank
[24] as input data, which are provided in stereo format and with
no annotation. The data simulation pipeline is as follows: the stereo
channels are analyzed individually with a pretrained diarization model
to filter out the ones with more than one speaker. The remaining
channels are combined randomly into simulated phone conversations.
To improve the realism, speakers are sampled from the same language
group. For the fine-tuning part, we use the development set of the
CallHome corpus.

B. Architecture and Training Details

The configuration of the EEND-EDA model, and of the input fea-
tures to the model, is the same as described in [5]. For the pretraining
phase of O-EENC-SD, the EEND-EDA model is initialized as the
average of the checkpoints of the last 10 epochs after being trained on
simulated conversations (option 2), as described in [25]. The neural
clustering component is initialized randomly. The learning rate is set
to 10−4 for the pre-training phase and 10−5 for the fine-tuning phase.
Before pre-training with the desired buffer size, all models are first
trained on 10-s audio segments, split into 10 non-overlapping 1-s
chunks. Our experiments show that this step leads to performance
gains in the fine-tuned model.
Similarly to [15], we use both a global and a chunk-level EEND-
EDA loss. In total, four loss terms are used: two for the EEND-EDA
model (LEEND-EDA global and LEEND-EDA chunk) and two for the neural
clustering (LCE and Ldiar). The total loss is computed as:

L = Lglobal
EEND-EDA + 10Lchunk

EEND-EDA + Lcluster
CE + Lcluster

diar , (11)

where 10 is the number of chunks into which the train data is usually
split. During pre-training, we have found beneficial to only use the
classification loss for the neural clustering. Models are trained to work
at different latencies by modifying the attention mask of the EEND-
EDA encoder. During inference, we only consider first-in-first-out
(FIFO) [13], [14] as the buffering strategy.

V. RESULTS

In this work, we refer to the entire context used to process a chunk
(including past observations and innovation) as buffer. As such, the
buffer size is always greater than or equal to the latency, equivalent
to the online processing unit in [15].

Table I collects the results of O-EENC-SD on CallHome to
compare our proposal to state-of-the-art systems. All shown variants
are trained with a 50-s buffer size, except for models in Table
II, where the buffer size is equal to the latency. Unless otherwise
specified, all models are trained with the same latency as used at test
time.

A. Comparison to the state of the art

Our system demonstrates competitive performance with previous
proposals, particularly when higher latency is allowed. Using a 100-s
FIFO buffer, O-EENC-SD achieves a DER of 9.53% and 9.50% at
5-s and 10-s latency, respectively. The best model achieves a DER of
9.33% at 5-s latency when all past frames are included in the buffer.
Our experiments reveal that O-EENC-SD achieves better performance
when trained with higher latency values. Indeed, when performing
inference with a 1-s latency, using a 100-s buffer size, the model
trained with 5-s latency achieves 11.96% DER, better than the 12.47%
of the 1-s latency model. Even with a significantly smaller 25-s buffer
size, the 5-s latency model reaches a better 12.14% DER when tested
at 1-s latency than the 1-s latency model using a 100-s buffer size.



TABLE I
DERS (%) ON CALLHOME 2-SPKS TEST SET WITH 0.25S COLLAR

TOLERANCE.

Model Buffer (s) Latency (s) DER (%)

BW-EDA-EEND [16] 10 10 11.82
EEND-EDA+FW-STB [14] 101 1 12.70
EEND-EDA+FW-STB† [15] 101 1 9.08
EEND-GLA-Small+BW-STB [15] 100 1 9.01
EEND-GLA-Large+BW-STB [15] 100 1 9.20

O-EENC-SD ∞ 10 9.50
O-EENC-SD 100 10 9.50
O-EENC-SD 10 10 10.75

O-EENC-SD ∞ 5 9.33
O-EENC-SD 100 5 9.53
O-EENC-SD 5 5 13.20

O-EENC-SD∗ ∞ 1 11.45
O-EENC-SD∗ 100 1 11.96
O-EENC-SD∗ 50 1 12.54
O-EENC-SD∗ 25 1 12.14
O-EENC-SD∗ 10 1 14.50
O-EENC-SD∗ 5 1 19.99

O-EENC-SD Base 100 1 15.38
+ Attractors decoder 100 1 15.07
+ Centroid decoder 100 1 12.69

O-EENC-SD 100 1 12.47

† Reproduced results with improved training methodology.
∗ Model trained with a 5-s latency and a 50-s buffer size.

A possible explanation is that higher latency provides a stronger
training effect on the EEND-EDA model to make better predictions
at the chunk level. On the contrary, at low latency, the stitching is
easier as the overlap portion between chunks is greater, leading to
a smaller training effect. More specifically, the average EEND-EDA
performance on a chunk is 11.84% DER when trained at 1-s latency
and 8.89% at 5-s latency.

Training strategy improvements can lower the DER considerably in
EEND-like models. In the top section of Table I, it is shown that the
performance of EEND-EDA+FW-STB can be improved from 12.70%
DER to 9.08% with the use of variable chunk-size training (VCT)
[15], paired with improvements in the sampling probabilities of the
STB. The profound effect of VCT stresses how much EEND-EDA
performance on small chunks is essential for the overall online DER.
From our experiments, high-latency training appears to be a good
strategy to improve chunk performance, but it presents a domain
shift with low-latency inference. We believe future works can bridge
this gap and make online neural clustering competitive even at low
latency requirements.

B. Architecture Ablation

The bottom of Table I also includes an ablation study on the
model architecture at 1-s latency. We find that both decoders do
improve performance over the base model. When the decoders are
used jointly, O-EENC-SD exhibits the best results, increasing the
clustering accuracy from 90% to 93% over the base model. Also,
the performance of the EEND-EDA model in each chunk improves,
decreasing the DER from 12.68% to 11.84%. Overall, the online
clustering performance improves from 15.38% to 12.47% DER.

C. Efficiency

The proposed O-EENC-SD system particularly shines when tested
at low buffer sizes and on non-overlapping chunks, making the system

TABLE II
LOW-COMPUTATION RESULTS ON CALLHOME 2-SPKS TEST SET.

L DENOTES THE NUMBER OF CONTEXT BLOCKS IN [16].

Model Complexity Buffer (s) DER (%) Accuracy (%)

BW-EDA-EEND, L=∞ [16] O(T ) 10 11.82 N/A
BW-EDA-EEND, L=1 [16] O(1) 10 16.18 N/A

O-EENC-SD Base O(1) 5 13.94 93.14
O-EENC-SD O(1) 5 13.20 96.16

O-EENC-SD Base O(1) 10 12.93 94.24
O-EENC-SD O(1) 10 10.75 97.17

Latency is set to the buffer size for all models.
Accuracy refers to the ratio of correctly classified attractors to the total.

efficient from a computational perspective. By contrast, the paradigm
of the previous methods [13]–[15] requires a long buffer to work
properly. The only other EEND-based online model that does not
use a buffer is BW-EDA-EEND [16], which implements a version
of the EEND-EDA encoder motivated by Transformer-XL [26]: for
every chunk, the hidden states of all layers are cached after being
computed, to be used in the computation of the next L chunks. If
L = ∞, all previously cached hidden states are used in the current
chunk and the time complexity of the attention mechanism is linear
with respect to the sequence length T . If L = 1, only the hidden
states from the previous chunk are used and the time complexity
does not depend on the sequence length. For O-EENC-SD, when the
latency is set equal to the buffer size as in Table II, each chunk is
considered independently. As the RNN update does not depend on
T , the computation for a single chunk has constant time complexity.
Table II shows that O-EENC-SD with a 10-s buffer size outperforms
BW-EDA-EEND with L = ∞ by a significant margin, lowering the
DER from 11.82% to 10.75%. Noticeably, all the model versions
in Table II achieve better performance than BW-EDA-EEND with
L = 1.

To conclude, we also want to remark on the impressive clustering
accuracy of O-EENC-SD when trained with small buffer sizes, even
surpassing 97% for the 10-s buffer size model. For models trained
with a 50-s buffer size, the average accuracy is instead around 93%.
As for the high-latency training, it seems that the online neural
clustering prefers harder training strategies, which will be leveraged
in future work to make the neural clustering paradigm stronger at
low-latency requirements.

VI. CONCLUSIONS

In this work, we have proposed O-EENC-SD, a novel online
speaker diarization method providing a great trade-off between DER
and latency/complexity. Our results show that online neural clustering
is competitive with previous systems, thanks in particular to the
proposed centroid refinement decoder and the downstream diarization
loss. Future work will focus on leveraging the strong potential of
high-latency training for low-latency inference. To conclude, we
believe online neural clustering has the potential to become state-
of-the-art in online speaker diarization, combining efficiency and
performance into a single paradigm.
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