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Abstract

This paper is an overview of current approaches to automatic programming organized around
three fundamental questions that must be addressed in the design of any automatic programming
system: What does the user see? How does the system work? What does the system know? As
an example of a research effort in this area, we focus the Prograwkpprentice project.
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1 Introduction

Automatic programming has been a goal of computer science and artificial intelligence
since the first programmer came face to face with the difficulties of programming. As
befits such a long-term goal, it has been a moving target—constantly shifting to
reflect increasing expectations.

Much of what was originally conceived of as automatic programming was achieved
long ago. Today, no one would call an assembler or a compiler automatic program-
ming. However, when these devices were first invented in the 1950’s, the term was
quite appropriate. Compared with programming in machine code, assemblers repre-
sented a spectacular level of automation. Moreover, Fortran was arguably a greater
step forward than anything that has happened since. In particular, it dramatically
increased the number of scientific end users who could use computers without having
to hire a programmer.

On the other hand, current expectations regarding the potential of automatic pro-
gramming are often based on an idealized view of reality and are probably unachiev-
able. Nevertheless, a number of important developments are appearing in research
efforts and commercially available systems. As an example of a research effort in this
area, we focus on our project at MIT, called the Programmer’s Apprentice (Section 5).

The “cocktail party” description of the potential of automatic programming runs
something like this:

There will be no more programming. The end user, who only needs to
know about the application domain, will write a brief requirement for
what is wanted. The automatic programming system, which only needs
to know about programming, will produce an efficient program satisfying
the requirement.

Automatic programming systems will have three key features: They will
be end-user oriented, communicating directly with end users; they will be
general purpose, working as well in one domain as in another; and they
will be fully automatic, requiring no human assistance.

Although this description is attractive, it is based on a number of faulty assumptions.

1.1 Myth: End-user-oriented automatic programming sys-
tems do not need domain knowledge

It is no more possible for end users to communicate effectively with an automatic
programming system that knows nothing about the application domain than it is
to communicate effectively with a human programmer who knows nothing about
the application domain. Rather, the path from an end-user’s needs to a program
involves a gradual change from a description that can only be understood in the
context of the domain to a description that can be understood without relying on
auxiliary knowledge. There is no point at which someone who knows nothing about



programming communicates directly with someone who knows nothing about the
application domain.

For example, suppose a large company needs a new accounting system. Figure 1
shows the principal agents that would typically be involved. The bars on the right
indicate that near the top of the figure accounting knowledge plays the crucial role,
while programming knowledge dominates towards the bottom.

The manager at the top of the figure quite likely has only a rudimentary knowledge
of accounting. The manager’s job is to identify a need and initiate the programming
process by creating a brief, vague requirement. The term “vague” is used here to
highlight the fact that the only way this initial requirement can succeed in being brief
is for it to also be incomplete, ambiguous, and/or inconsistent.

The next agent in the process is an accounting expert. The accounting expert’s
job is to take the manager’s vague requirement and create a detailed requirement.
A key feature of this requirement is that it is couched in the technical vocabulary
of accounting and is intended to be evaluated by other accounting experts. The
accounting expert’s knowledge of programming does not have to extend much beyond
basic notions of feasibility.

The third agent in the process is some sort of system analyst. The analyst’s
job is to define the basic architecture of the program and to translate the require-
ment into a detailed specification. In contrast to the requirement, the specification is
couched in the technical vocabulary of programming, rather than accounting. To per-
form this transformation, the system analyst must have a considerable understanding
of accounting in addition to an extensive knowledge of programming. (Section 5.1
demonstrates an interactive tool to assist systems analysts.)

The final agent in the process is a programmer. The programmer’s job is to pro-
duce code in a high level language based on the detailed specification. The program-
mer does not have to know very much about accounting. However, it is very unlikely
that the accounting system will actually work if the programmer knows nothing about
accounting.

Although not shown in the figure, agents for validation, testing, documentation,
and modification are required as well. To do their jobs, these agents also need signit-
icant domain knowledge.

In reality, end-user-oriented automatic programming systems must be domain
experts. In particular, it is not possible to describe something briefly unless the hearer
knows at least as much about the domain as you do and can therefore understand
the words used and fill in what is left out. (For a further discussion of the necessity
of domain knowledge in automatic programming, see Barstow (1984).)

1.2 Myth: End-user-oriented, general-purpose, fully auto-
matic programming is possible

A corollary of the need for domain knowledge is that such an automatic programming
system would have to be an expert in every application domain. Unfortunately,
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Figure 1. Agents in an accounting software project and the kind of knowledge they use.



there is no hint that artificial intelligence is anywhere near supporting this kind of
superhuman performance.

Given the pragmatic impossibility of simultaneously supporting all three features
mentioned above, it is not surprising that all current approaches to automatic pro-
gramming focus on two of the features at the expense of the third. This has given rise
to the following three approaches to automatic programming, typified by the feature
given up:

a. Bottom-up. This approach sacrifices end-user orientation. It starts at the pro-
grammer’s level and tries to push the threshold of automation upward. In the
past, the threshold was raised from machine-level to high-level languages. The
current goal is to raise the threshold further to so-called very high-level lan-
guages.

b. Narrow-domain. This approach sacrifices being general purpose. Focussing
on a narrow enough domain makes it feasible right now to construct a fully
automatic program generator that communicates directly with end users. This
approach is advancing to cover wider domains.

c. Assistant. This approach sacrifices full automation. Instead, it seeks to assist in
various aspect of programming. (The Programmer’s Apprentice pioneered the
application of artificial intelligence technology to the assistant approach.) With
current technology, this approach is represented by programming environments
consisting of collections of tools such as intelligent editors, on-line documenta-
tion aids, and program analyzers. The goal here is to improve the integration
between tools and level of assistance provided by individual tools.

1.3 Myth: Requirements can be complete

Since the cocktail party description of automatic programming assumes that the
only point of contact between the end user and the system is a requirement, this
requirement must be complete. In the interest of producing an efficient program, the
automatic programming system is expected to take full advantage of every degree of
freedom allowed by the requirement. The completeness of the requirement guarantees
that anything the automatic programming system produces will be acceptable to the
end user.

This point of view is commonly justified by likening requirements to legal con-
tracts. However, any lawyer will tell you that contracts do not work that way. Con-
tracts only work when both parties make a good faith effort to work toward a common
end. If good faith breaks down, the parties can always cheat without violating the
“letter” of the contract.

The problem with requirements (and contracts) is that they cannot be complete.
No matter how trivial the situation in question, there is no practical limit to what
needs to be said when trying to pin down a potential adversary.



Consider, for example, specifying a controller for an automated teller machine.
When describing the withdrawal operation, it is easy enough to say that after the
bank card is inserted, the customer should enter a password, specify an account, and
then select an amount of cash which the machine then dispenses. However, this is
nowhere near complete.

To start with, there are a lot of details missing with regard to the user interface:
What kinds of directions are displayed to the customer? How is the customer to
select between various accounts? What kind of acknowledgment is produced? To be
complete, these details must include the layout of every screen and printout, or at
least, a set of criteria for judging the acceptability of these layouts.

Even after the interface details are all specified, the requirement is still far from
complete. For example, consider just the operation of checking the customer’s pass-
word. What are passwords to be compared against? If this involves a central repos-
itory of password information, how is this to be protected against potential fraud
within the bank? What kind of response time is required? Is anything to be done to
deal with possible tampering with bank cards?

One step deeper, a truly complete requirement would have to list every possi-
ble error that could occur—in the customer’s input, the teller machine, the central
bank computer, the communication lines—and state exactly how each error should
be handled.

Going beyond what is computed, the user undoubtedly wants the program to be
reasonably efficient. This could be specified as maximum limits on space and time.
However, what is really desired is for the implementor to make a good faith effort to
make the program as efficient as possible. Further, the code produced should be easy
to read, easy to modify, and well documented.

Finally, the end user also undoubtedly cares about the cost of implementing the
program and how long it will take. This implies that trade-offs must be made, par-
ticularly when it comes to the last few issues mentioned above. This makes it very
difficult—if not impossible—to make complete statements about these issues.

In reality, requirements are at best only approximations. Instead of serving as
a defensive measure between adversaries, requirements should be used as a tool for
communication between colleagues. Assuming that the implementor will make a good
faith effort to create a reasonable program, many of the points above can go unsaid.

Just like human programmers, an automatic programming system must make a
good-faith effort to satisty the spirit of the requirements given to it. The system
must be oriented toward making reasonable assumptions about unspecified proper-
ties, rather than trying to minimally satisfy specified properties. This observation
reinforces the need for domain knowledge as part of an automatic programming sys-
tem.



1.4 Myth: Programming is a serial process

In many ways, the worst aspect of the cocktail party description of automatic pro-
gramming is that it perpetuates the myth that creating a program is a two step
process: First, an end user creates a requirement; second, the automatic program-
ming system makes a program. This view is just as impractical in the context of an
automatic programming system as it is in human-based programming.

First of all, given the approximate nature of requirements, a considerable amount
of back-and-forth communication is required to convey the end user’s full intent.
Second, users typically start the programming process with only a vague idea of what
they want, and they need a significant amount of feedback to flesh out their ideas
and determine the desired requirement. Also, what end users want today is never
the same as what they want tomorrow. Third, users do not want programmers to
follow requirements blindly. If problems arise, they want advice. For example, the
programmer should tell the user if a slight relaxation in the requirement would allow
a much more efficient algorithm to be used.

In reality, programming is an iterative process featuring continual dialogue be-
tween end user and programmer. The desired requirement evolves out of prototypes
and initial versions of the system.

The inherently iterative nature of programming has two important implications
for automatic programming. First, just as in nonautomatic programming, the focus
of activity will be on changing requirements as much as on implementing them. Thus,
there will be no reduction in the need for regression testing and other techniques for
managing evolution.

Second, to carry on a dialogue with the user, automatic programming systems
will need to explain what they have done and why. In particular, they will need to
explain the assumptions they have introduced into a requirement so that users can
debug those assumptions.

1.5 Myth: There will be no more programming

There will certainly be many differences between the input to future automatic pro-
gramming systems and what is currently called a program. However, programming is
best typified not by what programs are like but by what programming tasks are like.
In particular, these new inputs will undoubtedly still have to be carefully crafted,
debugged, and maintained according to changing needs. Whether or not one chooses
to call these inputs programs, the tasks associated with them will be strongly remi-
niscent of programming.

In reality, end users will become programmers. As an example of this phenomenon,
consider spreadsheet programs. When spreadsheets first appeared, they were heralded
as a way to let users get their work done without having to deal with programmers
or learn programming. Spreadsheets have succeeded admirably in letting users get
results by themselves. However, maintaining a complex spreadsheet over time differs



very little from maintaining a program. The only real difference is that a spreadsheet
is a concise domain-specific interface which makes it remarkably easy to write certain
kinds of programs and startlingly difficult to write other kinds of programs.

1.6 Myth: There will be no more programming in the large

Even if we accept the fact that programming will be around forever, we might well
hope that by continuing the trend of writing programs more compactly, automatic
programming will convert all programming into programming in the small.

Unfortunately, this dream overlooks software’s extreme elasticity of demand. Most
of the productivity improvements introduced by automatic programming will almost
certainly be utilized to attack applications that are enormous rather than merely
huge.

In reality, we are unlikely to ever settle for only those application systems that
can be created by a few people. As a result, there will be no lessening of the need for
version control, management aids, and all of the other accoutrements of cooperative
work and programming in the large.

The automatic programming systems of the future will be more like vacuum cleaners
than like self-cleaning ovens. With a self-cleaning oven, all you have to do is decide
that you want the oven cleaned and push a button. With vacuum cleaners, your
productivity is greatly enhanced, but you still have a lot of work to do.

The next three sections discuss the three fundamental technical issues in automatic
programming that must be addressed in the design of any automatic programming
system: What does the user see? How does the system work? What does the system
know?

2 What Does the User See?

From the user’s perspective, the most prominent aspect of an automatic programming
system is the language used to communicate with it. We will discuss the range of
possibilities below using as an example the simple problem of determining the value
of an octal number represented as a string.

Figure 2 shows the Pascal implementation of a program that solves this problem.
We would like an automatic programming system to produce a program like this from
one of the user inputs discussed below. Note that no single example can equally well
illustrate all of the important issues in selecting an input medium.

2.1 Natural Language

Because they are familiar, natural languages such as English are an attractive choice
for communication between end users and an automatic programming system. Three
other features that make natural language attractive are vocabulary, informality, and



function EvalOctal (var S array [M..N: Integer] of Char): Integer;
var I, V: Integer;

begin
I :=M;
V := -1;
while S[I]=’ ’> do I := I+1;
if S[I]<>chr(0) then begin
V := 0;

while (?0’<=S[I]) and (S[I]<=’7’) do begin
V := 8%V+ord(S[I])-ord(’0?);
I I+1

end;
while S[I]=’ ?> do I := I+1;
if S[I]<>chr(0) then V := -1
end;
EvalOctal := V
end

Figure 2. Pascal implementation of a program that determines the value of an octal
number represented as a string. Note that to allow for strings of zero length, strings are
implemented as arrays of characters where the last character is not part of the string. The
function ord returns the integer character code corresponding to a character.

syntax. For example, the following is a natural language specification of the EvalOctal
program in Figure 2.

The function EvalOctal is a recognizer that determines whether or not a
given string contains an octal number optionally surrounded by blanks.
If this is the case, the decimal value of the number is returned; otherwise
-1 is returned.

The feature that contributes the most to making natural language an efficient
communication medium is the existence of a vocabulary of thousands of predefined
words. Among other things, the natural language specification above assumes that
the reader knows what a recognizer is, what an octal number is, and the relationship
between the value and string representation of an octal number.

Informality, such as the possibility of a statement’s being ambiguous, incomplete,
contradictory, and/or inaccurate, is also very important. In fact, it essential to a
powerful strategy for dealing with complexity: Start with an almost-right description
and incrementally modify it until it is acceptable.

For example, the natural language specification above is vague about the data
type of the output. (Integer was chosen in Figure 2.) It is also vague about whether
or not the octal number may be preceded by a sign. (Figure 2 assumes it may not,
since if negative numbers were allowed, then -1 could correspond to a valid input.)
Finally, the specification above does not say what should happen if the octal number
is too big to represented. (Figure 2 allows overflow to occur.)
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Figure 3. A state transition diagram specification for EvalOctal.

The least important feature of natural language is its syntax. Natural syntax is
convenient, because it is familiar. However, it is of relatively little value unless the
other features are supported as well.

Unfortunately, enabling machines to converse in natural language is far beyond
the current abilities of artificial intelligence. As a result, natural language input—
although an active area of inquiry in its own right—is not a major topic in current
automatic programming research. For examples of early work on automatic program-
ming using natural language input, see Heidorn (1976) and Ruth (1978).

2.2 Special-Purpose Languages

Even when people communicate among themselves, natural language is not always the
language of choice. For example, many application areas have specialized symbolic or
graphical languages associated with them, such as mathematical formulae and circuit
diagrams, that experts routinely use in preference to natural language.

For example, Figure 3 shows the specification of EvalOctal using the standard
graphical notation for describing state transition networks. In this diagram, states
are represented as ovals and transitions between states are represented as arrows.
The arrows specify what happens when an input character « is encountered. (For
instance, suppose the program is in the Blanks state. If it receives a blank character,
then it stays in the Blanks state. If it receives an EOF character indicating that there
is no more input, then it goes to the Done state.) In addition, some of the arrows are



annotated with specifications for actions to be performed when transitions occur. (For
instance, if the program is in the Start state and receives one of the characters ’0’
through 77, it sets a variable V equal to the integer corresponding to the character.)

A key advantage of Figure 3 is that it is easy to understand and modify. Specifi-
cation changes can be easily made using, for example, a graphical editor.

Figure 3 is also much more formal and detailed than the natural language descrip-
tion of EvalOctal in Section 2.1. For example, it specifies exactly what can appear
in the input. However, it is also still incomplete. For example, it does not say what
to do if the input number is too big.

Many kinds of special-purpose languages can be supported in straightforward
ways, as long as their focus is sufficiently narrow. A particularly successful example
is so-called “what you see is what you get” interfaces. Screen painters allow end
users to specify the layout (and some of the semantics) of a data entry and retrieval
program simply by making a picture of how the screen should look. Then a code
generator automatically writes the code to drive the terminal and access the data
base.

Unfortunately, special-purpose languages have the fundamental problem that they
are essentially useless outside of their domains of applicability. This brings up a key
unsolved problem—namely, how to combine several special-purpose languages or a
special-purpose language with a general-purpose one.

Almost every current system that supports a special-purpose language follows the
narrow-domain approach to automatic programming, restricting itself to the situa-
tions where the special-purpose language is appropriate. Even when multiple, special-
purpose input languages are supported (e.g., in Draco (Neighbors, 1984)), the user
is only allowed to combine the languages in simple ways. Much more work needs to
be done before special-purpose languages can reach their full potential as part of the
interface to general-purpose systems.

2.3 Examples

An attractive idea, pursued with some vigor in the early days of automatic program-
ming, is to specify a program via examples of its behavior. Early work in this area
(Hardy, 1975; Shaw et al., 1975; Siklossy and Sykes, 1975) was ad hoc in nature. This
changed with the work of Summers (1977) who established theoretical foundations for
the field. Most subsequent work is based on Summers’ approach. Furthermore, most
of the work on programming by example uses Lisp as the target language (see survey
by Smith (1984)). The reason for this is not intrinsic to any of the techniques, but
rather it is because the Lisp programming environment facilitates writing programs
that operate on programs.

The appeal of programming by example is that non-programmers are familiar with
examples as a communication technique, just as they are with natural and special-
purpose languages. Furthermore, collections of examples are easy to understand and
modify. For example, the following is a set of input-output examples which might be
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used to specify EvalOctal.

132 " = 90
"42 " = 34
"B6" = 46
N-17 " = -1
2.6 " = -1
" 380" = -1

Individually, these examples seem clear enough. However, if this truly was the
only information given, it would be next to impossible for a person (let alone an
automatic system) to understand what the program was supposed to do.

To start with, considerable insight is required to come up with the correct gener-
alization of the first three examples—i.e., that the output is the value of the input
viewed as an octal number. In addition, there need to be many more examples to
address questions like: What happens if there are more than three digits? What
happens if there is more than one blank after the number? What happens if there
is a >+’ in front of a number. What happens if a number starts with a 0’7 What
happens if two numbers are separated by blanks? What happens if there are letters
in the input? (Imagine how many examples would be required if EvalOctal were not
a toy program!)

Although it initially created a good deal of excitement, programming by example
now appears to be of only theoretical interest. The problem is that the techniques
do not scale up to programs of realistic complexity. Unfortunately, as input-output
pairs become more complex, the problem of generalizing them appropriately becomes
astronomically more complex.

There are basically only two ways to cut the generalization problem down to a
manageable size. First, more examples can be provided in order to reduce ambi-
guity, including examples of intermediate computation steps (see Biermann (1972),
Biermann (1976), Biermann and Krishnaswamy (1976), and Bauer (1979)). Unfortu-
nately, when the number of examples becomes too large, this becomes an inefficient
means of specification as compared with other formal techniques.

Alternatively, assumptions about the class of target programs can be built into
the programming-by-example system. For example, Andreae (1985) synthesizes robot
programs from examples. The system described by Hedrick (1976) assumes that the
synthesized program must be a rule-based production system. Unfortunately, when
the structural assumptions begin to get this strong, the programming-by-example
system ends up being essentially a special kind of program generator.

A different approach to using examples is illustrated by the Tinker system (Lieber-
man and Hewitt, 1980). Tinker does not attempt to generalize the examples auto-
matically but rather provides a program development environment that helps the user
perform the generalization. In this context, the input-output examples are perhaps
better thought of as test cases.

In summary, examples may be a useful technique only as an adjunct to other
specifications or in a narrow domain in which the possible programs are already
highly restricted.
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2.4 Logical Formalisms

Logic is the most powerful (and general) formal description language known. As a
result, it is reasonable to suppose that it might make a good communication medium
between a user and an automatic programming system.

Unfortunately, there are two fundamental barriers to the use of logical formalisms.
First, most interesting tasks in general logical systems (for example, detecting con-
tradictions) are computationally intractable (see the discussion of deductive methods
in Section 3.2). Second, complex logical formulae are notoriously difficult for most
people to write and understand.

For example, the following is a logical specification for EvalOctal in the form of
pre- and postconditions. This specification assumes that the notion of a string is built
into the logic. In particular, a string S is treated as a function that maps from the
integer range 1..]5| to characters, where |S| denotes the length of a string.

input: S
precondition: STRING(S)
output: V

postcondition: INTEGER(V) A (VALID(.S) — VALUE(S,V)) A (=VALID(S) — V =—1)

where:
vALID(S) = (Vil<i<|S|— S(e)e{’ »,°0°,71,°27,°3? 74’ °5> 26’ °T’})
AN (Fi1<i<|S|—= SE)# )
A (m3gk 1<i<j<k<|S|AS(@E)#£?> *ANS(G)=" > ASk)#£’ )

VALUE(S, V) = Vij (1<i<j<|S|ASE)#£? *AS(G)#£? > A (=S| Vv S+ =" 7))
— (p1GIT(S(i))=DIv(rREM(V,8 771, 877172)
A((i=1V S(i-1)=" )= V<&

The essence of this specification is contained in the definitions of vaLID and VALUE.
The varLiD predicate is true of a string iff every character is an octal digit or a blank,
at least one character is a digit, and there are no blank characters between digits.
The vALUE relation holds true iff each digit in S is correctly represented in V' and
V' contains no other values. (The piciT function returns the integer corresponding
to a digit character. piv and REM are the integer division and remainder operators,
respectively.)

The specification above has the virtue of being very precise without biasing pos-
sible implementations. Unfortunately, it is far from obvious, for example, that the
VALUE relation in fact guarantees that V' is the value of the octal number represented
in S.

Research on logic as a communication medium between man and machine is being
carried out primarily under the topics of formal specification languages and logic-
programming languages. A key issue in both of these areas is the introduction of
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extensions and restrictions that render logic more tractable to man and machine.
For example, Prolog (Cohen, 1985) guarantees executability of logical descriptions by
placing strong restrictions on the form of expressions.

2.5 Very High Level Languages

While specification languages and logic programming languages essentially extend
“downward” from logic, very high level languages build “upward” from current high
level languages. Typically, very high level languages add powerful abstract datatypes,
such as sets and mappings (to allow programmers to ignore the details of data struc-
ture implementation), and a few features of logical notation, such as quantification
over sets (to allow programmers to ignore certain kinds of algorithmic detail).

The archetype of very high level languages is SETL (Schwartz et al., 1986). SETL
supports most of the standard constructs of Algol-like programming languages. In
addition, it supports two convenient universal data structures—tuples and sets. For
example, a mapping is treated as a set of 2-tuples. SETL also supports the use of
universal and existential quantifiers in a program. For example, the following is the
form of the SETL statement for performing some computation on every element of
the set s.

(forall x in S) ... end forall;

One of the main goals of providing such expressive facilities is to free the program-
mer from having to think about the detailed design of data structures. The SETL
compiler will decide how data structures should be implemented. This decrease in
what the programmer has to worry about is a key to the productivity gains that
should be obtained by the use of very high level languages.

The following shows how one could write EvalOctal in SETL.

procedure EvalOctal(S);
if (forall C in S | C in {* *,70°,717,°27,73°,°4 ’5°,76”,°7’}) and

(exists Cin S | C /=’ ?) and
not exists Ci in S(i), in , in
( i Ci in S(i), Cj in S(j), Ck in S(k)
| i<j and j<k and Ci/=’ ’ and Cj=’ ’> and Ck/=’ ’)

then Digits := [abs C - abs ’0’: C in S | C/=’ ’];
return +/[D*8%x(#Digits-1i): D in Digits(i)];
else return -1;
end if;
end procedure EvalOctal;

The form of this program closely follows the form of the logical specification in
the preceding section. The condition of the if statement illustrates that many logical
expressions can be rendered more or less directly in SETL. However, this cannot be
done with non-constructive logical expressions such as VALUE relation.

When the input is well-formed, the SETL program above computes the output
value as follows. First, it selects all of the input characters that are digits and creates a
tuple (ordered sequence) of the corresponding numbers in the same order. (The SETL
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operator abs is the same as the Pascal function ord.) It then creates a tuple of the
digits multiplied by the appropriate powers of 8. (The SETL operator # determines
the length of a tuple.) Finally, it computes the sum (using the operator +/) of the
elements of this tuple. A key feature of this computation is that it contains two uses
of the SETL tuple former construct:

Lelement: wvar in tuple {| selector}]

To illustrate how this construct is used in the program above, consider the following
examples.

[abs C - abs ’0’: C in " 124 " | C/=? ’] returns [1,2,4]
[D*8x* (#Digits-i): D in [1,2,4]1(i)] returns [64,16,4]
+/[64,16,4] returns 84

Partly because it has a somewhat cryptic and unfamiliar syntax, a significant
amount of training is required in order to use SETL’s features to full advantage.
However, it is possible to write SETL programs that are very compact and readable.
In addition, unlike the other specifications discussed above, a SETL program is com-
plete since it is directly executable. For example, it specifies that overflow will occur
if the number represented by the input is too large.

The Refine language (Abraido-Fandino, 1987) is in many ways similar to SETL.
The GIST language (Feather and London, 1982) is representative of a more ambitious
direction in research on very high level languages. The goal of GIST is to provide
the expressiveness of natural language while imposing formal syntax and semantics.
Two examples of capabilities provided in GIST that distinguish it from SETL-like
languages are: historical reference (the ability to refer to past process states) and
constraints (restrictions on acceptable system behavior in the form of global declara-
tions). For a general discussion of other desirable features of a specification language,
see Balzer (1985).

Not surprisingly, the more advanced features that you put into a very high level
language, the harder it is to compile (and to some extent, understand; see Swartout
(1983)). Compilers for SETL and Refine have both been implemented and commer-
cially distributed. In contrast, although it has been an active area of research, a
complete GIST compiler has not yet been constructed.

When compiling languages such as SETL and Refine, the paramount problem
is deciding how to implement the abstract data structures in the program. These
decisions are needed not only to represent the data, but also to decide how to use loops
to implement quantifiers in the program. Some researchers (e.g., Low (1978) and Rowe
and Tonge (1978)) have focused on the problem of data structure implementation
separate from the details of any specific very high level language.

The SETL compiler operates in a procedural fashion somewhat similar to a con-
ventional optimizing compiler. It is only moderately successful at producing efficient
code. In order to make implementation choices that lead to more efficient run-time
performance, the SETL compiler will have to perform a deeper analysis of the input
program. Meanwhile, a declaration language is provided that the programmer can
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use to tell the SETL compiler how to implement particular sets. Although this is an
appealing compromise in the spirit of incremental automation, it is less than satis-
factory in practice. The problem is that if the full expressive power of SETL is used
in writing a program, it can be very difficult for a programmer to figure out what to
recommend.

The currently favored technique for compiling very high level languages is to
use a program transformation system to remove the very high level constructs. For
example, this approach is used for the Refine language. As discussed in Section 3.3,
transformational systems require advice on what transformations should be applied
where. Unfortunately, as in the case of explicit declarations, it can be very difficult
for a programmer to come up with the needed advice.

Another important trend in very high level languages is toward specialized lan-
guages for particular application areas. For applications like business data processing
(Cheng et al., 1982), quite high level languages have been developed that can be
successfully compiled using reasonably straightforward techniques.

2.6 Other Communication Issues

The following are three general issues that apply to any communication medium for
automatic programming.

2.6.1 Wide spectrum

What should users do when they want to say something more detailed than the
abstraction level supported by the input medium? The purists’ answer is that it is
a bad idea for users to say such things—the automatic programming system should
be left to make all such decisions. However, pragmatists realize that (at least for the
foreseeable future) automatic programming systems cannot operate without getting
a certain amount of advice at all levels.

A good way to support this pragmatic approach is to provide users with a wide-
spectrum language, i.e., one that provides both high level and low level constructs in
a single coherent framework. For example, a very high level language like SETL is
wide spectrum because it retains the features of current high level languages—e.g.,
it retains the ordinary looping mechanisms while adding quantification. FEnglish is
inherently wide spectrum unless the vocabulary is severely restricted. In contrast,
special-purpose languages are not typically wide spectrum. (The ideal automatic
programming system would probably be one that supports a general-purpose wide-
spectrum language plus a number of narrower special-purpose languages.)

2.6.2 Large vocabulary

In principle, any of the languages associated with the bottom-up approach to auto-
matic programming can make use of a predefined vocabulary of terms. For example,
a logical specification can refer to any number of predefined predicates and functions.
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Similarly, a program written in a very high level language can refer to any number of
predefined subroutines.

However, as discussed in Section 4, each of these languages implicitly limits what
can be defined as a vocabulary item. In addition, research on these languages has
generally focused on providing a relatively small set of very powerful primitives. An
alternate approach is to make the utilization of an extensive, predefined (including
domain specific) vocabulary be the primary goal. This can be thought of as an
attempt to preserve the vocabulary intensive nature of English while still getting rid
of most of the informality.

As an example of what a vocabulary intensive language might look like, consider
the following, which is similar to descriptions produced and used in the Programmer’s
Apprentice.

EvalOctal is a function from string S to integer V.
EvalOctal implements a regular expression recognizer where:
The recognized expression is "blank® {0/1121314|516|7}* blank*".
The failure output is -1.
The success output, V, is the decimal value of the octal number
in the non-blank substring of S.

The underlined words and phrases above are all taken to be predefined terms. This
specification of EvalOctal is reminiscent of the English description above. However,
it 1s different in several important ways. To start with, it uses a highly simplified
syntax, including indentation to show hierarchical relationships between the parts of
the specification. Also, this specification is not informal: Everything is spelled out in
detail including exactly what it means for the input to contain an octal number. The
feature which the specification above does share with English is the use of a large
vocabulary.

Given a choice, most users would be much happier to use an awkward medium
in which almost everything they want is already defined, rather than an otherwise
convenient medium in which everything needs to be defined from first principles.

2.6.3 Dialogue

Because of the inherently iterative nature of the programming process, a medium
must be able to support a dialogue between the user and the automatic programming
system. In particular, the medium of communication must be capable of expressing
“meta level” information, e.g., information about changes to the state of knowledge.
One can imagine how natural language would serve well as a dialogue medium. Re-
stricted notations, such as very high level languages, are clearly not sufficient by
themselves.

As an illustration of the importance of supporting dialogue between the user and
an automatic programming system, suppose that an automatic programming system
has been given the vocabulary intensive specification of EvalOctal in the preceding
section. While attempting to write the corresponding program, it would be helpful if
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the system remarked about the problem with overflow and gave the user a chance to
fix it, as shown below.

System: There does not appear to be any limit on how large the output
can be. However, the largest integer value is 32767.
User: Have EvalOctal return -1 if overflow occurs.

Interactive dialogue brings two new features into the automatic programming
picture. First, interaction makes it possible to fix mistakes. If users are going to
be brief, they will inevitably run the risk of being misunderstood. An interactive
mode of operation gives users immediate feedback on the effects of their statements
and allows them to make clarifications. (From this point of view, batch systems are
just interactive systems with frustratingly long communication delays. Almost any
system can benefit from becoming more interactive.)

Second, interaction makes it natural for users to talk about the process of pro-
gramming as well as about what the target program should do. For example, a user
might ask the system to change the target program in a certain way or to forget
about some particular thing that was said earlier. This kind of communication is a
prominent feature of the way programmers talk to each other, but is not captured by
specification languages that merely address what target program is supposed to do.

For example, suppose that at a later time the user wanted to change the EvalOctal
program. It would be desirable if the change could be made by talking about the
program at a high level rather than using, say, a text editor. In addition, the system
should respond by indicating problems caused by the change.

User: Change EvalOctal so that an optional minus sign is allowed to
appear before the first digit of the input.
System: The failure value -1 is no longer guaranteed to be distinct
from the set of outputs corresponding to valid inputs.

3 How Does the System Work?

Automatic programming systems map a configuration of domain-specific terms (a
requirement stated in terms of one of the input mediums above) into a configura-
tion of implementation-specific terms (a program). Four mechanisms currently being
pursued as the basis for such systems are procedural methods, deductive methods,
transformational methods, and inspection methods.

3.1 Procedural Methods

To date, the most successtul approach has been to simply write a special-purpose
program that gets the right results. For example, other than the parsing components,
most current compilers and program generators are essentially procedural in nature
(although some use transformations to some extent).
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The big advantage of procedural methods is that they let you get off the ground
fast. It is very seldom difficult to support the first few desired features. Furthermore,
you can always (try to) modify the code to support any particular additional feature.

Unfortunately, as more and more features are added to a procedural system, you
reach a point of rapidly diminishing returns, because the system becomes progressively
more difficult to modify. As a result, it is unlikely that the procedural approach can
support the broad-coverage, end-user-oriented automatic programming systems of the
future.

3.2 Deductive Methods

The problem of synthesizing a program satistying a given specification is formally
equivalent to finding a constructive proof of the specification’s satisfiability. This fun-
damental idea underlies the deductive approach to automatic programming (Manna
and Waldinger, 1980a). In principle, any method of automated deduction—resolution,
natural deduction, reasoning about anonymous individuals—can be used to support
automatic programming. Unfortunately, in practice, none of these methods are yet
capable of proving the kinds of complex theorems required to synthesize programs of
realistic size.

Deduction is basically a problem of searching for an inference path from some
initial set of facts to a goal fact. The search is exponential in nature because at every
step there are many ways for inference rules to be applied to facts. Current deductive
systems cannot discover complex proofs because they are unable to effectively control
the search process.

To deal with this control problem, deductive systems typically must adopt the
assistant approach—that is, they seek advice from the user. Unfortunately, users
who want to avoid programming probably want to avoid theorem proving as well!

An even more fundamental problem with the deductive approach is that it is at
odds with the need for an automatic programming system to make a good faith effort
to satisfy the “spirit” of a requirement. For example, the theorem-proving process
contains no bias toward finding the proof corresponding to the most efficient program,
or even a reasonably efficient program.

Despite these limitations, deductive methods have several advantages. In partic-
ular, they are very general and quite effective, as long as they are limited to proving
simple theorems. As a result, deductive methods are certain to play an important
role in the automatic programming systems of the future. The challenge is to com-
bine automated deduction with other methods so that its inherent limitations can be
avoided.

3.3 Transformational methods

Transformational implementation systems (e.g., TT (Balzer, 1985) and PDS (Cheat-
ham, 1984)) have dominated research in automatic programming. In this approach,
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the input to the automatic programming system is a program written in a very high
level language. A sequence of transformations is applied to convert this input into a
low-level implementation.

A transformation has three parts: a pattern, a set of logical applicability condi-
tions, and an action procedure. When an instance of the pattern is found, the logical
applicability conditions are checked to see whether the transformation can be applied.
If the applicability conditions are satisfied, the action can be evaluated to compute a
new section of code, which is used to replace the code matched by the pattern. Typi-
cally, transformations are correctness preserving, meaning that the matched code and
its replacement represent logically equivalent computations.

There are two basic kinds of transformations. Some transformations (often called
vertical transformations) replace specification-like constructs (e.g., quantification over
a set) with conventional constructs (e.g., iterating over a list). These transformations
encode knowledge of how to implement algorithms and data structures. Other trans-
formations (often called horizontal transformations) perform rearrangements and op-
timizations (e.g., moving an unchanging computation out of a loop), which do not
change the level of abstraction. In practice, these two kinds of transformations are
interleaved in long sequences, passing through multiple levels of abstraction.

The central feature of transformational methods is the transformational rewrite
cycle. The state of the transformation process is represented as a program in a wide-
spectrum representation that is capable of expressing both the user’s input and the
final program. On each cycle, a transformational system selects a transformation and
applies it to some place in the program. The cycle continues, accumulating the results
of longer and longer chains of transformations, until some termination condition is
satisfied (e.g., until there are no more very high level constructs).

As an example of how transformational implementation works, let us follow the
steps by which part of the SETL program in Section 2.5 could be transformed into
an efficient low level program. In particular, we focus on the statement in EvalOctal
that computes the value of a tuple of integers viewed as an octal number:

return +/[D*8*x(#Digits-i): D in Digits(i)];

The two most important transformations that need to be applied here are vertical
transformations which define how the summation and tuple formation operations
can be implemented. Each of these transformations is defined below in a simplified,
informal notation in which the applicability conditions are expressed in English and
the action procedure is shown in the form of a template for the resulting code. (Italics
in the pattern and the result fields denote variables that match against arbitrary parts
of the program. <Temp> stands for a temporary variable name generated by the action
procedure.)
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name:
pattern:
conditions:

result:

name:
pattern:
conditions:
result:

Although these two transformations capture the essence of the implementation
of the return statement above, they cannot be directly applied to the statement
because their patterns do not exactly match: Both transformations expect to match
against assignment statements; the tuple-former transformation expects there to
be a selection predicate, which is missing in the statement above. (These kinds of

tuple-former
X :=[F: Vin T(D | P1;
X, V, T, and I are distinct variables.
X does not appear in F, T, or P.
X = [1;
for [ := 1 to #7T;
if P then X := X with F;
end for;

summation
X = +/T;
X and T are distinct variables.
X := 0;
for <Temp> := 1 to #T;
X = X+T(<Temp>);
end for;

problems are typical.)

In order to apply the two vertical transformations above, the following two hor-
izontal transformations first need to be used. The factor-out transformation pulls
a subexpression out of a statement and creates a separate assignment statement.
The add-tuple-selector transformation introduces a degenerate selection predicate
(true) into a tuple former which does not contain a selection predicate.

name:
pattern:
conditions:

result:
name:
pattern:

conditions:
result:

Applying factor-out twice and add-tuple-selector once produces:

factor-out

S

S is a statement containing a subexpression F.
I/ can be evaluated separately before the rest of 5.

<Temp> := F;
S <with Temp substituted for FE>;

add-tuple-selector
LE: V in FEzpr]

none

LF: V in FEzpr | truel

Templ := [D*8*x(#Digits-i): D in Digits(i) | truel;
Temp2 := +/Templ;
return Temp2;

The vertical transformations can then be applied producing:
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Templ := [];
for 1 := 1 to #Digits;
D := Digits(i);
if true then Templ := Templ with D*8**(#Digits-1i);
end for;
Temp2 := 0;
for Temp3 := 1 to #Templ;
Temp2 := Temp2+Templ(Temp3);
end for;
return Temp2;

Although correct, the code produced above is far from satisfactory. The biggest
problem is that it slavishly follows the details of the initial SETL code. In order to
achieve reasonable efficiency, the two loops have to be merged, eliminating the com-
putation of the intermediate tuple Temp1. This can be done using the transformation
below.

name: serial-for-loop-combination
pattern: V := [];
for [ := 1 to L;
S1
V .= V with F;
S2
end for;
for J := 1 to #V;
S3
end for;
conditions: V, I, J, and F are distinct variables.
S1, 52, and S5 are zZero or more statements.
S1, 52, and 53 cannot cause loop termination.
S1 and 52 cannot change [.
S3 cannot change J.
S1 and 52 do not refer to V.
Every reference to V in 53 is of the form V(.J).
There are no references to V in the surrounding program.
result: for [ := 1 to L;

S1

<Temp> := F;

S2

58 <with Temp substituted for V(J)>
end for;

As was the case above, this transformation is not quite applicable to the program
as it stands. First, the following horizontal transformations have to be applied in order
to get rid of the unnecessary if statement and to move the assignment statement out
from between the loops.

name: remove-if
pattern: if true then S;
conditions: none
result: S;
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name: interchange
pattern: S7; 52;
conditions: S7 and S2 are statements which do not interact.
result: S2; SI;

In addition, the factor-out transformation must be used to introduce an additional
variable. This yields:

Temp2 := 0;
Temp1 d;
for 1 := 1 to #Digits;
D := Digits(i);
Temp4 := D*8**(#Digits-1i);
Templ := Templ with Temp4;
end for;
for Temp3 := 1 to #Templ;
Temp2 := Temp2+Templ(Temp3);
end for;
return Temp2;

The loops can then be combined yielding:

Temp2 := 0;

for 1 := 1 to #Digits;
D := Digits(i);
Temp4 := D*8**(#Digits-1i);
Temp2 := Temp2+Temp4;

end for;

return Temp2;

In order to get really efficient code, the transformation process must go one step
further by simplifying the entire computation using Horner’s rule.

name: Horner’s-rule
pattern: V := 0;
for [ := 1 to #7T;
S1
Vo= VAT(DxXsx(#T-1) ;
S2
end for;
conditions: V, I, and T are distinct variables.
S1 and S2 are zero or more statements.
S1 and 52 cannot cause loop termination.
S1 and 52 cannot change [.
S1 and S2 do not refer to V.
X is an expression whose value is invariant in the loop.
result: V := 0;
for [ := 1 to #7T;
S1
Vo= Vx X+T@);
S1

end for;
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As usual, additional horizontal transformations must be applied before this trans-
formation can be used. In particular, a factor-in transformation (which is the inverse
of factor-out) must be applied to get the computation into the right form. Once this
is done, the following code can be produced.

Temp2 := 0;
for 1 := 1 to #Digits;

Temp2 := Temp2*8+Digits(i);
end for;

return Temp2;

At this point good code has been produced for just one statement in the SETL
program EvalOctal. Many more transformations would be needed to translate the
other statements and then to combine the results of all these statements together into
an efficient program.

It is also important to realize that, like most textbook illustrations of program
transformation, this example is misleading because it ignores the control problem.
At each step above there would be a host of other transformations which could be
applicable, but would not be productive to apply. For example, many horizontal
transformations, such as factor-out and factor-in, can be applied in almost any
situation. It is easy for a transformation system to get lost in aimless sequences of
such transformations.

It is also easy to misapply vertical transformations. For example, before applying
Horner’s-rule it would have been easy to make the mistake of moving the invariant
computation #Digits out of the loop. Equally well, you might apply a strength re-
duction transformation to simplify the computation of Dx8** (#Digits-1i) in isolation.
Either transformation would have blocked the later application of Horner’s-rule.

In many ways, sequences of transformation steps are not that different from se-
quences of proof steps. Therefore, it is not surprising that transformational imple-
mentation systems suffer from essentially the same control problem as automatic
theorem provers. As a consequence, transformational systems must either seek ad-
vice from the user or place strong restrictions on the kinds of transformations that
can be used. Unfortunately, advice-taking transformational systems are not much
more satisfactory than advice-taking deductive systems and have not yet made it
out of the laboratory. However, restricted transformational modules can be found as
components of a variety of compilers and other systems.

A major strength of transformational methods is that they provide a very clear
representation for certain kinds of programming knowledge, such as Horner’s rule.
For this reason, transformational methods in some form are certain to be part of all
future automatic programming systems.

3.4 Inspection Methods

Human programmers seldom think only in terms of primitive elements, such as as-
signments and tests. Rather, like engineers in other disciplines, they think mostly in
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terms of clichéd combinations of elements corresponding to familiar concepts. Succes-
sive approximation, interrupt-driven architecture, and information system, are exam-
ples of clichés spanning the range from low-level implementation ideas to high-level
specification concepts.

Given a knowledge of clichés, it is possible to perform many programming tasks by
inspection rather than by reasoning from first principles. For example, in analysis by
inspection, properties of a program are deduced by recognizing occurrences of clichés
and referring to their known properties. In synthesis by inspection, implementation
decisions are made by recognizing clichés in specifications and then choosing among
various clichéd implementations. By using global understanding, inspection methods
reduce the search control problems that arise with other methods.

The central feature of inspection methods is the codification and use of clichés.
A cliché has three parts: a skeleton that is present in every occurrence of the cliché,
roles whose contents vary from one occurrence to the next, and constraints on what
can fill the roles. An essential property of clichés is their interrelationships. For
example, a cliché may specialize or extend another cliché. Algorithmic and data
structure clichés implement specification clichés. These relationships are the driving
force behind analysis and synthesis by inspection.

As with deductive and transformational methods, it has not yet been shown that
inspection methods can be automated without advice from the user. However, when
used with the assistant approach to automatic programming, inspection methods have
an important advantage: A shared vocabulary of clichés is a natural medium in which
to communicate explanations and advice between the system and the user.

The Programmer’s Apprentice project has demonstrated the automation of sev-
eral aspects of inspection methods, including: a system that automatically analyzes
a program to identify the algorithmic clichés used (Wills, 1990; Wills, 1992); an in-
telligent assistant for defining software requirements using clichés (Section 5.1); and
a knowledge-based editor for constructing programs using clichés (Section 5.3).

In human programming, inspection methods are the most effective approach to
use whenever they are applicable. However, since inspection methods are ultimately
based on experience, they are applicable only to the routine parts of programming
problems. As a result, inspection methods must be used as part of a hybrid strategy
that falls back on more general methods such as deduction and transformation when
inspection fails.

4 What Does the System Know?

No matter what mechanism is used inside an automatic programming system, the
system must have at least an implicit knowledge of domain clichés (so that it can
interpret the terms used by the user) and of programming clichés (so that it can
produce programs without endlessly “reinventing the wheel”). Whether knowledge
of clichés is represented procedurally, logically, transformationally, or in some other
way, the benefits of automatic programming can be traced almost exclusively to the
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productivity and reliability benefits of reusing this knowledge. The following examples
of programming clichés illustrate the diversity of knowledge required:

a.

Matriz add—the algorithm for adding together two matrices. This cliché is
independent of the data representation of the matrices and the type of number
stored in the matrices.

Stack—the data abstraction and its associated operations. Both the represen-
tation and the operations are independent of the type of stack element.

Filter positive—selecting the positive elements of a temporal sequence of quan-
tities in a loop. For example, in the code fragment below, the if statement
implements a filter positive.

do ...

X=...;

if X>0 then ... X ...;
end;

This cliché is independent of the type of number in the sequence and how the
sequence is generated.

. Master file system—a cluster of programs (reports, updates, audits, etc.) that

operate on a single master file, which is the sole repository for information on
some topic. This cliché is essentially a set of constraints on the programs and
how they interact with the file. It is independent of the kind of data stored in
the file and the details of the computation performed by the programs.

. Deadlock free—the property of a set of asynchronously interacting programs that

guarantees they will not reach a state where each program is blocked waiting
for some other program to act. This cliché places restrictions on the ways in
which the programs can interact. However, it is independent of the details of
the computations performed by the programs.

Move invariant—moving the computation of an expression from inside a scope
of repetitive execution to outside the repetitive scope, so long as it has no
side effects and all of the values it references are constant within the repetitive
scope. This idea is independent of the specific computation being performed by
the expression and by the rest of the repetitive scope. In addition, the idea is
applicable to both loops and recursive programs.

The clichés above differ along many dimensions. Matrix add is primarily com-
putational, while stack is data-oriented. Matrix add can be used in a program as a
module, while filter positive is fragmentary and must be combined with other frag-
ments to be useful. Matrix add, stack, and filter positive are all relatively low-level,

localized clichés. In contrast, master file system and deadlock free are high level and

diffuse.
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Representing and using such a wide variety of clichésin an automatic programming
system is a major challenge. The following are the main desiderata for a suitable
knowledge representation.

a.

FExpressiveness. The representation must be capable of expressing as many
different kinds of clichés as possible. An important though hard to assess aspect
of this is desideratum is whether a formalism is merely capable of representing
a given cliché (e.g., via some obscure circumlocution) or whether it represents
it in a straightforward way which supports the other desiderata as well.

Convenient combination. The methods of combining clichés must be easy to
implement and the properties of combinations should be evident from the prop-
erties of the parts. It is also desirable for the representation to provide a fine
“granularity,” so that each cliché embodies only a single idea or design decision
and users have the maximum possible freedom to combine them as they choose.

. Semantic soundness. The representation must be based on a mathematical

foundation that allows correctness conditions to be stated. The semantic basis
does not necessarily need to support totally automatic verification. Although
less convenient, machine-aided (or even manual) verification may be sufficient
in many situations.

Machine manipulability. It must be possible to manipulate the representation
effectively using computer tools. In order to effectively deal with a large li-
brary of clichés, tools need to be developed to support the automatic creation,
modification, selection, and combination of clichés.

. Programming language independence. The representation should not be tied to

the syntax of any particular programming language. The most obvious benefit
of a language independent formalism is that clichés can be reused in many
different language environments. However, an equally important reason for
requiring language independence is that it facilitates abstracting away from the
details of how, for example, data and control flow are implemented with specific
syntactic constructs.

The following sections discuss a number of approaches to the representation of
programming clichés. The relative strengths and weaknesses of the approaches are
evaluated in the light of the five desiderata above. The central theme which ties these
sections together is the search for representations that are capable of expressing the
wide range of components desired without sacrificing the other desiderata. Figure 4
summarizes graphically the major flow of ideas between the approaches discussed.

As a point of comparison for other formalisms, one must consider free-form En-
glish text. Much of the knowledge which needs to be formalized is already captured

informally in the vocabulary of programmers and in textbooks on programming. The
great strength of English text is expressiveness. It is capable of representing any kind
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Figure 4. Inheritance of ideas among the major approaches that have been used to repre-
sent programming knowledge.

of cliché. Moreover, it is programming language independent. Unfortunately, English
text does not satisfy any of the other desiderata. There is no theory of how to com-
bine textual fragments together; there is no semantic basis that makes it possible to
determine whether or not a piece of English text means what you think it means; and
free-form English text is not machine manipulable in any significant way.

4.1 Subroutines

Subroutines have many advantages as a representation. They can be easily combined
by writing programs that call them. They are machine manipulable in that high-level
language compilers and linkage editors directly support their combination. Further,
they have a firm semantic basis via the semantics of the programming language they
are written in.

Unfortunately, subroutines are limited in their expressiveness. They are really
only convenient for expressing localized computational algorithms such as matrix
add. They cannot represent data clichés such as stack, fragmentary clichés such as
filter positive, diffuse high-level clichés such as master file system, or transformational
clichés such as move invariant. In addition, they are not fine-grained. It is difficult
to write a subroutine without gratuitously specifying numerous details that are not
properly part of the cliché. For example, in most languages, there is no convenient
way to write a subroutine representing matrix add without specifying the data rep-
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resentation for the matrices and the numbers in them.

4.2 Macros

A subroutine specifies a fixed piece of program text. The only variability allowed is in
the arguments that are passed to the subroutine. In contrast, a macro can include an
arbitrary computation that creates a piece of program text. Due to the provision for
arbitrary computation, macros are a considerable improvement over subroutines in
expressiveness. They can be used to represent data clichés and fragmentary clichés.
In addition, they can represent clichés at a much finer granularity. For example, it
is straightforward to write a macro which represents matrix add independent of the
data structures it operates on. Note however, that macros are still not suited to
representing diffuse clichés or transformational ones.

Like subroutines, macros are machine manipulable in that macro processors di-
rectly support the evaluation of macro calls and the integration of the resulting pro-
gram text into the program as a whole. Unfortunately, macros are less satisfactory
than subroutines in other respects. Though macro calls are combined syntactically in
essentially the same way as subroutine calls, their combination properties are not as
simple. For example, since a macro can perform arbitrary computation utilizing its
calling form in order to create the resulting program text, there is no guarantee that
nested macro calls will operate as they are intended. The macro writer must take
extreme care in order to insure that flexible combination is possible. This unfortu-
nately militates against the increased expressiveness which is the primary advantage
of macros.

The most significant problem with macros is that they lack any firm semantic
basis. Because they allow arbitrary computation, it is very difficult to verify that a
macro accurately represents a given cliché. It is even more difficult to show that a
pair of macros can be combined without destructive interaction.

4.3 Program Schemas

There has been a considerable amount of theoretical investigation into the use of pro-
gram schemas to represent programming knowledge (Basu and Misra, 1976; Gerhart,
1975; Wirth, 1973). Program schemas are essentially templates with holes in them
which can be filled with program text by the user. As such, they can be viewed as
a compromise between subroutines and macros. The main improvement of program
schemas over macros is that, like subroutines, they have a firm semantic foundation in
the semantics of the programming language they are written in and their combination
properties are relatively straightforward.

Unfortunately, though program schemas are an improvement in expressiveness
over subroutines, they are significantly less expressive than macros. Like macros,
program schemas are of some use in representing data clichés such as stack and can
represent clichés at a finer granularity than subroutines. In addition, they could
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be used to represent matrix add independent of the representation for the matrices
involved. However, unlike macros, program schemas cannot in general be used to
represent fragmentary clichés such as filter positive. They are no more useful than
macros at representing diffuse or transformational clichés.

4.4 Flowcharts and Flowchart Schemas

A limitation shared by subroutines, macros, and program schemas is programming
language dependence. One way to alleviate this problem would be to write clichés in
a programming language independent representation, such as a flowchart. Flowcharts
use boxes and control flow arrows in order to specify control flow independent of any
particular control flow construct. Similarly, data flow arrows can be used to represent
data flow independent of any particular data flow construct.

A flowchart using data and control flow arrows is basically equivalent to a subrou-
tine and has the same level of expressiveness. In analogy to program schemas, one
can gain additional expressiveness by using flowchart schemas (Ianov, 1960; Manna,
1974)—flowchart templates with holes in them where other flowcharts can be inserted.
A flowchart language can be given a semantic foundation similar to that of a pro-
gramming language. In addition, flowcharts and flowchart schemas can be combined
in the same semantically clean way that subroutines and program schemas can be.

Flowcharts and flowchart schemas are a significant improvement over subroutines
and program schemas in that they are programming language independent. However,
with regard to the other desiderata, they are basically identical to subroutines and
program schemas. In particular, they are no more expressive.

4.5 Logical Formalisms

With the exception of some macros, the representations discussed above are all al-
gorithmic in that they represent a cliché by giving an example (or template) of it in
a programming (or flowchart) language. In addition, the only way to use a cliché is
to place it somewhere in a program. This fundamentally limits the expressiveness of
these representations.

The extensive work on specifying the semantics of programming languages sug-
gests a completely different approach to the problem of representing clichés, i.e., using
logical formalisms such as predicate calculus. A key advantage of logical formalisms
is semantic soundness.

Another important advantage of logical formalisms is in the area of expressiveness.
In contrast to the algorithmic representations, logical formalisms have no trouble
representing diffuse, high-level clichés such as master file system and deadlock free.
The usefulness of such clichés is enhanced by the fact that logical formalisms also
have very convenient combination properties. Specifically, the theory generated by
the union of two axiom systems is always either the union of the theories of the two
cliché systems or a contradiction, but never some third, unanticipated theory. An
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additional advantage of logical formalisms is that they are inherently programming
language independent.

However, logical formalisms are quite cumbersome when it comes to representing
an algorithmic cliché such as matrix add. Given a cliché such as stack, which combines
some non-algorithmic aspects with some algorithmic aspects, logical formalisms are
convenient for the former, but not the latter. This suggests that logical formalisms are
best used as an adjunct to, rather than a replacement for, algorithmic representations.

The greatest weakness of logical formalisms is in the area of machine manipu-
lability. It is not hard to represent logical formulas in a machine manipulable way.
However, at the current state of the art, practical automatic theorem provers are
only capable of relatively simple logical deductions. As a result, it is hard to do any-
thing useful with logical formulas. For example, if a programming system were to be
based on the combination of clichés represented as logical formulas, the system would
need to have a module which could produce program text corresponding to sets of
logical formulas. Unfortunately, although this kind of automatic programming has
been demonstrated on small examples (Manna and Waldinger, 1980a), it has not yet
progressed to the point where it is at all practical.

4.6 Data Abstraction

An interesting area of inquiry which has combined logical and algorithmic represen-
tations is data abstraction. The contribution of data abstractions is that they extend
the expressiveness of algorithmic formalizations into the realm of clichés with data
structure aspects. For example, data abstraction can be used to represent stack in
full generality and to represent matrix add without specitying the data representation
to be used for the matrices.

A considerable amount of research has been done on how to state the specifications
for a data structure and its associated access functions, which provides a semantic
basis for data abstractions and for methods of combining them. In addition, languages
such as Alphard (Wulf et al., 1976), CLU (Liskov and Guttag, 1986), and Ada (1983)
have been developed with constructs that directly support data abstraction. This
demonstrates the ease with which data abstractions can be represented in a machine
manipulable (though language dependent) form.

4.7 Program Transformations

As mentioned in Section 3.3, a program transformation can be thought of as a rep-
resentation of a piece of programing knowledge. From this point of view, the most
interesting contribution of transformations is that they view program construction as
a process. Rather than viewing a program solely as a static artifact which may be
decomposed into clichés the way a house is made up of a floor, roof, and walls, trans-
formations view a program as evolving through a series of construction steps which
utilize clichés which may not be visible in the final program, just as the construction
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of a house requires the use of scaffolding and other temporary structures. This point
of view enables transformations to express clichés such as move invariant, which are
common steps in the construction of a program rather than common steps in the
execution of a program.

Another important aspect of transformations is that they can be combined in a
way which is quite different from the other representations. As mentioned above,
many simple transformations are basically just macros which specify how to imple-
ment particular high-level constructs in a wide spectrum language. These transfor-
mations are only triggered when instances of their associated high-level constructs
appear; thus they only operate where they are explicitly requested and combine in
much the same way as macros.

However, other transformations are much less localized in the way they operate.
For example, a transformation representing move invariant would have applicability
conditions (e.g., that the expression is invariant) that must look at large parts of
the program. In addition, such transformations are not intended to be applied only
when explicitly requested by the user. Rather, they are intended to be used whenever
they become applicable for any reason. This makes powerful synergistic interaction
between transformations possible.

Unfortunately, if transformations are allowed to contain arbitrary computation
in their actions, they have the same difficulty with regard to semantic soundness
and convenient combinability that macros have. The transformation writer has to
take great care in order to insure that the interaction between transformations will
in fact be synergistic rather than antagonistic. In order to have a semantic basis,
transformations must include a logical description of what the transformation is doing.
One important way that this has been done is to focus on transformations which are
correctness preserving—ones which, from a logical perspective, do nothing.

A difficulty with transformations is that, as generally supported, they are very
much programming language dependent. This not only limits the portability of clichés
represented as transformations, it also limits the way transformations can be stated by
requiring that every intermediate state of a program being transformed has to fit into
the syntax of the programming language. One way to alleviate these problems would
be to apply transformations to a programming language independent representation
such as flowcharts.

The Plan Calculus (described in more detail Section 5.2) combines ideas from many of
the representations described above. It achieves programming-language independence
through the use of data flow and control flow notions from flowchart schemas. It uses
aspects of logic and data abstraction to represent data invariants and other diffuse
aspects of clichés. It uses goals and plans to keep a record of the design decisions in
a program. It includes the concept of language-independent, bidirectional program
transformations linking pairs of flowchart schemas.
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5 The Programmer’s Apprentice

The long-term goal of the Programmer’s Apprentice project (Rich and Waters, 1988;
Rich and Waters, 1990) was to develop a theory of how expert programmers analyze,
synthesize, modify, explain, specity, verify, and document programs. This is basic
research at the intersection of artificial intelligence and software engineering. From
the perspective of artificial intelligence, we used programming as a domain in which
to study fundamental issues in knowledge representation and reasoning. From the
perspective of software engineering, we applied techniques from artificial intelligence
to automate the programming process.

Recognizing that it would be a long time before it was possible to fully duplicate
human programming abilities, the near-term goal of the project was to develop a
system, called the Programmer’s Apprentice, that provides intelligent assistance in
all phases of the programming task.

This section describes two parts of the Programmer’s Apprentice that have been
implemented (as demonstrations) and some of the underlying knowledge representa-
tion techniques used.

5.1 The Requirements Apprentice

The Requirements Apprentice (RA) is an intelligent assistant for the acquisition and
analysis of software requirements. The focus of the RA is on the formalization phase of
software requirements, i.e., the process by which informal descriptions become formal
ones. The kinds of informality the RA deals with include: abbreviation, ambiguity,
poor ordering, contradiction, incompleteness, and inaccuracy.

Figure 5 shows the role of the RA in relation to other agents involved in the
requirements process. Note that the RA does not interact directly with an end user,
but is an assistant to a requirements analyst.

The RA produces three kinds of output. Interactive output notifies the analyst
of conclusions drawn and problems detected as information is being entered. A re-
quirements knowledge base represents everything the RA knows about the evolving
requirement. Finally, the RA can create a more or less traditional requirements doc-
ument summarizing the current state of the knowledge base.

Internally, the RA is composed of three parts: A system called Cake (Rich and
Feldman, 1992) provides the basic knowledge representation and automated reasoning
facilities. The executive (Exec) contains algorithms and data structures that are spe-
cific to the RA and provides control of reasoning for Cake. The cliché library contains
reusable fragments of requirements and associated domain models, represented as a
frame hierarchy. Figure 6 shows a fragment of this library relevant to the example
session below.

The example session is based on a requirements benchmark (Babb, 1985) dealing
with the specification of a university library data base. Although the RA’s cliché
library contains many concepts that will be relevant, the RA doesn’t know anything
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Figure 5. Architecture of the Requirements Apprentice.

about libraries per se at the start of the session.

To avoid distraction with the syntactic details of the RA’s input language, what
the user types (following the > prompt) below has been replaced by editorial para-
phrases in italics. The corresponding literal transcript can be found in (Reubenstein
and Waters, 1991). Note that this demonstration system has ignored important user
interface issues.

1> “University Library Data Base” (ULDB) is a system.

2> “University Library” (UL) is an instance of “library”.
UL is part of the environment.

The distinction between the system being specified and the environment (which
cannot be changed) is part of the RA’s basic epistemology.

The simple initial statement of the requirement is for the data base to “track”
the state of the (actual) library. There are several different versions of tracking
specifications in the cliché library. The type of tracking system being specified will
be refined as the session progresses.

3>ULDB tracks UL.
ULDB Is-Instance-0f Tracking-System.

At this point, a number of issues are pending. Note that the RA must accept
information in any order presented by the analyst (e.g., uses of words before their
definition) and come to the same conclusions. The third pending issue below says
that the RA needs to know the possible states of the library.

4> Show pending issues.
1- Need-Further-Disambiguation of Tracks.
2- Need-Definition of "Library".
3- Need-Definition (Item-States UL).

A central concept in the remainder of this session is repository, represented as a
frame in the RA’s cliché library with the following slots: the type of items stored in
it, the patrons that utilize it, and the staff that manages it. Two key operations on a
repository are adding and removing items.

5>“Library” is a kind of repository, with items of type “‘book.”
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Figure 6. The structure of a fragment of the requirements cliché library.

Notice that the new type book is introduced above. The analyst now specifies
some properties of this type.

6> “Book” is a kind of physical object, with slots “‘title,” “author,” and “1ISBN.”
7>“ISBN” is a kind of integer. 1SBN uniquely identifies a book.

The analyst now begins to define various types of transactions on the data base.
As more information is accumulated, the RA is able to further refine the type of ULDB
to be a tracking information system (because it recordsinformation about the history
of the tracked object, rather than just providing the current state).

8> ““Check out” is a transaction that records removing books from the library.
ULDB Is-Instance-0f Tracking-Information-System.

9> ““Check in” is the inverse of check out.
"Check-In" Is-Instance-0f Action-Tracking-Opn.

Using simple algebraic reasoning, the RA is able to deduce quite a lot of informa-
tion from the statement that check in is the inverse of check out (i.e., it tracks the
inverse state change).

The first serious problem detected by the RA in this session arises when the analyst
defines two further transactions below.
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10> “Unshelf” is a transaction that records removing books from the library.

11> “Unshelf all” is a transaction that records removing books from the library.
Unshelf all removes the set of all books with a given ISBN.

**xConflict #1
**Colliding-Definitions Unshelf And Unshelf-All

Based on what it has been told so far, the RA is able to deduce that the unshelf
transaction and the unshelf all transaction are identical: Since ISBN uniquely identifies
a book, there can never be two books with the same 1ISBN. Therefore the set of books
removed by the unshelf all transaction must contain exactly one book. The RA has a
built-in expectation that terms should not be synonymous unless they are explicitly

defined to be synonyms.
In response to the analyst’s request for an explanation of the problem, the RA

prints out a listing (mostly elided below) of the dependency tree underlying the
problematic conclusion. Unfortunately, the full tree is much too large and hard to
understand to be useful to the analyst in raw form.

12> Explain.
1. (Equal-Defs Unshelf Unshelf-All) is True
by Implication from:
1. (Implies
(And (Tracking-Operation Unshelf)
(Tracking-Operation Unshelf-A11)
(= Frame-I4 Frame-I5))
(Equal-Defs Unshelf Unshelf-Al1))
2. (And (Tracking-Operation Unshelf)
(Tracking-Operation Unshelf-A11)
(= Frame-I4 Frame-I5)) is True
by Conjunction from:
1. (= Frame-I4 Frame-I5) is True
by Equality from:

**xPremises:
1. (= (Records Unshelf-Al1l) Remove)
2. (= (Objects Unshelf-A11)
('The-Set-0f-A11 (?B)
Such-That (= (ISBN ?B) $Input)))
3. (= (Records Unshelf) Remove)
4., (Default 23
(= (Objects Unshelf)
('The (70) Such-That
(= (ISBN ?70) $Input)))

A slight improvement over the full dependency tree is the list of premises shown
above. Premises corresponding to statements made by the analyst are printed first,
followed by assumptions that come from the cliché library. Unfortunately, even the
premise list can become quite long. (In this example, the untruncated list has over
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twenty entries.) Generating better explanations is an important area for future re-
search.

It is often a good idea to ignore a conflict or contradiction for a while until clar-
ifying information comes along. If the analyst chooses to ignore this conflict, it will
be added to the list of pending issues.

At this point, however, the analyst realizes that the requirement thus far reflects a
token/type confusion between the notion of a physical copy of a book and the notion
of a book as a class—i.e., a set of copies with the same 1SBN. (This confusion actually
appears in the benchmark on which this session is based.) To fix the problem, a new
term denoting “copy of book” must be introduced. In addition, something has to be
done about the fact that some uses of “book” in the statements above refer to the
old concept and some refer to the new concept.

The RA provides the Reformulate command demonstrated below to assist with
this kind of incremental change. The command displays all the statements that
contained the term in question and asks the analyst to choose where substitution
should occur. The RA then retracts the obsolete statements and asserts the new
ones, relying on Cake’s truth maintenance facilities to preserve all of the appropriate
deductions.

13> Reformulate using “‘copy of book” in place of book.

5. “Library” is a kind of repository, with items of type “‘book.”
x*xReformulate? > Yes

6. “Book” is a kind of physical object, with slots “‘title,” “‘author,” and “ISBN.”
x*xReformulate? > Yes

7.“1SBN” is a kind of integer. 1SBN uniquely identifies a book.
x*Reformulate? >No

In the interests of brevity, the session is truncated at this point.

Research on the RA addresses an important gap in much of the work on tools to
support requirements analysis. Whereas the requirements acquisition process almost
inevitably begins with a vague and informal statement of what is desired, most re-
quirements analysis tools need some sort of relatively formal requirement statement
as their input. The RA attacks head-on the problem of fleshing out and cleaning up
a vague and informal requirement statement.

5.2 The Plan Calculus

The Plan Calculus seeks to satisfy the desiderata presented in Section 4 for represent-
ing programming clichés by combining ideas from several other approaches. The Plan
Calculus contains three components: plan diagrams, logical annotation, and overlays.

A plan diagram (see Figure 7) contains information about the algorithmic aspects
of a cliché. In order to achieve language independence, plan diagrams are represented
as hierarchical data flow schemas. Computations are represented as boxes with input
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Figure 7. Plan diagram for absolute value cliché.

and output ports. Control flow and data flow are both represented using arcs between
ports. Plan diagrams are hierarchical—a box in a diagram can contain an entire sub-
diagram. Further, the diagrams are schematic—they can contain empty boxes (roles)
which are to be filled in later.

The plan diagram in Figure 7 shows an algorithm for computing the absolute
value of a number. In the figure, data flow arcs are drawn as solid lines and control
flow arcs as lines with cross-hatching. The diagram is composed of an operation box
(action) whose output is the negation of its input, a test box (check) which splits
control based on whether or not its input is less than zero, and a “join” box (end)
which rejoins the control split by the test. The output of the join is determined by
the control flow path which is used to enter it.

The non-algorithmic aspects of a cliché are represented using predicate calculus
assertions attached as annotations on a plan diagram. Fach box in a plan diagram
is annotated with a set of preconditions and postconditions. In addition, logical
constraints between roles are used to limit the way in which the roles can be filled in.
Finally, dependency links record a summary of a proof that the specifications of the
plan as a whole follow from the specifications of the inner boxes and the way these
boxes are connected. Clichés such as master file system and deadlock free, which have
little or no algorithmic aspect, are represented by plans which consist almost entirely
of predicate calculus assertions with little or no diagrammatic information.

In order to represent the combination of algorithmic and data structure clichés, the
basic flowchart-like ideas behind plan diagrams have been extended to include parts
which represent data objects as well as sub-computations. Data parts can be left
unspecified as data roles and can be annotated with specifications, constraints, and
dependencies. Given these extensions, the Plan Calculus is capable of representing
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the same kinds of information as data abstraction formalisms. For example, the stack
data abstraction consists of a number of logically interrelated plan diagrams, one of
which represents the stack data object and the rest of which represent the operations
on a stack.

The transformational aspects of programming knowledge are represented as over-
lays. An overlay (see Figure 8) is a mapping between plans. It specifies a set of
correspondences between the roles of the plans. Overlays are similar to transforma-
tions in which both the left and right hand side are plans. However, overlays differ
from program transformations in two ways: Overlays are bidirectional and their ac-
tions are declarative as opposed to procedural. The fact that overlays are bidirectional
means that, like grammar rules, they can be used for both analysis and synthesis.
The fact that overlays are completely declarative gives them a firm semantic basis
and makes it easier to reason about them.

Figure 8 is an example of the graphical notation for an overlay. The name of
the overlay is bump-and-update-as-push. In general, an overlay diagram has a plan
diagram on each side with a set of hooked lines, called correspondences, between them.
The plan diagram on the left side defines the implementation, which is the domain
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of the mapping defined by the overlay; the plan diagram on the right side defines
the specification, which is the range of the mapping; the correspondences define the
mapping.

In this example, the right side of the overlay is a degenerate plan diagram with
only a single box: the specification being implemented in this overlay is the push
operation on a list. (List is a data abstraction having a head of any type and a tail,
which is a list or empty.) The diagram shows that push has two inputs, the old list
and the input (of any type), and one output, the new list. The postcondition of push
(logical annotations are usually not shown in diagrams) specifies that the head of the
new list is equal to the input and that the tail of the new list is equal to the old list.

The left side of this overlay is a plan diagram representing a clichéd combination
of operations on an indexed sequence (a base sequence with an associated index integer
between zero and the length of the base), in which the index is decremented and a
new term is stored. The name of this plan is bump-and-update. It has four roles: old
(an indexed sequence), bump (an operation that adds one), update (an operation that
stores a new term in a sequence), and new (an indexed sequence).

There are three correspondences in this overlay. Two of these correspondences
are annotated with the name of another overlay called indexed-sequence-as-list. This
means that the old indexed sequence of bump-and-update, viewed as a list according
to indexed-sequence-as-list, corresponds to the old input of push, and similarly for the
new roles. Indexed-sequence-as-list is a data abstraction function defined as follows:
the head of the list corresponds to the term of the base indexed by the index; the tail
of the list is recursively defined as the list implemented by the indexed sequence with
the same base and one minus the index; the empty list corresponds to the indexed
sequence with index zero. The third correspondence in the diagram indicates that the
input to the update operation in bump-and-update (the input for the new term—the
other two inputs are the sequence and the index) corresponds to the object being
pushed onto the list.

In order to give plan diagrams a precise definition, each aspect of plan diagrams is
defined in terms of a version of a situational calculus. Manna and Waldinger (1980b)
have used a situational calculus in a similar way in order to specify certain problematic
features of programming languages.

Since the situational calculus is essentially just predicate calculus with some con-
ventions applied, a plan diagram can be viewed as the abbreviation for a set of logical
assertions. Given that the logical annotation in a plan also consists of predicate
calculus assertions and overlays are just mappings between plans, this implies that
everything in a plan can be reduced to a set of logical assertions.

5.3 KBEmacs

KBEmacs (for Knowledge-Based Editor in Emacs) is a prototype of a part of the
Programmer’s Apprentice completed several years ago to demonstrate the utility of
inspection methods and the Plan Calculus in the implementation phase of the software
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process.

Figure 9 shows the architecture of KBEmacs. Two representations are maintained
for the program being manipulated: program text (displayed to the programmer)
and a plan (used to support KBEmacs’ internal operation). At any moment, the
programmer can modify either the text or the plan. If the text is modified, the
analyzer is used to create a new plan. If the plan is modified, the coder is used to
create new program text.

The program text can be modified using a standard program editor. In this
case, the editor is Emacs (Stallman, 1981), which supports both text- and syntax-
based program editing. The plan can be modified using knowledge-based commands
supported by the plan editor. These commands rely on two kinds of knowledge.
First, the commands can refer to clichés in the cliché library. Second, the plan
editor itself contains a significant amount of procedurally embedded knowledge about
manipulating and combining clichés.

While plans are crucial to the internal operation of KBEmacs, program text is used
as the primary user interface. This allows a programmer to interact with KBEmacs
using a familiar programming language and without studying the Plan Calculus.
Further, since KBEmacs produces ordinary source code, standard programming tools
(e.g., the compiler) can be used without any kind of special interface.

KBEmacs™ interface unifies text-, syntax-, and knowledge-based editing so that
they are all conveniently accessed through the standard Emacs-style editor. The
knowledge-based commands are supported as a pseudo-English extension of the stan-
dard editor’s command set. The results of knowledge-based commands are visible to
the programmer as alterations in the program text in the editor buffer. The effect is
as if a human assistant were modifying the text under the programmer’s direction.
The programmer can fall back on direct text- and syntax-based editing at any time.

Figure 10 shows an example of using KBEmacs to implement a 55 line Ada pro-
gram. (We have omitted the intermediate states of the editing session after each
command. See Waters (1985) for the full scenario.)

The clichés used in this scenario are: simple report (which is discussed further
below), chain enumeration, and query user for key. Note that enumerator, main
file key, title, and summary are the names of roles in these clichés. Our library of
algorithmic and data structure clichés is similar in scope and level to earlier machine-
usable codifications, such as Green and Barstow (1978); however, as discussed above,
we have developed an improved formal representation.

One way of thinking of KBEmacs is that it adds a new, higher level of editing
commands to the existing text- and syntax-based commands of Emacs. Using KBE-
macs, changes in the algorithmic structure of a program can be achieved by a single
command, even when they correspond to widespread textual changes in the program.

Two important capabilities of KBEmacs that are not illustrated in Figure 10, but
which appear in the full scenario, are the automatic generation of program documen-
tation (i.e., explaining the program in terms of the clichés used), and programming-
language independence. KBEmacs was originally constructed to operate on Lisp pro-
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grams; relatively little effort was required to extend it to operate on Ada programs
as well.

Figure 11 illustrates a facility in KBEmacs for defining clichés using an extension
of Ada syntax. KBEmacs automatically analyzes this text to extract the underlying
plan for the cliché. Using KBEmacs commands, this plan may then be combined with
the plans for other clichés to make new programs. Figure 11 defines the simple report
cliché, which is used in the scenario of Figure 10. The only extensions to the syntax
of Ada in cliché definitions are the new defining form cliche ... is ..., and the use
of braces for role names and other annotation. Note, however, that this provides a
more general form of parameterization than supported by the Ada package facility.

We envisage two kinds of cliché definition activity using the Programmer’s Ap-
prentice. First, this language-oriented interface makes it easy for a programmer to
quickly define a cliché for his own (perhaps short-term) use. A second, much more
intellectually demanding task, is to define a “suite” of clichés to be used by a large
group of people over a long period of time.

Like most clichés, simple report includes some standard computation (e.g., the
printing of the title page), some roles to be filled in (e.g., the title itself), and the
data flow and control flow between them. This cliché has seven roles. The file name
is the name of the file that will contain the report being produced. The title is
printed on a title page and at the top of each succeeding page of the report (along
with the page number). The enumerator enumerates the elements of some aggregate
data structure. The print item is used to print out information about each of the
enumerated elements. The line limit is used to determine when a page break should
be inserted. The column headings are printed at the top of each page to explain the
output of the print item. The summary prints out some summary information at the
end of the report.
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Define a simple_report procedure UNIT_REPAIR_REPORT.

Fill the enumerator with a chain_enumeration of UNITS and REPAIRS.
Fill the main_file_key with a query_user_for_key of UNITS.

Fill the title with ("Report of Repairs on Unit " & UNIT_KEY).
Remove the summary.

with CALENDAR, FUNCTIONS, MAINTENANCE_FILES, TEXT_IO;
use CALENDAR, FUNCTIONS, MAINTENANCE FILES, TEXT_IO;
procedure UNIT_REPAIR_REPORT is
use DEFECT_IO, REPAIR_IO, UNIT_IO, INT_IO;
CURRENT_DATE: constant STRING := FORMAT_DATE(CLOCK);
DEFECT: DEFECT_TYPE;
REPAIR: REPAIR_TYPE;
REPAIR_INDEX: REPAIR_INDEX_TYPE;
REPORT: TEXT_IO.FILE_TYPE;
TITLE: STRING(1..33);
UNIT: UNIT_TYPE;
UNIT_KEY: UNIT_KEY_TYPE;
procedure CLEAN_UP is
begin
SET_OUTPUT (STANDARD_OUTPUT);
CLOSE(DEFECTS); CLOSE(REPAIRS); CLOSE(UNITS); CLOSE(REPORT);
exception
when STATUS_ERROR => return;
end CLEAN_UP;
begin
OPEN(DEFECTS, IN_FILE, DEFECTS_NAME); OPEN(REPAIRS, IN_FILE, REPAIRS_NAME);
OPEN(UNITS, IN_FILE, UNITS_NAME); CREATE(REPORT, OUT_FILE, "report.txt");

loop
begin
NEW_LINE; PUT("Enter UNIT Key: "); GET(UNIT_KEY);
READ(UNITS, UNIT, UNIT_KEY);
exit;
exception
when END_ERROR => PUT("Invalid UNIT Key"); NEW_LINE;
end;
end loop;
TITLE := "Report of Repairs on Unit " & UNIT_KEY;

SET_OUTPUT(REPORT) ;
NEW_LINE(4); SET_COL(20); PUT(CURRENT_DATE);
NEW_LINE(2); SET_COL(13); PUT(TITLE); NEW_LINE(60);
READ(UNITS, UNIT, UNIT_KEY); REPAIR_INDEX := UNIT.REPAIR;
while not NULL_INDEX(REPAIR_INDEX) loop
READ(REPAIRS, REPAIR, REPAIR_INDEX);
if LINE > 64 then
NEW_PAGE; NEW_LINE; PUT(”Page: "); PUT(INTEGER(PAGE-1), 3);
SET_COL(13); PUT(TITLE); SET_COL(61); PUT(CURRENT_DATE); NEW_LINE(2);
PUT(" Date Defect Description/Comment"); NEW_LINE(2);
end if;
READ (DEFECTS, DEFECT, REPAIR.DEFECT);
PUT(FORMAT_DATE(REPAIR.DATE)); SET_COL(13); PUT(REPAIR.DEFECT);
SET_COL(20); PUT(DEFECT.NAME); NEW_LINE;
SET_COL(22); PUT(REPAIR.COMMENT); NEW_LINE;
REPAIR_INDEX := REPAIR.NEXT;
end loop;
CLEAN_UP;
exception
when DEVICE_ERROR | END_ERROR | NAME_ERROR | STATUS_ERROR =>
CLEAN_UP; PUT('"Data Base Inconsistent");
when others => CLEAN_UP; raise; end UNIT_REPAIR_REPORT;

Figure 10. A verbatim transcript from KBEmacs. Given the five commands above, it
produced the 55 lines of Ada code shown.
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with CALENDAR, FUNCTIONS, TEXT_IO; use CALENDAR, FUNCTIONS, TEXT_IO;
cliche SIMPLE_REPORT is
primary roles ENUMERATOR, PRINT_ITEM, SUMMARY;
described roles FILE_NAME, TITLE, ENUMERATOR, COLUMN_HEADINGS,
PRINT_ITEM, SUMMARY;
comment "prints a report of {the input data of the enumeratorl}";
constraints
DEFAULT({the file_name}, "report.txt'");
DERIVED({the line_limit},
66-SIZE_IN_LINES({the print_iteml})
-SIZE_IN_LINES({the summaryl}));
DEFAULT({the print_item},
CORRESPONDING_PRINTING({the enumerator}));
DEFAULT({the column_headings},
CORRESPONDING_HEADINGS({the print_item}));
end constraints;
use INT_IO;
CURRENT_DATE: constant STRING := FORMAT_DATE(CLOCK);
DATA: {};
REPORT: TEXT_IO.FILE_TYPE;
TITLE: STRING(1..{});
procedure CLEAN_UP is
begin
SET_OUTPUT (STANDARD_OUTPUT); CLOSE(REPORT);
exception when STATUS_ERROR => return;
end CLEAN_UP;
begin
CREATE(REPORT, OUT_FILE, {the file_namel});
DATA := {the input data of the enumerator};
SET_OUTPUT(REPORT);
TITLE := {the title};
NEW_LINE(4); SET_COL(20); PUT(CURRENT_DATE); NEW_LINE(2);
SET_COL(13); PUT(TITLE); NEW_LINE(60);
while not {the empty_test of the enumerator}(DATA) loop
if LINE > {the line_limit} then
NEW_PAGE; NEW_LINE; PUT("Page: "); PUT(INTEGER(PAGE-1), 3);
SET_COL(13); PUT(TITLE);
SET_COL(61); PUT(CURRENT_DATE); NEW_LINE(2);
{the column_headings}({CURRENT_OUTPUT, modified});
end if;
{the print_item}({CURRENT_OUTPUT, modified},
{the accessor of the enumerator}(DATA));
DATA := {the step of the enumerator}(DATA);
end loop;
{the summary}({CURRENT_OUTPUT, modified});
CLEAN_UP;
exception
when DEVICE_ERROR | END_ERROR | NAME_ERROR | STATUS_ERROR =>
CLEAN_UP; PUT('"Data Base Inconsistent");
when others => CLEAN_UP; raise;
end SIMPLE_REPORT;

Figure 11. An Ada presentation of the simple report cliché. This program text is analyzed
by KBEmacs to extract the underlying plan, which is stored and later used in Figure 10.
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The enumerator is a compound role with four sub-roles: the input data, the empty
test, the accessor, and the step. These sub-roles can be filled individually, or they can
be filled as a unit with an enumeration cliché (such as chain enumeration in Figure
10).

The simple report cliché also includes four constraints, which are specified at the
beginning of the cliché definition. The first constraint specifies "report.txt" as the
default name for the file containing the report. This name will be used unless the
programmer specifies some other name.

The second constraint specifies that the line limit should be 65 minus the number
of lines printed by the print item and the number of lines printed by the summary.
Because the line limit role is computed by this constraint, the programmer never has
to fill it explicitly; the role will automatically be updated if the print item or summary
is changed. (For example, the line limit is computed to be 64 in Figure 10.)

The remaining two constraints provide default formats for printing items in the
report and the column headings. If clichés have been defined for how to print a
given type of object in a report and the corresponding headings, then the func-
tions CORRESPONDING_PRINTING and CORRESPONDING_HEADINGS retrieve the appropriate
clichés; otherwise, these functions are simple program generators that construct ap-
propriate code based on the definitions of the types of objects involved. One of the
deficiencies of KBEmacs is that the collection of functions used in constraints, such
as SIZE_IN_LINES, CORRESPONDING_PRINTING, and CORRESPONDING_HEADINGS, is not easy
for the programmer to extend.

Future work building on KBEmacs (Waters and Tan, 1991) is directed towards
detecting more errors (using the automated reasoning facilities in Cake), automating
some of the cliché selection, and generally raising the level of interaction toward higher
level design decisions.

6 Conclusion

Basic research on automatic programming is very much like cancer research: A host
of fundamental problems still remain to be solved. Therefore, it is highly unlikely
that anyone will discover a “silver bullet” that will remove all obstacles to the rapid
development of general-purpose automatic programming. However, researchers will
continue to chip away at the problem from many directions.

6.1 Commercially Available Systems

Academic research on automatic programming has focused on developing techniques
that can support broad-coverage, fully automatic programming. Unfortunately, while
this research points in the direction of long term progress, it has not yet had very
much impact on commercial systems.

Work in the commercial arena has focused on more modest goals and has been
able to make significant steps toward automatic programming based on procedural
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methods. In particular, development has quickened over the last few years with the
introduction of so-called Computer-Aided Software Engineering or CASE.

6.1.1 Data base query systems

Perhaps the greatest commercial automatic programming success story has been the
development of data base query systems (e.g., Information Builders’ Focus). These
systems have limited capabilities and are not suitable for complex applications. How-
ever, they allow end users to retrieve information from a data base and produce
customized reports without the help of programmers.

Within their narrow domain of applicability, data base query systems are both
end-user oriented and fully automatic. In simple applications, these systems have
completely taken over, making automatic programming an everyday reality.

6.1.2 Fourth-generation languages

Following the bottom-up approach to automatic programming, a number of commer-
cial systems have been introduced that achieve a broader range of coverage than data
base query systems. They do this by sacrificing end-user orientation. Most such
systems offer a combination of special-purpose interfaces (such as screen painters and
report generators) and a very high level language designed specifically for business
data processing applications. Systems that execute their languages interpretively,
such as Applied Data Research’s Ideal and Software ag’s Natural, are typically called
fourth-generation languages.

Fourth-generation languages are used to some extent at perhaps ten thousand
sites. However, though there is a great deal of enthusiasm about their potential,
fourth-generation languages are very far from displacing Cobol. This is because they
are relatively inefficient and because they cannot be used conveniently in conjunction
with pre-existing applications.

6.1.3 Program generators

Program generators, such as Transform Logic’s Transform and Pansophic Systems’
Telon, are very similar to fourth-generation languages, except that they generate
Cobol code rather than operating interpretively. In exchange for this increase in
efficiency, program generators must settle for supporting a narrower range of features.

Program generators are used at approximately a thousand sites. Although more
efficient than fourth-generation languages, their acceptance is limited by their nar-
rower focus and by the difficulty of using them in conjunction with pre-existing code.

6.1.4 High-level design aids

Graphical tools, such as Index Technology’s Excelerator, support the manipulation of
high-level designs without being able to generate executable code. High-level design
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aids therefore exemplify the assistant approach to automatic programming, rather
than the bottom-up approach.

Tools of this general type are used at several thousand sites and are rapidly becom-
ing a standard part of the programming process. However, their acceptance is slow
because they lack integration with other tools and because they leave code generation
to the user.

6.1.5 Project management tools

Also in the spirit of the assistant approach to automatic programming, we should note
the growing capabilities of project management tools. These tools provide relatively
modest but significant support for managing the programming process. For example,
products such as BIS Applied Systems” BIS/IPSE, and Imperial Software Technol-
ogy’s ISTAR provide facilities for breaking down a project into tasks and tracking
their progress, for configuration and version control, and for the generation of various
kinds of documentation and management reports.

It in-house tools are counted, programming management aids are rapidly on the
way to becoming the norm rather than the exception in large projects. Assuming that
automatic programming is unlikely to make the problems of managing cooperative
work disappear, the need for such tools will continue.

6.1.6 Very high level prototyping languages

The one place where academic research has had a significant impact on commer-
cial systems is in very high level prototyping languages. These languages represent
a compromise between desires and reality. While researchers would like to create
extremely high level languages that could be compiled into efficient code, it is not
yet possible—even with significant sacrifices in the language—to create production
quality code. The current status of general-purpose, very high level prototyping lan-
guages is typified by Reasoning System’s Refine (Abraido-Fandino, 1987), which is
based on research initiated at Stanford. Prolog (Cohen, 1985), which is based on
logic programming research at Imperial College, is also being used as a very high
level prototyping language.

The exact extent of very high level prototyping languages usage is not clear.
However, it probably does not exceed a hundred sites. Acceptance of this approach
is currently limited by the fact that rapid prototyping as a methodology is far from
universally accepted.

6.2 On the Horizon

Over the next several years, progress toward automatic programming will almost
certainly follow the course set by currently available systems. Although conditions
seem ready for relatively rapid progress in CASE tools, radical breakthroughs seem
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unlikely. Rapid progress is possible primarily in the ways in which currently available
systems are used.

6.2.1 Technological advances

The quality of commercially available programming tools should improve markedly
over the next several years. In particular, high-level design aids (e.g., Texas Instru-
ments’ [EF) will be extended to generate executable code in many situations. Fourth
generation languages and program generators will add support for somewhat higher
level constructs and somewhat less narrow domains of applicability. In addition, there
will be a general trend toward greater integration of programming tools. With any
luck, these incremental improvements should be enough to promote most of these
tools from experimental usage to full-scale acceptance.

The developers of very high level prototyping languages are strongly committed to
increasing the efficiency of the code produced. Some of the inefficiency is more or less
incidental and will undoubtedly be eliminated. However, other problems are intrinsic
to the approach: The whole point of very high level languages is to write a program
using algorithms oriented toward clarity rather than efficiency. Since clear algorithms
are often very inefficient, efficiency often requires radical changes. Unfortunately, no
one knows how to identify such changes automatically or how to take advice on the
subject effectively.

To date, essentially all of the commercialization of automatic programming re-
search has been via the very high level language approach. However, in the near
future, we will begin to see the first commercialization of research on the assistant
approach.

Rapidly decreasing prices for workstation and data base hardware provide an
important opportunity. Soon, a threshold will be reached where it will be practical
to capture on-line all of the intermediate work products of the programming process,
whether produced manually or automatically. Besides being beneficial in its own
right, this will drive further automation.

6.2.2 Management changes

Progress in any kind of automation is always obstructed by management problems
as much as by technological hurdles. At least four major changes must take place at
the management level if the potential of automatic programming is to be realized.

First, we must recognize that the capitalization for programming needs to be
increased. In most organizations, a dollar spent on additional computer hardware
or programming tools will bring significantly more benefits than a dollar spent on
additional programmers. (Studies have shown that significant productivity gains can
be obtained merely by giving programmers offices with doors!)

Second, given that the heart of automatic programming is reuse, the economic
incentives in software development and acquisition need to be revised to foster reuse.
Under current contracting practices, there is often an economic incentive against
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software reuse and the production of easily-maintainable software. Policies whereby
contractors would increase their profit by reusing software developed by someone
else—or were paid extra if they produced something that someone else reused—would
be steps in the right direction. It would also be a good idea to tie some part of profit
to the long-term costs of the delivered software.

Third, management must recognize that the only way to reduce the lifetime costs
of software is to spend more supporting the early parts of the process—requirements
definition, specification, and design. For example, people often talk about software
reuse as if it were some miraculous way to reuse code that has already been written.
In fact, there is no way to reuse software unless it is carefully designed to be reusable.
This pays big dividends, but it requires significant “up front” expenditures.

Finally, as with all automation, the real promise of automatic programming is
not just in automating what is done now but in completely changing the way things
are done. In the case of office automation, for example, it pays to redesign the
whole information flow in the office, rather than put the same old paper forms into
an electronic medium. With programming, this means reexamining the traditional
model of the software lifecycle, which is beginning to happen with the increasing
acceptance of prototyping. It also means breaking down the conventional distinctions
between languages, environments, and interfaces, which is occurring in the form of
graphical interfaces, and object-oriented programming.
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