Mitsubishi Electric Research Laboratories
Cambridge Research Center

Technical Report 93-02 February 10, 1993

Challenges to the Field of Reverse Engineering

by

Peter G. Selfridge!
Richard C. Waters?
Elliot J. Chikofsky?

Abstract

Driven by the economic importance of maintaining and improving the enormous base of existing
software systems, the reverse engineering of software has been of rapidly growing interest over
the past decade. More and more commercial software tools support aspects of reverse engineer-
ing, and more and more researchers in academic and industrial organizations are addressing
themselves to the fundamental problems of reverse engineering.

In the best of all worlds, we researchers on reverse engineering would be working together
toward clear goals of great economic importance. Unfortunately, it appears that we are mostly
just groping around in a swamp, each looking for a bit of dry ground (whether or not it actually
leads out of the swamp), and running into each other only occasionally. If we are to make rapid
and effective joint progress, a number of improvements need to be made in the way we are
pursuing research.

This is a deliberately controversial paper presented in a confrontational manner in the hope
that it will trigger lively discussion. The views expressed are those of the authors and not
necessarily those of their employers or funders.

Submitted to Working Conference on Reverse Engineering, Baltimore MD May 1993.

201 Broadway
Cambridge Massachusetts 02139

VAT&T Bell Laboratories; Room 2B-425; Murray Hill, NJ 07974
?Mitsubishi Electric Research Laboratories; 201 Broadway; Cambridge, MA 02139
FNortheastern Univ.; 360 Huntington Ave.; Boston, MA 02115



Publication History:-
1. First printing, TR 93-02, February 1993

Copyright (© Mitsubishi Electric Research Laboratories, 1991
201 Broadway; Cambridge Massachusetts 02139

This work may not be copied or reproduced in whole or in part for any commercial
purpose. Permission to copy in whole or in part without payment of fee is granted
for nonprofit educational and research purposes provided that all such whole or partial
copies include the following: a notice that such copying is by permission of Mitsubishi
Electric Research Laboratories of Cambridge, Massachusetts; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the
copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to Mitsubishi Electric Research Laboratories. All
rights reserved.



Reverse Engineering Challenges 1

1 Introduction

Research on reverse engineering of software is clearly in its infancy. Inasmuch as this is
the case, it is not surprising that much reverse engineering research is of an early exploratory
nature. In particular, there is a natural tendency to gravitate toward contrived problems that
are designed to be soluble by the particular technologies being explored. This permits progress
to be made on the technologies in question. However, it inherently limits the economic impact
of the research, because such contrived problems typically have little to do with reality. In
addition, it limits the impact of the research on other researchers, because such contrived
problems are typically so different from the problems being attacked by other researchers that
the results don’t transfer.

If reverse engineering research is to grow from infancy to robust and vibrant maturity,
we must graduate from contrived problems to real problems with real economic impact. In
addition, we must focus on the effective interchange and cross fertilization of ideas between
researchers.

This paper challenges reverse engineering researchers with nine concrete suggestions for
improving the state of reverse engineering research. There is no doubt that people can argue
at length about the details of these suggestions. (We hope they will.) However, we believe that
taken together, these suggestions point in an important direction for improving the maturity

of our field.

2 Avoid Artificially Contrived Data

As a general matter, research must proceed in steps, first considering simplified data that
are capable of easy attack and then graduating to more realistic data as technology improves.
However, there are significant risks to this approach. If simplification is taken too far, one can
end up working on data that has nothing to do with reality. Also, if one continues working on
simplified data too long, good initial research can loose its momentum. As much as possible,
we must strive to do research based on real data.

Use Real Programs As Examples, Not Toy Programs

A significant amount of reverse engineering research has used toy programs as input data.
These programs tend to be toys in two dimensions. First, to reduce computational requirements,
the programs tend to be very short (under one hundred lines). (This is particularly true
of research aimed at deep program understanding where the computational requirements are
extreme.) Second, and perhaps worse, the programs tend to be written by the researchers
themselves or by students, rather than being real legacy programs.

One can rightly wonder whether a twenty line student program has anything to do with real
legacy programs. Therefore one can rightly wonder whether research applied to such programs
has anything to do with solving real reverse engineering problems. To counter these questions
one must aggressively move towards using real programs as data.

In experiments, we should use preexisting programs of realistic size (i.e., thousands of lines).
If small programs have to be used, we should nevertheless insist on using preexisting programs.

Use Systems As Examples, Not Programs

A lot of reverse engineering research focuses on programs (pieces of code that take a few
inputs and compute a few outputs). The problem with this is that the real legacy software



2 Selfridge, Waters, & Chikofsky

problems we face are not programs, but systems (large conglomerations of programs that to-
gether take copious quantities of input data, often interactively, and create copious quantities
of output data, often interacting with complex state objects such as databases).

Systems are quantitatively much more complex than programs, consisting of hundreds of
thousands if not millions of lines of code. More importantly, systems are qualitatively much
more complex than programs. In particular, many programs have relatively concise and precise
specifications that are more or less domain-independent, while systems typically have enormous
imprecise specifications that implicitly rely on large quantities of domain-dependent informa-
tion. Further, while there is often a relatively simple relationship between the algorithms used
by a program and its specification, this is almost never the case for a system.

Even though systems consist of programs, there is a fundamental qualitative difference
between the two, because the relationship between the specification for a system and the spec-
ifications of the programs it consists of is typically very complex. As a result, an ability to
reverse engineer programs does not directly imply an ability to reverse engineer systems. This
calls reverse engineering research that focuses solely on programs seriously into question.

We should use complete systems as examples. If small systems have to be used, they should
still be real systems that perform coherent user-oriented tasks, rather than isolated programs.
As above, they should be real preexisting systems, not contrived or simplified ones. Above all,
remember that if code isn’t ugly, it’s not real.

Utilize the Full Array of Potential Inputs

Much reverse engineering research looks at facts about computation (i.e., what operations
are applied to what data items) as the sole source of information. This bias probably stems
from the bias toward operating on programs, which is noted above. When looking at an isolated
program (particularly a small one) it is not unreasonable to think that everything worthy of
note about the program is evident in the computation it performs. However, when looking at
a system (or a program in the context of a system) this is not the case.

Suppose two inputs are added together. When looking at an isolated mathematical program,
it may well be sufficient to merely record the fact that a sum has been computed and assume that
the computational context within the program itself will specify any additional information that
is relevant. However, in the context of some business data processing system, this is unlikely to
be sufficient. One has to figure out what the inputs mean and what the sum means. Perhaps the
computation is adding regular hours to overtime hours to determine total hours. Alternatively,
perhaps the computation is adding the charitable contributions for the current month to the
total contributions for the year so far, to determine a new total.

To determine what is going on in a system, one has to look at sources of information
beyond the mere computation being performed. These sources include the names of programs,
variables and files, comments in code, separate documentation such as design rationale and
user manuals, program state information such as the contents of databases, domain models,
etc. Each of these sources of information must be treated differently, and each has its inherent
problems. Therefore, a reverse engineering tool that utilizes multiple sources of information
is bound to be more complex than one that relies on only a single source. However, there is
no reason to believe that reverse engineering is possible based solely on any single source of
information.

To date, reverse engineering researchers have looked at many of these sources of information.
However, only a few research efforts have looked at integrating diverse sources of information
in a single reverse engineering tool. For the health of the field, we should adopt a general



Reverse Engineering Challenges 3

bias toward using multiple sources of information, rather than the current bias of only using
one. Beyond this, we should strive to develop reverse engineering tools that simultaneously use
EVERY available source of information.

3 Focus On Concrete Economic Impact

This section addresses the same fundamental problem as in the last section, but from a
different perspective. Research, by its very nature, seeks to abstract problems from the real
world so they are tractable to the scientific method and scientific modes of understanding.
However, such an abstraction process is always in danger of throwing the baby out with the
bath water—abstracting out the real essentials.

Researchers must counter this danger by choosing what to attack very carefully. The last
section argues that researchers must ensure that they use real data. This section argues that
researchers must ensure that the tools they develop attack real problems.

Strive For Pragmatic Utility Above All Else

Researchers often complain that the people developing commercial tools ignore research
results no matter how promising they are. To a considerable extent, this is undoubtedly due
to narrow perspective and over conservatism on the part of commercial tool builders, and it
would certainly be wise for commercial developers to follow research more closely and be more
adventuresome. However, it must be admitted that much of the lack of communication stems
from bad choices made by researchers. Often, it just isn’t easy for anyone to tell whether a
research solution to an artificial research problem can be generalized to real problems.

We should strive to develop tools that have direct pragmatic utility—i.e., tools that attack
real problems of economic importance and deliver real benefits. Doing this typically brings in
a lot of messiness that it would be nice to avoid (such as investigating what user’s needs really
are, providing good user interfaces, and dealing robustly with exceptional cases), however, it is
the only way to produce results that are guaranteed to impress end users and commercial tool
developers.

A key part of this is that we should be problem directed in our research, not technology
directed. Much current research is technology directed in the sense that it is aimed at proving
the utility of a technique, rather than on solving a problem. This can lead to the construction
of a problem that the technique solves without much regard for whether the problem is a real
problem that needs to be solved.

In contrast, we should attack problems of known value without enormous regard for whether
our favorite technologies will work. In particular, while it is certainly laudable to seek deep
solutions, we should not overlook shallow approaches. It is much better to come up with a
shallow solution to an economically important problem, than a deep solution to a problem
nobody cares about.

Develop Semi-Automatic Systems

There is a natural desire to create totally automatic reverse engineering systems. After all,
it seems obvious that if a totally automatic solution to a problem is possible, it is going to be
better than a semi-automatic solution. However, reverse engineering is complex enough that,
at least in the short term, it does not appear that very many real problems are susceptible to
totally automatic solutions. In fact, human intervention may be essential even in the long term.



4 Selfridge, Waters, & Chikofsky

Due to the inherent complexity, the continued search for totally automatic solutions has
forced a lot of reverse engineering research into unrealistic corners attacking artificial problems
with unreasonable constraints placed on them. It is high time that we place more emphasis
on figuring out how to constructively put people in the loop. This is probably essential if
we are to attack full scale reverse engineering problems. In addition, it forces us to pay very
close attention to exactly what people do on these tasks. This has manifold advantages, both
focusing us on real problems and yielding insight on how they can be solved.

Do Empirical Studies

The above complaints notwithstanding, there is reverse engineering research that uses real
data and attacks real problems. However, much of this research has relied on gee whiz scenarios
and anecdotal evidence to argue that the experimental tools developed are valuable. This is not
sufficient to convince skeptical users and commercial tool developers. (It is sometimes sufficient
to convince other researchers, however it shouldn’t be. One cannot tell what is really going on
without measuring it in detail.)

What is needed is empirical studies on real software systems in real situations that show
quantifiable results. This is difficult to achieve, but we must try.

The whole field of software engineering is hobbled by a lack of empirical studies. The state
of affairs in reverse engineering research is even worse.

4 Facilitate Inter-Researcher Communication

Friendly competition and the free interchange of ideas is the life blood of scientific research.
For this to happen, we must be able to communicate with each other and we must be able to
easily compare the tools we develop with the tools developed by others. We cannot gain from
the work of others if we cannot figure out how to apply their work to our problem, or whether
their approach has advantages over our own approach.

Establish Standard Terminology

Probably due to the youth of reverse engineering as a field of research, a standard set of
terminology has yet to emerge. This impedes the free flow of information by introducing non-
trivial difficulties when reading each other’s papers. It also leads to significant confusion on the
part of new people coming into the field.

One might say that this is not a fundamental problem, and perhaps it isn’t. However, there
is no excuse for the problem to exist at all. We would all be better off with a standard set of
terminology, almost no matter what the definitions are. We should all be willing to give up
some of our favorite definitions for the greater goal of easy common understanding.

A start toward standardization was made by [2], which proposes standard definitions for
six key terms (forward engineering, reverse engineering, redocumentation, design recovery, re-
structuring, and reengineering). However, much more needs to be done, both in encouraging
adoption of standard definitions by the research community and in defining more terms. In
particular, there are probably several score terms that could profitably be standardized.

Further work on standardized terminology is being carried out by the IEEE Computer
Society, Technical Committee on Software Engineering, Subcommittee on Reverse Engineering.
They are working toward publishing an enlarged set of definitions, however, this is not yet
complete [3].



Reverse Engineering Challenges 5

As a specific example of the terminological problems we face, consider the Workshop on
Artificial Intelligence and Automated Program Understanding that was held in conjunction with
AAAT-92in July of 1992. This workshop did not have a formal proceedings, however, it did have
a set of informal notes written by the participants that was handed out at the workshop. Perusal
of these notes reveals that essentially every researching on automated program understanding
uses their own idiosyncratic terminology.

For example, almost every program understanding researcher uses some kind of abstract
representation for programs and attempts to locate standard patterns of computation in pro-
grams. However, there is no agreement on what these two concepts should be called. Worse,
terms used by some researchers for one concept are used by other researchers for the other
concept. We propose the following definitions.

Plan - An abstract representation for a program (or anything else) is a plan.
This is in analogy with the plan for a building. The key intuition is that a plan
highlights some pieces of information while discarding others. For example, the floor
plan of a building shows you where they walls are while omitting information about
elevations and other aspects of a building. The wiring plan shows you where the
electrical wires and devices are without saying anything about the plumbing (which
is indicated on the plumbing plan).

This should not be confused with the sense of a plan as an intended action.
(However, even in this sense, plans are still typically abstract in nature specifying
only some of the details of the intended action.) It is proposed here that there is no
reason to overly differentiate between existing programs, intended programs, and
compendiums of knowledge about programming. In each case, if the information is
represented abstractly (as opposed to in full detail as program text), then it is a
plan.

Cliche - A cliche is a common pattern that is used over and over again. This is
in analogy with the standard English meaning of cliche—a sequence of words that
is used over and over again. In English writing, cliches are considered bad form
because they lack creativity. However, in engineering they are good form, because
they embody standard, well understood, practice.

The essence of the meaning of the term cliche is repeated use. The word plan
has no such bias. One can have a plan for a computation that appears in only
one program in the whole world. A computation (whether represented as a plan or
not) is a cliche only if it occurs many times. A compendium of knowledge about
programming inevitably contains many cliches.

Automated program understanding typically involves representing both an input program
and a compendium of programming knowledge in terms of some plan representation. A search-
ing process then locates the cliched plans in the compendium in the plan representing the input
program.

Domain model - A somewhat related term is that of a domain model. A
domain model is a compendium of information about a particular application do-
main, rather than about programming. For example, a domain model of accounting
would contain the cliches of accounting—the standard concepts accountants use,
the standard kinds of information accountants collect, and the standard procedures
accountants follow. These domain cliches are just as important for understanding
an accounting program as programming cliches are.



6 Selfridge, Waters, & Chikofsky

While we believe the definitions above are good ones, we believe much more strongly that
there should be standard definitions, even if they differ from the ones above. Over a span of
decades it is very likely that standard definitions would naturally appear of their own accord
as new researchers copy the terminology of older researchers. However, if we wait this long
we will pay an unfortunate price in reduced communication in the interim. It would be much
better for the researchers in the field of reverse engineering to get together as a group and take
proactive action to develop a set of agreed upon definitions.

Make Goals Explicit

A factor that can make it hard to compare different research approaches is that the goals are
often not clearly stated. Reverse engineering is a large field and researchers have very different
opinions about what goals should be pursued. It is impossible to judge a piece of research
without having a clear idea of exactly what its goals are.

When describing an experimental tool, a researcher should make several points very clear.
What is the purpose of the tool—system/program understanding, redocumentation, restruc-
turing, design recovery, test planning, extracting some specific piece of global information, or
something else? What information is being recovered—specifications, designs, control struc-
ture, business rules, interface descriptions, data architecture, algorithms, or something else?
How exactly is the tool supposed to interact with the user?

Select Standard Data Sets.

Another factor that can make it hard to compare research prototypes is that everyone uses
their own test data. As long as this is the case, it is impossible to get any hard quantitative
comparison between tools. What we need are a set of benchmark examples that can be used
as a basis for comparison.

The importance of this can be seen in other fields. For example, the ongoing series of Interna-
tional Workshops on Software Specification and Design (proceedings available form IEEE Press)
has made very good use of standard specification problems (the university library database
problem and the elevator control problem) [1] as a means of comparing different specification
languages and specification tools.

This is a good example of the value of standard problems, however, the exact problems used
are not a good analogy with the needs of reverse engineering research, because the library and
elevator problems are both toy examples stated in less than a page of text.

A more relevant example of the power of standard problems comes from the DARPA spoken
language research community. Over the past several years they have compiled a huge store of
data about the task of providing an airline travel information system [4] and are using this as
the basis for comparing research systems that understand spoken utterances. The data includes
spoken utterances, the sentences they correspond to, and what the sentences mean. A number of
different research groups are constructing systems that can respond to spoken input, retrieving
flight information and making airline reservations by connecting to the airlines’ computerized
flight reservation systems.

Rather than trying to compare speech recognition and natural language understanding in
some abstract way, the various systems produced are compared based on how easy it is for a user
to actual determine what reservation they want to make and then make it. Doing comparisons
at a system-wide level based on identical data leads to much clearer results.

Note that the standard DARPA spoken language problem includes both copious quantities



Reverse Engineering Challenges 7

of specific utterances and a standard task to be performed that requires the processing of these
utterances. In the field of reverse engineering we need the same thing.

To start with, we need real large systems with all there attendant sources of information.
At the very least, this would amount to thousands of pages (if not much more). Given the
necessary size, it would not be practical to just make up these examples. This is all to the
good, because as argued above, we should not be making up test data in any case. It would be
much better to seek out real example systems from actual commercial settings. We also need
some standard tasks to be performed on the example data.

In addition to getting examples of actual legacy systems, it is also interesting to consider
developing standard problems in areas where automatic forward engineering is possible. For
example, consider the problem of taking the output produced for the compiler of a fourth
generation language and using reverse engineering to recover the original high level input. This
task has the advantage that large quantities of test data can be constructed with ease, and the
exact desired result of reverse engineering is very precisely specified.

5 Recommendations For the Next Conference On Reverse Engineering

One might say that some of the suggestions above (like using real data and attacking real
problems) are mom-and-apply-pie statements—general (and somewhat vague) statements that
everybody agrees with, but nobody knows how to do. This may be true, however, it is important
that we agree publicly on the importance of these goals and strive toward them, even if only
slowly. Further, we should judge each other’s work on how closely we approach these goals.

The above notwithstanding, several of the suggestions above are quite detailed and there
is no excuse for not taking immediate action. One possible mechanism for doing this is this
conference on reverse engineering. If the conference grows into a series of reverse engineering
conferences, it should be possible for them to make a significant contribution to the goals
annunciated above. In particular, five steps seem eminently practical.

Make Application To Real Data an Acceptance Criteria

Starting with the next conference on reverse engineering, the application of an experimental
tool to real data instead of contrived data should be an explicit evaluation criteria. This would
not be a hard and fast requirement, but reporting experiments using real data would definitely
weigh in favor of a paper and using contrived data would weigh against it.

Make Application To a Problem of Economic Importance an Acceptance Criteria

Similarly, starting with the next conference on reverse engineering, the extent to which an
experimental tool attacks a problem of real economic importance should be made an explicit
evaluation criteria. As above, this would not be a hard a fast requirement but would be
significantly considered when comparing papers.

Require Papers To State Their Goals In Detail

Again starting with the next conference on reverse engineering, stating the goals of an
experimental system in explicit detail should be made a minimum requirement for acceptance.
There is no reason for anyone to overlook doing this, and no reason for any paper that fails to
state goals clearly to be accepted.



8 Selfridge, Waters, & Chikofsky

Make Forming a Terminological Consensus an Explicit Goal

At this conference on reverse engineering, we should explicitly adopt the goal of establishing
standard terminology and recruit people to assist the IEEE Subcommittee on Reverse kEngi-
neering in this task. In particular, we should adopt the specific goal of publishing a much
expanded set of proposed definitions at or before the next conference on reverse engineering.
The goal would be to discuss these definitions at the next conference and attempt to come to
a COnsensus.

Once a consensus has been reached and a final set of definitions published, using the standard
terminology should be made a minimum requirement for acceptance at subsequent conferences
On reverse engineering.

Make Developing a Collection Of Standard Data Sets an Explicit Goal

At this conference on reverse engineering, we should formally adopt the goal of developing
a set of standard reverse engineering data sets. In particular, we should solicit papers for the
next conference on reverse engineering whose sole content is describing reverse engineering data
sets that are publicly available.

For example, someone working at a commercial concern might be able to persuade the
company to make one of their actual legacy systems publicly available, along with all associated
information. (It might be easiest to do with a system the company had just decided to abandon.)
It should be recognized that setting up the easy availability of such a data set would be a very
worthwhile research contribution.

Once a couple of standard data sets are available, using them as test cases, should be made
an explicit evaluation criteria for subsequent conferences on reverse engineering. It should not
be required, because it may be unreasonable in some situations, however, it should be greatly
encouraged.

References

[1] R. Babb, et al., “Workshop on Models and Languages for Software Specification and
Design”, IEEE Computer, 18(3):103-108, March 1985.

[2] E.J. Chikofsky & J.H. Cross, “Reverse Engineering and Design Recovery: a Taxonomy”,
IEEE Software, 13-17, January 1990.

[3] J.H. Cross II, “Message from the Chair”, Reverse Engineering Newsletter, (4):1, January
1993.

[4] C.T. Hemphill, J.J. Godfrey, & G.R. Doddington, “The ATIS Spoken Language Systems
Pilot Corpus”, DARPA Speech and Natural Language Workshop, Hidden Valley PA, June
1990.



