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Abstract

We describe how to automatically synthesize motion controllers for locomotive tasks involving
animated characters modeled as 3D mass-spring lattices. The motion controllers determine an ac-
tuation sequence based on elapsed time, not physical state; actuation is represented economically
using a canonical set of global lattice deformations; and stochastic search is used to determine
effective values for the controller parameters. Our algorithm generates controllers that produce
stylistic, visually plausible motion for simple locomotive tasks in under an hour on a standard
workstation, which is more than an order of magnitude faster than comparable approaches to mo-
tion synthesis for 3D articulated-linkage models. Key Words: Spacetime constraints, controller
synthesis, stochastic optimization.
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Motion synthesis is the task of automatically generating visually plausible movement of
an animated character that conforms to the animator's script [2]. (In previous work and
in this paper `movement' is taken to mean locomotion, though other kinds of motion are
also important for animation and should be included under the general rubric of motion
synthesis [3, 8].) One of the most promising approaches to the motion-synthesis problem is
controller synthesis: instead of computing a character's motion directly, a motion controller
is computed; this controller actuates a physical model, the simulation of which produces the
�nal motion. The controller-synthesis idea has its origins in AI and robotics [4, 5, 9, 12] and
has had several incarnations in the recent computer-graphics literature [14, 17, 18, 20].

The three most general treatments of the controller-synthesis approach for animation
purposes [14, 18, 20] have concentrated exclusively on articulated linkages, with which hu-
manoid and many animal-like characters can be modeled easily. However, there are three
signi�cant problems with articulated-linkage models. First, their physical simulation comes
at a considerable price: the simulator code is di�cult to write, hard to debug, and high phys-
ical �delity is computationally very demanding. Second, the synthesis of e�ective motion
controllers for articulated linkages can be extremely costly. Very little data has been reported
for motion synthesis in 3D (the most general and useful context for this problem, and the
one we consider here), but 10 hours on a powerful workstation is a very conservative lower
bound on the time required to compute a simple motion controller|one that can regulate
walking or jumping or some similar locomotive task|for a reasonable 3D articulated-linkage
model of a person or animal.1

The third problem is motion quality: not surprisingly, simulated articulated linkages that
are regulated by simple motion controllers often move with robotic rigidity and sti�ness.
(This is especially true when faster, less-accurate 3D simulation algorithms are used, but
these are often the only kind are fast enough for motion synthesis.) Moreover, this could be
an intrinsic limitation: the combination of rigid-body dynamics and low-complexity motion
controllers may just be too incompatible with many of the principles of traditional animation,
such as \squash and stretch," exaggeration, and anticipation [10].

So unless and until more e�cient algorithms are developed, controller synthesis for 3D
articulated linkages appears to be a computationally daunting task; moreover, the results
may never be visually compelling from an artistic perspective. These conclusions led us to
consider other, simpler physical models that might have greater visual appeal and be more
amenable to e�cient motion synthesis. In this paper we describe the application of controller

1Sims reported that computing both the structure of a 3D articulated linkage and a relatively sim-
ple neural-network controller for that linkage takes \around three hours ... on a 32 processor CM-5" [18].
Auslander et al. reported a time of \just under �ve hours" on a workstation to compute an \acceptable"
time-based banked stimulus-response (BSR) controller that causes a 3D dog-like character to walk; a re�ned
controller took an additional �ve hours [1]. Both of these times require some further quali�cation: Sims's
characters all appear to move in a low-gravity environment, which can lead to simpler motion-synthesis
problems, especially for unstable characters, because it is easier to avoid falling over in low gravity; and
Auslander et al. use a simpli�ed approach to physical simulation [7] that is much faster but less realistic
than standard robotics techniques for simulating articulated linkages [11]. It is therefore di�cult to draw
any but the coarsest conclusions from these initial accounts.

MERL-TR-95-1 January 1995



2

synthesis to 3D mass-spring lattices that are subject to nonholonomic constraints (e.g.,
collision with a oor). For these physical models, motion controllers that are comparable
to previously reported controllers for 3D articulated linkages can be computed in tens of
minutes, not tens of hours. The key characteristics of our approach are:

� A time-based controller: the actuation of the physical model is a function of elapsed
time, not physical state [1, 21].

� Economical representation of actuation: although actuation of the mass-spring lattice
is ultimately accomplished by varying the rest lengths of the springs, actuation is
represented in terms of a small number of canonical global lattice deformations.

� Stochastic search: e�ective values for the controller parameters are found by parallel
hill climbing [1, 6].

Our results consist of controllers that produce stylistic, visually plausible motion for several
simple locomotive tasks involving mass-spring lattices of modest complexity (i.e., 5-10 point
masses and 10-35 damped linear springs), computed in 40 minutes on average using a Digital
3000/400 AXP workstation.

In this section we describe the details of the mass-spring-lattice simulation, the form and
function of the motion controllers, and the search process whereby near-optimal controllers
are found.

2.1 Physical simulation of 3D mass-spring lattices

A simple mass-spring lattice that is representative of the ones we consider here is shown in
Figure 1.2 It comprises eight point masses connected by 28 damped linear springs: 12 run
along the edges of the cube, 12 traverse face diagonals, and the remaining four lie along the
body diagonals.

Each spring exerts along its length an equal and opposite force on the two point masses
it connects. The magnitude of this force

f = �k(L � x)�D _x

where k is the spring constant, L is the rest length of the spring, and D is a damping
constant. The point masses are also acted upon by gravity, forces due to inelastic collision
with the oor, and friction and normal forces due to resting contact with the oor. The
simple Coulomb friction model is used, with the one signi�cant modi�cation that friction
is permitted to be stronger in one preferred direction if desired. The resulting equations of

2Note that the visual appearance of an animated character can di�er signi�cantly from the physical model
used to generate the character's motion. Side-by-side examples of mass-spring lattices and their associated
visual appearances are shown in Figure 5.
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Figure 1: A simple 3D mass-spring lattice. Hidden masses and springs have been removed
for clarity of illustration.

motion are solved numerically using a variable time-step, �fth-order Runge-Kutta integration
procedure [16]. Actuation of the mass-spring lattices is achieved by varying the rest lengths
of the springs.

2.2 Motion controllers for 3D mass-spring lattices

Initial work on controller synthesis used motion controllers that select actuation \reexes"
as a function of the physical state of the simulated model [14, 20]. More recent work has
shown how controllers that select actuation reexes as a function of elapsed time can be
equally e�ective (at least for stable physical models) and are easier to compute [1, 21]. In
our kind of time-based controller, a time interval with user-de�ned length tper is broken into
a small number C of mutually exclusive regimes. During each regime, a particular actuation
reex is performed. The sequence of regimes is repeated to �ll the length of the simulation,
T , which is also chosen by the user. Thus, if tper < T , a speci�c sequence of reexes will be
repeated periodically; if tper � T , the reex sequence is not constrained to be periodic.

More speci�cally, each regime is speci�ed by the following parameters:

� The regime time t; 0 � t � tper: all points on the time line that are closer to t than to
any other regime time t0 belong to t's regime.

� A reex number R; 0 � R � 11 that indicates which one of 12 possible actuation
reexes (de�ned below) is associated with this regime.

� A reex coe�cient �;�1:0 � � � 1:0 that indicates the magnitude of the actuation
reex.

A sample three-regime controller is shown in Figure 2.
The novel feature of the controller representation and the key to its economy is the use

of a canonical set of a dozen actuation reexes that can be applied to all 3D mass-spring
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C = 3; tper = T = 5:0

Regime Time Reex Number Reex Coe�cient
t1 = 1:5 R1 = 2 �1 = 0:2
t2 = 2:5 R2 = 5 �2 = �0:7
t3 = 4:2 R3 = 7 �3 = 0:5

0 1 2 3 4 5t1 t2 t3

Regime #1:
(2, 0.2)

Regime #2:
(5, -0.7)

Regime #3:
(7, 0.5)

time

Figure 2: Illustration of a time-based motion controller.

lattices. (An earlier, less-compact representation in which an actuation reex could be an
arbitrary combination of spring rest lengths produced less coordinated motions, and the
search process (x 2.3) was much slower.) These reexes are based on global deformations of
the lattice: scaling, shearing, splaying, and twisting (see Figure 3).3 A deformation is applied
about the center of mass of the lattice and along one of the three axes in a lattice-centric
coordinate system. The rest lengths of the springs for the current regime are then computed
from the post-deformation positions of the masses. Thus in the case of the lattice shown in
Figure 1, the reex number and the reex coe�cient alone uniquely specify the rest lengths
of all 28 springs. Furthermore, the only combinations of rest lengths that can be represented
are ones that deform the lattice in a coordinated and useful way.

2.3 The search process

Synthesizing a useful motion controller is formulated as an optimization problem: the task
is to �nd values for the controller parameters that are near optimal with respect to some
objective function. The functions we consider here are relatively simple. For example, the
distance traveled by the center of mass is an objective function that typically elicits a walking
or leaping motion. Usually the primary term in the objective function must be complemented
by one or more secondary terms to obtain a particular kind of motion [1]. Examples of useful
primary and secondary terms are described in Table 1.4

The process whereby optimal controller-parameter values are discovered is one of stochas-
tic search. The search algorithm is a form of parallel hill climbing [1, 6], outlined in Figure 4.

3These deformations are very similar to the deformation modes described by Pentland and Williams
[15]. However, we use the deformation concept in the controller representation only, and not in the physical
simulation (though doing so may be a good idea).

4In addition to specifying the objective function, the animator can also inuence the motion generated
by choosing values for tper, T , the gravitational force, and the coe�cients of friction in the preferred and
nonpreferred directions.
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Deformation � = �1:0 � = 1:0

Scale

Shear

Splay

Twist

Figure 3: Deformations of a cube-shaped lattice along one axis (some springs have been
omitted for clarity). Analogous deformations along the other two axes bring the total number
of di�erent possible deformations to 12.
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Term E�ect
Final horizontal displacement of the lat-
tice's center of mass

A primary term that is used for eliciting
walking or bounding motions

Maximum vertical displacement of the cen-
ter of mass

A primary term that is used for eliciting
jumping motions

Minimum number of contact points with
the oor

A secondary term that can penalize mo-
tions in which the lattice leaves the ground

Total time in which the lattice is in contact
with the oor

A secondary term that is used to promote
motions that keep the lattice airborne as
much as possible

Total rotation of a triplet of point masses
about the center of mass

A secondary term that can promote rotary
motions

A boolean function indicating loss of up-
rightness, left-right orientation, or front-
facing direction

A secondary term that can penalize mo-
tions in which the lattice falls over

Average asymmetry of the lattice about a
speci�ed axis

A secondary term that is used to promote
asymmetric movement

Table 1: Example objective-function terms.

The details unspeci�ed in the �gure concern the initialization and perturbation steps. For
both of these steps, regime times and reex numbers are selected randomly from uniform
distributions over the ranges [0:0; tper] and [0; 11], respectively. Reex coe�cients, however,
are selected from a nonuniform distribution: values near the extremes of the range [�1:0; 1:0]
are more likely to be selected than values near zero. This promotes the use of exaggerated,
purposeful movements over minor, twitch-like movements. In addition to randomly picking
new values for regime times and reex coe�cients, a controller can also be perturbed by
adjusting existing values slightly, (i.e., by a random factor less than 10%). The di�erent
kinds of perturbation and their respective probabilities of application are given in Table 2.

The particular values given here for the parameters of the search algorithm (e.g., the size
of the search set, the number of iterations, and the probabilities of the various perturbations)
are not essential to its correct operation. In informal testing the algorithm has also worked
well with a range of di�erent search-parameter values.

We have tested our approach on the mass-spring lattices shown in Figure 5. Although the
lattices are simple, the visual appearances we have associated with them are more complex
and interesting. For example, the spider's visual appearance is related to the pyramidal
lattice as follows: the feet of the spider are coincident with the point masses at the corners of
the pyramid; the top of the spider's tubal head is located at the pyramid's apex; the spider's
knees are positioned a little above the midpoints of the springs connecting the corner base
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Initialize search set to contain 100 random controllers
Rank order the controllers in the search set
for i = 1 to 25; 000
Randomly select a controller from the search set
Perturb the controller and re-evaluate it
Insert the new controller into the search set by rank
Delete the lowest-ranked controller from the search set

end for

Return the best controller in the search set

Figure 4: Parallel hill climbing.

Probability Perturbation
0.32 Pick a new reex number for one regime
0.08 Pick a new reex number for every regime
0.10 Pick a new reex coe�cient for one regime
0.02 Pick a new reex coe�cient for every regime
0.22 Adjust a reex coe�cient for one regime
0.06 Adjust a reex coe�cient for every regime
0.05 Pick a new regime time for one regime
0.01 Pick a new regime time for every regime
0.11 Adjust a regime time for one regime
0.03 Adjust a regime time for every regime

Table 2: Di�erent ways of perturbing a controller.
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masses to the mass at the apex; and the spider's thighs connect his knees to the bottom of
his head, which is a little less than midway between the base and apex. A consequence of
this relationship is that the limbs and head of the spider can change length as the pyramid
deforms. However, we regard this as a feature and not a bug, because it adds to the visual
appeal of the characters and their movements.

Sample motions for the di�erent characters are shown in Figures 7{9. In Figure 7,
a spider leans back and then leaps forward. This movement illustrates well the kind of
exaggerated anticipation that is characteristic of many of the motions generated by this
approach. The motion is actually periodic (the sequence shown in the �gure is repeated four
times during time T = 4:5tper), and was elicited using a four-regime controller (i.e., C = 4)
and an objective function that rewards net horizontal movement in a speci�c direction and
penalizes motions in which the pyramid fails to remain upright.5

In Figure 8, a poodle modeled as a cube-shaped lattice (the lattice encompasses only
the lower half of his body) performs a perfect backward somersault while jumping forward
in a low-gravity environment. This aperiodic motion begins with a small jump to build
up momentum, after which a perfectly timed leap propels the poodle forward with greater
speed while also imparting the necessary angular momentum for the reverse somersault.
The objective function that led to this motion rewards forward motion, maximum height,
rotation, and being on the ground at time T ; it also penalizes inappropriate rolling and
turning, and contact time with the ground. The controller has eight regimes.

A cube-shaped lattice was also used as the physical model for the table featured in
Figure 9. Our goal was to have the table perform a pirouette in a low-gravity environment.
In order to achieve maximum rotation, the table �rst twists one way, then the other, then
�nally jumps vertically while unwinding from the second twist. To elicit this aperiodic
motion we used a four-regime controller and an objective function that rewards maximum
height, net rotation about a vertical axis, and being on the ground at time T ; it penalizes
loss of uprightness, contact time with the oor, net horizontal displacement, and the number
of \hops" taken (i.e., the number of times the model loses contact with the ground).

The performance of the search algorithm (x 2.3) is illustrated in Figure 6. A \learning
plot" is a scatterplot that indicates the objective-function value returned at each iteration
of the search. Thus it is possible to determine not only the best solution found so far, but
also how much time the algorithm is spending on the investigation of good, medium, and
bad solutions. The plot in the �gure is for the search process that found the controller
illustrated in Figure 8. The 25,000 iterations took 66 minutes on a Digital 3000/400 AXP
workstation. The value of the best controller found so far increased quickly through the �rst
5,000 iterations, but the rate of progress decreased signi�cantly after that. This behavior is
fairly typical of the other learning plots we have looked at, so we recommend running the
search process for no more than 15,000 iterations, which would take about 40 minutes for
the cube-shaped lattice, somewhat more for the chair-like lattice, and somewhat less for the
pyramidal lattice. Note that even at the end of the search, many evaluated controllers are
not very good: this is due to the disruptive nature of some of the perturbations, which may
take a good controller and wreck it. However, the bene�t of disruptive perturbations is that

5There are a surprising number of very e�ective locomotive strategies for the lattices in Figure 5 that
involve falling over, so this secondary term is usually quite necessary to guarantee upright movement.
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Figure 5: Some mass-spring lattices (with hidden masses and springs removed) and their
associated visual appearances.

MERL-TR-95-1 January 1995



10

1

2

3

4

5

0 5000 10000 15000 20000 25000

Sc
or

e

Iteration #

Figure 6: A learning plot.

they reduce the tendency for the search to get stuck in local minima of the search space.

Mass-spring lattices have been used before for various niche applications in physically based
computer animation, such as snake locomotion [13], �sh locomotion [19], and facial animation
[22]. The major di�culty preventing their more widespread use, especially for animations
in which the use of articulated linkages might appear more natural, is the control problem:
crafting a controller by hand for some speci�c locomotive task and a given mass-spring lattice
is often a feat in itself.

In this paper we have shown how automatic motion-synthesis techniques can be applied
e�ectively to animation problems involving mass-spring lattices. Indeed, the combination of
motion synthesis and 3D mass-spring lattices may be more potent than the combination of
motion synthesis and 3D articulated linkages because of the relative ease of implementation
of the underlying physical simulation, the greater e�ciency of the motion-synthesis process,
and the distinctive stylistic motions that are generated.

In future work we hope to use the principles of traditional animation [10] to guide the
further modi�cation of our physical models and motion-controller representation (x 2.2). For
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example, the exclusive use of a�ne deformations for the actuation reexes would ensure that
a lattice's volume remains constant, an important rule for e�ective \squash and stretch,"
and requiring that the deformation used for the �rst actuation reex be preceded by a small
inverse deformation would guarantee some degree of anticipation in the resulting motion.

Although we have acquired considerable facility in devising useful primary and secondary
terms for inclusion in objective functions, this aspect of automatic motion synthesis will
not appeal to everyone. We plan to explore the use of gestural interfaces for expressing
desired motion characteristics as an alternative to the mathematical speci�cation of objective
functions.
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Figure 7: A leaping spider.

Figure 8: A poodle performing a somersault.

Figure 9: A table performs a pirouette.
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