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Abstract

There is a natural desire to make multi-user virtual environments large in spatial ex-
tent, in numbers of objects, and in numbers of users interacting with the environment.
However, doing this brings up several problems: e�ciently managing the ow of large
amounts of data between large numbers of users, representing precise position and ve-
locity information about objects that are arrayed across a large volume of space, and
allowing designers to create parts of a virtual environment separately and combine them
together later. Locales are an e�cient method for solving these problems by breaking
up a virtual world into chunks that can be described and communicated independently.

While having many bene�ts, locales introduce a problem: �nding something when
you do not know what locale it is in. This is solved by the companion concept of
beacons, which makes it possible to �nd something no matter where it is.
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Locales and Beacons 1

1 Introduction

There is a natural desire to make multi-user virtual environments large in spatial extent,
large in numbers of objects, and large in numbers of users interacting with the environment.
However, doing this brings up several problems: e�ciently managing the ow of large amounts
of data between large numbers of users, representing precise position and velocity information
about objects that are arrayed across a large volume of space, and allowing designers to create
parts of a virtual environment separately and combine them together later.

The concept of locales is based on the idea that while a virtual world may be very large,
most of what can be observed by a single user at a given moment is nevertheless local in nature.
That is to say, one would expect a large virtual world to be large primarily because, like a city, it
combines a large number of relatively small, localized activities (e.g., a conversation involving a
few people here and a simulation involving several objects there) rather than because it contains
individual activities that are very large and complex.

Locales divide a virtual world into chunks that can be processed separately. It is important
to realize that this division is purely an implementation issue; it is not apparent to the user.
A user sees several locales at once, typically including the locale containing the user's point of
view and the locales that are the neighbors of this locale. The user does not see any seams
between the locales nor any abrupt changes as the point of view moves from one locale to
another, thereby changing the neighborhood set.

This di�ers from VRML on the web and most virtual environments where it is possible
to jump from one model/environment to another, but there is no support for simultaneously
viewing models from di�erent sources. The purpose of locales is to allow virtual worlds to be
combined so that you can see and interact with several at once and can move smoothly from
one to another.

The way locales divide up a virtual world is based on three key features, each of which
provides important leverage on the problem of bigness.

Separate communication channels - Each locale is associated with a separate set of multicast
addresses.

Local coordinate systems - Each locale has its own coordinate system.
Arbitrary geometry and relationships - The shape, size, and orientation of locales can be
chosen arbitrarily. It is expected that they will be irregular in shape and size, conforming to
the natural boundaries of the virtual world. Further, the relationships between neighboring
locales are stated locally.

These features confer �ve key bene�ts:

E�cient communication - Using locale-speci�c communication channels allows a process to
attend to what is happening in some locales while completely ignoring others.

E�cient culling - By designating only a small part of the virtual world as relevant, a locale
neighborhood serves as a highly e�cient culling mechanism.

Precise positions - Since each locale has its own coordinate system, one always has high
positional precision in whatever locale is the current focus of attention, even if the virtual
world as a whole is very large.
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2 Barrus, Waters & Anderson

Easy combination of separately design pieces - Rather than being oriented toward cutting
up an existing world, locales are intended to be a basis for combining separately designed
subworlds into a larger world. The fact that the relationships between locales are local
in nature and do not involve any global coordinate system facilitates the combination of
pieces designed by di�erent people into a large virtual world.

Interesting e�ects - The local nature of the relationships between locales also makes it possible
to support a variety of interesting e�ects.

In addition to locales, Spline incorporates a companion concept called beacons, which sup-
port a content-addressable communication strategy. Beacons allow a user process to select
what objects to be informed about based on tags rather than on locations. This is a useful
complement to the content-addressabable communication provided by locales.

Locales were developed as part of a system called Spline (for Scalable Platform for Large
Interactive Networked Environments). The next two sections briey present Spline and the
details of what a locale is. This is followed by an in-depth discussion of the �ve bene�ts of
locales listed above. The paper concludes with a discussion of how locales are used in a virtual
world called Diamond Park, which was implemented using Spline.

2 Spline

The Spline platform provides a convenient architecture for implementing multi-user inter-
active environments that is based on a shared world model. The world model is an object
base containing information about everything in a virtual world|where things are, what they
look like, what sounds they are making, etc. Applications interact with each other by making
changes in the world model and observing changes made by other applications.

network

open
interface

open
interface

application

inter-process communication

world model

application support

Figure 1: A Spline process.
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Locales and Beacons 3

Name { Network-wide unique ID of thing X.
Parent { Thing containing X, if any.
Transform { Transformation matrix relating X to its parent.
Appearance { 3D graphic model, if any, of X.

Figure 2: Key instance variables of a thing relevant to locales.

To allow rapid interaction between individual applications and the world model, Spline
distributes the world model, maintaining a partial copy in each Spline process. Each copy
contains the parts of the world model that are su�ciently near to the corresponding process's
focus of attention. To achieve su�ciently low interaction latency, the copies are maintained
approximately, but not exactly, consistent.

The structure of a Spline process is shown in Figure 1. The inter-process communication
module sends out multicast messages describing objects in the world model and receives mes-
sages from other Spline processes about changes made remotely. As in SIMNET [1], each
message describes the current state of a world model object and is used by the processes that
receive it to update their world model copies. When hardware support for multicast communi-
cation is not available (e.g., over most wide area networks) tunnelling processes using unicast
UDP communication can be used to simulate multicast communication.

Spline's Application Program Interface (API) consists primarily of operations for creat-
ing/deleting objects in the world model, reading/writing instance variables in objects, and
detect changes made by other applications. The application support module contains various
tools that facilitate interaction between an application and the local world model copy.

The most prevalent type of object in Spline's world model is called a thing. Figure 2 shows
the most important instance variables of a thing.

Hierarchical relationships between things are represented by making one thing the parent
of another. Following standard graphics practice, the position and orientation of a thing with
respect to its parent are represented by 4x4 transformation matrices (transforms for short)
specifying x-y-z positions, orientations, scaling, etc. using 32-bit oating point numbers. For
example, one might make the torso of a robot be the parent of the robot's head, with the
transform of the head specifying the position of the head in the coordinate system of the torso.

A Spline process joins into a group of communicating Spline processes by contacting a
centralized Spline session server managing the group. Among other things, the session server
assigns blocks of unique names to Spline processes, which the processes use to identify the
objects they create.

3 Locales

Locales are the central organizing principle of the Spline world model. Every thing X is
required to be contained in exactly one locale, either directly because X's parent P is a locale
or indirectly because P is contained in a locale. (A locale that does not have a parent is deemed
to contain itself.)

Figure 3 summarizes the data stored in a locale object. Like a thing, a locale has a parent.
The boundary of a locale speci�es the 3D volume occupied by the locale. There are many ways
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4 Barrus, Waters & Anderson

Name { Network-wide unique ID of locale L.
Parent { Thing containing L, if any.
Boundary { Description of the 3D volume corresponding to L.
Addresses { Multicast addresses associated with L.
Neighbors { List of structures describing for each neighbor N :

Neighbor name { Network-wide unique ID of N .
Import transform { Transformation matrix relating N to L.
Export transform { Transformation matrix relating L to N .

Figure 3: Key instance variables of a locale.

this could be represented, such as BSP trees. Spline uses a specialized representation [2] that
is optimized for the very rapid determination of which parts of the boundary are immediately
above and below a given reference point. This is used both for determining whether an object
is within a a given locale and for terrain following by objects that are moving within a locale.

The addresses of a locale are the multicast addresses used when sending messages about
the locale and the things contained in it. A set of addresses is used because di�erent kinds of
data (e.g., audio data as opposed to visual data) are communicated using di�erent addresses.
Multicast addresses are assigned by the Spline session server when a Spline process creates a
new locale.

The world model is typically broken up into many locales. For instance, a virtual building
might be broken up into locales corresponding to its rooms, corridors, and courtyards. If it is
possible to see, hear, or go from a locale L1 to another locale L2, then L2 is made a neighbor
of L1. For instance, consider the oor plan shown in Figure 4. The locale for room R needs to
have as neighbors the locales for room R0, hall H, and the outdoors O. Typically, which pairs
of locales need to be made neighbors can be determined by statically computing visibility using
methods like those of Teller [3].

A locale object L speci�es which other locales are its neighbors and the exact geometric
relationship between L and each neighbor N . The import transformation I speci�es how to
convert a transform T relative to the coordinate system of N into a transform T

0 relative to
the coordinate system of L (i.e., T 0 = IT ). This is used when one wants to know the position
of something in N relative to L. The export transformation E is typically the inverse of the
import transformation. It speci�es how to convert a transform relative to the coordinate system

Figure 4: A simple example of locales.
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Locales and Beacons 5

of L into a transform relative to the coordinate system of N .
Consider again locale R in Figure 4. The transformations relating R and its neighbors R0,

H, and O might specify that the origin of R0 is 3 meters north of R, the origin of H is 1 meters
east and 3 meters south, and the origin of O is 50 meters east. The boundary of R might be a
rectangular solid 3 by 3 by 2 meters high.

If a locale L has a parent, then this induces a neighbor relationship between L and the
locale L0 containing the parent of L. The transform T specifying the position of the parent of
L with respect to L0 is the export transform from L to L0. The import transform is T�1.

Locales with parents are used when it is desirable to move one locale with respect to another.
For example, you might put a car in its own locale and then move the car's locale from place
to place through the locales corresponding to a virtual town.

3.1 Moving From One Locale To Another

As a thing X moves, it can eventually move outside the boundary of the locale L it is in.
When this is the case, X needs to be transferred to the appropriate neighboring locale. This is
done by changing the parent of X to the new locale N and computing a new transform T for
X by multiplying T by the export transform from L to N .

So that there will not be any overhead for moving objects (such as the hands of a clock)
that are known not to be leaving the locale they are in, Spline does not automatically check
whether objects should be transferred from one locale to another. However, Spline provides a
function that makes it easy for an application to check whether an object should be transferred.

3.2 Locale Servers

Locales are created dynamically by Spline processes just like any other Spline object. Once
created, a locale is maintained and can be altered by the process that created it. Other processes
can create objects and place them in the locale. These other processes are responsible for the
maintenance of these other objects. Locales are not assigned by Spline, but rather are designed
by the creators of parts of a virtual world.

Special processes called locale servers are used to maintain a concise record of the state of
all the objects in a given locale. This is done so that a Spline process that becomes interested in
a locale L can rapidly obtain complete, up-to-date information about the objects in L without
having to individually contact all the processes that have objects in L. Whenever a new locale
is created, it is assigned to a locale server.

4 Location-Addressable Communication

One of the greatest problems faced by the builders of large multi-user virtual environments
is dealing with large numbers of changes in the environment. For example, consider a virtual
world encompassing an entire town where hundreds of people are interacting. In this situation,
the world model contains a huge number of objects and because many people are active, there
are a lot of objects that are moving and changing. This implies that a great deal of information
has to be communicated that speci�es changes in the world model.

If an individual user attempts to maintain a complete picture of the evolving virtual world,
he will have to receive and process a torrent of information about changes happening in the
world. One would expect this processing load to grow more or less linearly in the number of
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6 Barrus, Waters & Anderson

users and, as the number of users grows, eventually overwhelm the resources of any one user.
From the earliest days of research on multi-user virtual worlds it has been realized that this

problem can be avoided by recognizing that most of the information about changes is about
parts of the virtual world a given user cannot see or hear or interact with in any way. A user
can ignore all this extraneous information and maintain a picture of only the small part of the
virtual world that is near.

For example, in SIMNET [1] and in systems based on the IEEE Distributed Interactive
Simulation standard (DIS) that grew out of SIMNET, `�ltering' is used to discard information
about parts of the virtual world that need not concern a given user. This greatly reduces the
storage and processing requirements at each node, but has the problem that even though much
(or even most) of the information arriving at a node is discarded, information about every
object in the virtual world arrives and has to be dealt with to at least a small degree. As a
virtual world grows big enough, even a small degree of attention to each piece of information
can swamp the resources available to any one user.

Locales take the logical next step of breaking a virtual world up into chunks that are
associated with di�erent communication addresses so that a user who is not interested in a
given portion of the virtual world need not receive any messages about it. This multi-address
approach has been independently proposed for inclusion in NPSNET [4] and is used to some
extent in the Jupiter project [5] at Xerox PARC, which uses separate multicast addresses to
support audio and video teleconferences in separate `rooms'.

In Spline, the messages about changes to objects in a given locale are sent only to the
appropriate address associated with that locale. By opening connections to some multicast
addresses and not others, a user process can very e�ciently obtain information about changes
to objects in the locales surrounding the focus of attention, without receiving messages about
changes to objects in other locales. This pushes the main burden of �ltering onto the routers
and interface cards in the network connecting the users, which are speci�cally designed to
perform this kind of processing e�ciently. The total processing required for a given user is only
proportional to the number of other users that are near, not to the total number of other users.
This means that a multi-user virtual environment can become extremely large as long as the
users are su�ciently spread out.

A similar result is obtained by systems like WAVES [6] and RING [7] through the media-
tion of intermediate server processes rather than multicast messaging. This approach achieves
increased exibility at the cost of increased latency. For example, the intermediate servers can
dynamically determine which user is near which other user and dynamically route messages
accordingly. However, the fact that messages must go from users, to the servers, and then back
to other users, rather than travelling directly from one user to another inevitably increases
transit times.

5 Culling

The �ltering of information based on locales is useful beyond merely reducing the number
of incoming messages a Spline process has to handle. In particular, it dramatically reduces the
size of the world model maintained by any one Spline process. This in turn reduces all aspects
of the processing that has to be done by Spline and an application.

For instance, consider the way visual rendering is done in Spline. Visual rendering operates
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on everything in the locale L that contains the point of view and on everything in the neighbors
of L. To support this, Spline maintains a scene graph that is isomorphic to the hierarchical
structure of parent relationships between objects in the Spline world model. The coordinate
system of L is used as the coordinate system of the scene graph as a whole. The relative
positions of the neighbors of L are speci�ed by the appropriate inter-locale import transforms.

Note that the scene graph created does not correspond to the entire virtual world, but only
to the small part of the world that is in the locales surrounding the point of view. As a result,
�ltering based on locales serves as a fast and e�ective �rst order culling of the scene. The key
advantage of this culling is that it is based on predetermined visibility constraints. This is faster
than culling that is computed at run time, and it can rely on information that is too costly to
compute at run time. For instance, locales can be used to omit the rendering of the interiors
of buildings when they are not visible from the outside.

This use of locales follows along the path pioneered by work on the static determination of
visibility regions [3, 7]. However, it is important to note that locales go beyond this work by
supporting a number of additional features.

6 Precise Positions and Velocities

A second problem faced by the builders of large virtual environments is how to maintain
precision over long distances. It is attractive to use 32-bit oating point numbers to repre-
sent positions, because they are compact and interface well with current graphics hardware.
However, this causes a problem with precision. While 32-bit oating point numbers span a
wide range of values, their precision drops approximately linearly with increasing magnitude as
illustrated in the following table.

Distance Positional Velocity
From Origin Accuracy Accuracy

1 1:2 10�7 3:6 10�6

103 6:1 10�5 1:8 10�3

106 .06 1.9

One meter from the origin of the coordinate system, 32-bit oating point positions (in
meters) can be speci�ed to an accuracy of 1:2 10�7 meters. Assuming that visual output is
generated at 30 frames per second, smooth velocities (in meters/second) can be speci�ed to
an accuracy of approximately 30 times 1:2 10�7 meters per second or 3:6 10�6 meters/second.
This precision should be more than adequate for just about any virtual world.

However, farther from the origin of the coordinate system, the precision of 32-bit oating
point numbers drops dramatically. As shown in the table, precision is still adequate at 1
kilometer, but is so low at a distance of 1000 kilometers that it would be impossible to represent
smooth motions; rather, objects would jump around in .06 meter (2.5 inch) increments.

The e�ects of imprecision are illustrated in Figure 5. The track at the bottom of the �gure
shows a one inch cone moving along a slanting line 1 kilometer from the origin of a virtual
world. It shows the exact line the point of the cone is intended to follow and superimposes 15
snapshots of the cone at equal time intervals. The track at the top shows the same cone trying
to move along a parallel path 1000 kilometers from the origin. The imprecision of 32-bit oating

MERL-TR-95-16a August, 1996



8 Barrus, Waters & Anderson

Figure 5: Spacial aliasing due to oating point representation.

point numbers at this distance causes the point of the cone to jump around erratically from
grid point to grid point rather than following the desired line. Another e�ect of the imprecision
is that while 15 images of the cone are shown, there are only 5 distinct cone images because
consecutive images often appear in exactly the same place.

There are several ways to avoid problems with precision. Most simply, you can keep the
virtual world small. This is the case with most of the virtual worlds that currently exist.
Alternatively, you can use numbers with more bits of precision. This is the approach taken by
the DIS protocol, which uses 64-bit numbers. Locales adopt a third approach|using multiple,
connected coordinate systems.

Each locale has its own local coordinate system. The position of an object is speci�ed solely
with respect to the locale it is in. Locales are kept small enough|e.g., less than a kilometer
on a side|that high precision is always available. To avoid errors in the positioning of locales
with respect to each other, there is no overall global coordinate system. Rather the relationship
between a locale and its neighbors is speci�ed locally. This makes it possible to specify positions
and velocities precisely in an arbitrarily large virtual world using 32-bit numbers.

The basic e�ect of locales is that wherever you are, you are near the origin of the coordinate
system in use. Many operations take place within a single locale. When operations involve
multiple locales, the positions of the objects in other locales are converted into positions in the
locale you are in. Inevitably, if one of these objects is far from you, its converted position will
not be very precise; however, this does not matter because since the object is far away, you
cannot interact with it precisely in any case.

7 Combining Separately Designed Pieces

A third problem facing the builders of large virtual environments is how to successfully
combine the work of many designers into a coherent whole. Locales address this problem by
providing a nice mechanism for encapsulating pieces designed by di�erent people so that they
can be easily combined.
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Because locales are related only locally on a neighbor-to-neighbor basis with no global
coordinate system, locales only require local rather than global consistency. If a designer is
creating a locale that is adjacent to another locale, then he must make sure that the locales
are consistent with each other|i.e., match up well at their contact points. However, designers
of locales that are distant from each other need not be constrained by each other's activities
in any way. In addition, the transforms used to relate adjacent locales can be used to adjust
for many kinds of di�erences. For example, simple transforms can be used to connect a room
designed with Z-up to a room designed with Y-up or rooms built on di�erent scales.

8 Interesting E�ects

When using locales, a designer has total freedom in the choice of transforms relating a locale
to its neighbors. Most of the time, one is likely to create transforms so that they correspond to
simple Euclidean space. For example, when designing a building full of rooms each in its own
locale, one might ensure that:

� Whenever a locale L has a neighbor N : the export transform E is the inverse of the import
transform I; E and I specify nothing other than translation and rotation; and L is a
neighbor of N with export transform E�1 and the import transform I�1.

� Every chain of neighbor relations from L to itself corresponds to the identity transform.
(A corollary of this is that if there are two chains of neighbor relations from L to another
locale N , then they correspond to the same net transform.)

� The locales for the rooms partition the space corresponding to the building as a whole
without overlapping or leaving gaps.

However, none of the constraints above are necessary for e�cient processing and none are
demanded by Spline. By selectively breaking them, a number of interesting and useful e�ects
can be obtained.

For example, you can implement a mirror by making a locale be a neighbor of itself with an
import transform specifying reection. You can create a toroidal region by using a transform
that puts a locale beside itself. You can create one-way windows from one locale to another
by making one-way connections. You can alleviate the space crunch in a virtual building by
allowing a room to be much bigger than the building that contains it.

9 Beacons

Sending all the messages about objects in a virtual world via the multicast addresses of the
containing locales allows very e�cient �ltering, but introduces a chicken and egg problem. How
is a process to �nd out anything about an object (e.g. what locale it is in) unless it already
knows what locale the object is in? In Spline, this problem is addressed by introducing a special
class of objects called beacons that can be located without knowing what locale they are in.

Consider the following situations. Suppose that you are in the process of logging into a
virtual world. Before you can see or hear anything, you have to put yourself somewhere, but
your process cannot �nd out anything about the virtual world before you �nd out what locales
various things in the world are in. Similarly, suppose that you are interacting in a virtual world
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10 Barrus, Waters & Anderson

Tag { An identi�er speci�ed by the creator of the beacon.
Address { The multicast address of the locale containing the beacon.

Figure 6: The key �elds of a beacon object.

and wish to locate a particular portion of the world (or service provided in the world) that
someone has told you about. Unless you fortuitously happen to be in the same locale as what
you are looking for (or in a neighbor of this locale), your local copy of the world model will not
contain any information about what you are looking for. Finally, suppose you want to locate a
friend of yours who you think may also be interacting in the virtual world. Since your friend
may be moving around from locale to locale, even an organized search may fail to �nd him.

In Spline, these conundrums are resolved by using beacon objects. As shown in Figure 6,
a beacon has two key �elds: a tag and the multicast address of the locale that contains the
beacon. As a group, the beacons in a virtual world act as a content-addressable index from tags
to the multicast addresses of locales. They make it possible to decide what locales to attend to
based on what the locales contain.

The key feature of a beacon is that in addition to broadcasting messages about itself via
the multicast address of the locale it is in, it sends messages about itself to a beacon server
process. To ensure that this mechanism is scalable to large virtual environments, an unbounded
number of potential beacon server processes are allowed. Which server to contact is determined
by hashing on a beacon's tag.

A function is provided whereby an application can request that Spline obtain information
about every beacon with a particular tag. Spline does this by connecting to the beacon multicast
address corresponding to the tag in question. After su�cient time has elapsed for a new steady
state of the local world model to be achieved (at most a few seconds) a process can be assured
that it has complete information about every beacon with the indicated tag. If the process
decides that it is particularly interested in any of these beacons, it can then request that Spline
connect to the locale containing the selected beacon(s). The local world model will then be
�lled out with complete information about all the objects in the associated locale(s).

Designers use beacons to mark things they want people to be able to �nd. The only real
complexity involved with beacons revolves around the ways tags are communicated between
users. There are three ways this is done.

First, a designer can create a beacon and then publish the tag, e.g., on the World Wide
Web. For example, if someone creates a part of a virtual world and wants other people to visit,
he can mark the area with a beacon and publish the tag. Similarly, if someone wants to make
it easy for people to �nd them in a virtual world he should include a beacon as part of the
avatar representing him in the virtual world. He can then communicate the tag on this beacon
to those he wants to be able to �nd him (e.g. in Email messages).

Second, one can create a beacon and not publish the tag. In this case, one is not inviting
people in general to locate the beacon, however, people that run into the beacon can subse-
quently keep track of it no matter where it moves by remembering the beacon's tag. As an
example of the utility of this use of beacons, consider the following problem.

Suppose that you have met another person in a virtual world and he asks you to follow him
so that he can show you around. An easy way to do this is to attach the visual POV controlling
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what you see to his representation in the virtual world as a subobject. Your POV will then go
wherever he goes and see whatever he sees.

However, what happens if he transfers to another locale? If your Spline process is already
connected to the address of the new locale then there is no problem. You get messages specifying
that his avatar is in the new locale. Your POV is a subobject of his avatar and therefore
implicitly moves to the new locale as well. However, if he moves to a locale your Spline process
is not connected to, you stop receiving any information about his avatar. He disappears from
view just the same as he would if he logged out of the virtual world, or if his machine crashed.
Your POV is left dangling as the child of a non-existent object. To prevent this from happening,
a person who wants to make it possible for people to follow him should include a beacon in
his avatar. By requesting that your Spline process attend to the tag in this beacon, you can
guarantee that your process will maintain contact with his avatar no matter where it moves.

The third way that tags can be communicated is as follows. Someone who wants to provide
a service can publish a tag, without creating a beacon. A person who wants to use the service
can then create a beacon using the published tag. The service provider can determine where
services should be rendered by looking for the appearance of beacons with the tag.

An interesting example of this is used to communicate between an application and a visual
renderer. The Spline rendering application that creates the images seen by a user can run
in a completely separate process (or even on a separate machine) from the main application
interacting with a user. This brings up an interesting question, how can a given visual renderer
determine which user it should generate images for? The connection is made by having the
user's application create a beacon that speci�es which visual renderer it wants to use. This
is done by using a tag corresponding to the Internet address of the machine where the visual
renderer is running. By looking at beacon tags, a given visual renderer can link up with the
appropriate user process.

10 Diamond Park

Diamond Park [8] is the �rst large-scale virtual world built using Spline. The park consists of
a square mile of virtual landscape with about a dozen buildings, two lakes, and two ornamental
pools scattered around a central valley surrounded by hills (see Figure 7). Multiple users
interact in the park while riding steerable computer-controlled exercise bicycles with variable
pedal resistance. When near each other, visitors can converse verbally.

Currently, the objects in Diamond Park are divided among 62 locales. As discussed below,
some of these locales represent major activity areas of the park; however, most of the locales
are used to create appropriate transitions between the major locales.

10.1 Desert House

The Desert House shown in Figure 8 is a recent addition to Diamond Park. An interesting
feature of the Desert House is that the interior is much larger than the exterior. To illustrate
this, Figure 8 shows the interior and exterior of the Desert House superimposed in the same
image|a view never seen by users of Diamond Park.

Figure 9 shows the locales used to implement the Desert House. The locale P contains the
landscape surrounding the Desert House while locale D contains the interior of the building.
The Desert House can be entered through two vestibules. Consider the vestibule on the left in

MERL-TR-95-16a August, 1996



12 Barrus, Waters & Anderson

Figure 7: A panoramic view in Diamond Park.

Figure 8: The inside and outside of the Desert House.

Figure 9: The Desert House locales. Figure 10: One of the Desert House vestibules.

Figure 11: Moving through an obelisk.
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Figure 9. It is divided into two locales V1 and V2. V1 is a neighbor of P and can be seen from
certain vantage points in the park. V2 is a neighbor of V1 & D, and can be seen from certain
places inside the Desert House.

Critically, D is not a neighbor of P and there is no locale that D and P both neighbor. This
means that the objects in D and P are never simultaneously rendered. As a result, visitors
never experience the slow frame rates that would be caused by having the graphics hardware
simultaneously draw the complex scenes corresponding to D and P .

The appearance of one of the Diamond Park vestibules is shown in Figure 10. In this �gure,
transparent polygons have been added to highlight the boundaries of the locales. Notice that
the vestibule has been carefully designed so that when you are in P you can see V1, but not
V2 or D, and when you are in V1 you can see P and V2, but not D. This is essential, because
when you are in P or V1, the objects in D are not rendered.

Consider what happens when a visitor goes into the left vestibule in Figure 9, across the
interior of the Desert House, and out the right vestibule. Because the interior of the Desert
House is big, the visitor has traveled a long way inside the Desert House. However, because the
outside of the Desert House is much smaller, the visitor has traveled a much shorter distance
across Diamond Park. This paradox does not obtrude on visitors to the park because at each
moment the scene they see is locally consistent. There are no mathematical contradictions
because the locales in the Desert House are only related pairwise, with no global reference
frame.

10.2 Transportation Obelisks

Diamond Park is equipped with 22 small obelisks dotted around the landscape that act as
a rapid transit system. A visitor can enter any obelisk and then exit any other after traveling
only a short distance. This e�ect is supported by locales. As with the Desert House, two
perspectives are simultaneously maintained that are geometrically inconsistent, but in a very
useful way. There are 22 obelisk exteriors, which share one relatively small interior space. From
the perspective of the interior, the 22 obelisk doors are close together, arrayed around the walls
of the interior space. From the perspective of the park, the obelisks are far apart. Figure 11
shows a sequence of snapshots illustrating what it looks like to go through an obelisk from one
part of the park to another.

Whenever locales are used to maintain inconsistent perspectives, the problem arises of con-
trolling sight lines so that the inconsistencies are not visually apparent. In the Desert House,
sight lines through the vestibules are controlled by introducing corners you cannot see around.
In the obelisks, sight lines are controlled by �lling each entryway with a picture of what is be-
yond the entry. When entering and leaving obelisks, visitors walk right through these pictures
but cannot see beyond them until after they have passed through.

10.3 Evaluation

Because Diamond Park consists of only one square mile of terrain, precise positioning and
movement would be possible even if locales were not used. However, the other virtues of locales
are clearly demonstrated by Diamond Park.

Breaking the park into locales allows complex graphic models to be used in many di�erent
places without overloading the graphic rendering power available, because two complex models
never have to be rendered at once. Speci�cally, Diamond Park is divided into four major zones:
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the outside landscape and three complex building interiors. At any one moment, the scene
graph being rendered never contains more than about 35% of the total model (the outside
landscape is more complex than any one building interior).

Equally important, visitors congregated in one area of the park can interact without taxing
the computational resources of users in other areas of the park, because a visitor in a given
locale does not have to process any information about visitors in distant locales. If the visitors
are equally distributed among the major zones, then an individual visitor receives messages
from only 25% of the other visitors.

It is important to realize that the numbers above are a function of the complexity of the
speci�c Diamond Park model. If the model contained 100 buildings with highly complex interi-
ors, then the scene graph at any given moment would only contain about 1% of the model and
a visitor would receive messages from only 1% of the other visitors.

Locales are used to achieve a number of interesting e�ects in Diamond Park. This in-
cludes buildings with large interiors such as the Desert House and the kind of non-Euclidean
connectivity illustrated by the obelisks.

Perhaps the most important single virtue of locales is their support for combining separately
designed pieces. For example, the Desert House interior was designed long after the rest of
Diamond Park. It was placed inside an existing building in the park. However, when doing this
the designers of the Desert House interior were not constrained by the coordinate system of the
park as a whole, or its orientation, or scale, or which axis was up, or in fact even by the size
of the existing building. Beyond this, they were not required to use the same graphic modeling
tool. The only modi�cation of the preexisting Diamond Park model that was needed was the
addition of doorways into the building that became the Desert House.

11 Future Directions

To date, Diamond Park has been the only major use of Spline and locales. This experience
led to a number of improvements in locales. These include allowing locales to have other
locales as their parents and a greatly improved representation for the boundary of a locale. It
is important that a range of further experiments be performed, and we expect that this will
lead to further improvements.

An interesting area where improvement could be made is in the way locales support audio
rendering. Currently, one set of transformations controls both the visual and audio relation-
ship between locales. It might be better to include a separate speci�cation of the way sound
propagates from a locale to its neighbors. This would allow improved audio rendering without
complex reasoning about what polygons constitute oors and walls.

Another important direction of research is the creation of tools to support the design of
locales. In some situations, e.g., breaking the model for a building with many rooms into locales,
it should be possible to design locales completely automatically, using visibility analysis [3]. In
other situations, it is appropriate for a designer to take more direct control. However, even
then, semi-automated tools for visualizing and modifying locales are essential.
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