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Abstract

Diamond Park is a social virtual reality system in which multiple geographically sep-

arated users can speak to each other and participate in joint activities. The central

theme of the park is cycling. Human visitors to the park are represented by 3D an-

imated avatars and can explore a square mile of 3D terrain. In addition to human

visitors, the park hosts a number of computer simulations including tour buses and

autonomous animated �gures.

Diamond Park is implemented using a software platform called Spline, which makes

it easy to build virtual worlds where multiple people interact with each other and

computer simulations in a 3D visual and audio environment. Spline performs all the

processing necessary to maintain a distributed, modi�able, and extendable model of a

virtual world that is shared between the participants.
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1 Introduction

Our long term goal is to create social virtual reality systems where people can interact in
real time for learning, work and play. In particular, we seek to create virtual worlds featuring:
multiple, simultaneous, geographically separated users; multiple computer simulations interact-
ing with the users; spoken interaction between the users; immersion in a 3D visual and audio
environment; and comprehensive runtime modi�ability and extendability.

As an initial experiment, we created a multi-user virtual world called Diamond Park (see
Figure 1), which was �rst demonstrated at COMDEX in November of 1995. Diamond Park
is notable for supporting the real-time interaction of multiple users in a large space with a
relatively high level of visual, auditory, and kinesthetic detail. The most important part of a
visit to the park is participating in activities with other visitors. We chose to focus primarily on
social interaction in Diamond Park, because we believe that good support for social interaction
will be the most important feature of social virtual reality applied to any purpose.

In the future, our goal at MERL is to construct a number of di�erent social virtual reality
systems in order to explore ways that such systems can support work and education as well as
entertainment. To make this possible, we have focused much of our e�ort over the past three
years on creating a exible platform for building social virtual reality systems called Spline (for
Scalable Platform for Large Interactive Network Environments).

Spline supports all the key features of the multi-user interactive environments we seek.
As a result, it allows the application writer to focus on creating the content of a particular
world without worrying about communication and synchronization between multiple users. We
consider it a major validation of Spline that while Diamond Park required the creation of many
large graphical models and large amounts of recorded sounds, Diamond Park required very
little code over and above what is contained in Spline itself.

In comparison to other tools for supporting 3D virtual worlds, Spline is notable in that it
supports both visual and audio interaction, allows runtime extensions of all kinds of data, and
is designed to support large numbers of users.

Figure 1: Two visitors riding in Diamond Park.
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2 Diamond Park

Figure 2: Bicycle interface to Diamond Park. Figure 3: Diamond Park's obstacle course.

Figure 4: Diamond Park Velodrome. Figure 5: Diamond Park's transportation systems.

Figure 6: Interior of Outer Space Building. Figure 7: The Poet's Grove in Diamond Park.
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2 Diamond Park

Diamond Park combines visual, audio, and physical interaction. A square-mile of detailed
and varied terrain was created to encourage visitors to spend time exploring. This is coupled
with an equally rich audio environment including live sounds communicated between visitors,
ambient background sounds and sound e�ects.

In addition, whole-body physical interaction is provided by means of modi�ed recumbent
exercise bicycles with variable pedal resistance (see Figure 2). Visitors on exercise bicycles
are represented in the park as animated bicyclists like those in Figure 1. Spline's support for
real-time conversation allows visitors to talk with one another as they ride.

The joint requirements of bicycling and social interaction shaped the park's character as an
amalgam of a landscape park, a village and a World's Fair. As visitors roam around the park,
they can participate in a variety of outdoor and indoor activities that create interesting social
situations.

A visit to Diamond Park usually begins at the Orientation Center (seen in the distance
in the center of Figure 1). This building was sited to provide a panoramic view of the park's
landscape, which includes lakes, buildings and a complex network of paths. The Orientation
Center contains a 3D table-top model of the park that shows the park's layout and features at
a glance.

Birdsong and gentle wind can be heard in the background at the Orientation Center, helping
to create a welcoming atmosphere. First-time visitors often head for the Central Plaza at the
foot of the Orientation Center hill. The sounds of jazz and clinking dishes draw them towards
the Plaza Cafe, a place to meet and chat with other visitors.

Since Diamond Park is usually experienced while pedaling an exercise bicycle, bicycle-related
activities are an important aspect of a visit to the park. One of the activities available to visitors
is an obstacle course (Figure 3) laid out on a at grassy area near the lake. Visitors can also
race or do time trials in the Velodrome (seen on the left in Figure 1). The 200-meter indoor
track (Figure 4) was designed to Olympic bicycle racing speci�cations.

Cycling is not the only means of transportation within Diamond Park. Yellow hoverbuses
(Figure 5) o�er visitors an alternative way to explore the landscape. They provide a tour of
the park's central area.

If visitors want to move quickly from one area of the park to another, they can use the
obelisk teleportation system. An obelisk is located outside every major building and in various
spots in the park's outer regions. (An obelisk appears to the left of the bus in Figure 5.) The
22 obelisks in the park share a small common interior with doors corresponding to each of the
obelisks. By riding into an obelisk and then out the door connected to the obelisk nearest a
desired destination, a visitor can travel long distances very quickly.

Visitors who enter the Outer Space Building are surprised when they discover that the
building's relatively small exterior belies the presence of a vast interior �lled with stars, orbiting
asteroids and oating astronauts (Figure 6). Near the Outer Space Building is a site with an
entirely di�erent character: the Poet's Grove (Figure 7). This is a tranquil outdoor setting
where recorded poetry mingles with the sounds of the wind and birds.

In addition to the avatars of human visitors, the park contains several di�erent kinds of
computer simulations. A simple example of this is the tour buses that travel around the park
(see Figure 5). A more complex example is the asteroids orbiting in the Outer Space Building

MERL-TR-96-02a November, 1996



4 Diamond Park

(see Figure 6).
From time to time, Diamond Park has contained simulated bicyclists created at Georgia

Tech. (Hodgins et al., 1995) following prerecorded paths. It has also contained simulated human
�gures with complex motions (e.g., pedestrians, an acrobat, and some baseball players) created
by Boston Dynamics Inc. (Koechling, Payter & Raibert, 1996). The pedestrians can walk, jog,
and run, switching smoothly from one gait to another under real-time computer control.

2.1 Design Considerations

Social virtual reality is just beginning to emerge as an art form. Interest is growing rapidly,
but as yet, there are few examples of systems like the ones we seek. In the long run, we believe
that the value and success of social virtual reality systems will depend more on the exact details
of individual applications than on the basic capabilities of the underlying technology.

When designing Diamond Park, two issues were foremost in our minds. The �rst was our
belief that artists should be involved as central designers from the earliest inception of Diamond
Park. The second was the desire to create a balanced environment with whole-body physical
interaction, visual detail, audio detail, and real-time performance.

2.1.1 The Bicycle Interface

The exercise bicycle as input device was the initial point of departure for the design of
Diamond Park. One reason we made this choice is that we believe that adding whole-body
interaction to a virtual world can greatly enhance its interest. Another reason is that we hoped
that bicycling would be an appealing basis for non-violent interaction among people of all ages.
We have been grati�ed to discover during various demonstrations that all kinds of people seem
to enjoy riding through Diamond Park.

The choice of bicycling as a theme drove the primary choice of activities in Diamond Park,
which include riding in a large environment on rugged terrain and a path network, as well as
racing in the Velodrome. In addition, it required signi�cant accommodation, e.g., by making
every building accessible via ramps.

To remain faithful to bicycling, we chose to have the interface consist solely of things that
can be done on a bicycle, i.e., there is no requirement for a keyboard or mouse. Rather,
everything happens by riding to one place or another. For example, the obelisk teleportation
system is triggered by riding in one obelisk door and then out another.

An interesting design issue was what to use for a visitor's point of view. We chose an over-
the-shoulder viewpoint because this allows a visitor to get a comprehensive view even though
the �eld of view is relatively narrow. In particular, it allows visitors to see anyone who may
be talking to them, no matter what direction they are looking. In addition, we have been
interested to note that many visitors to Diamond Park seem to prefer having an overall view
rather than a through-the-eyes view. It would seem best to provide for both options.

To increase the number of people who can use Diamond Park, we included a keyboard-based
interface as well as the bicycle interface. In keeping with the bicycling theme, people using the
keyboard interface are represented in the park as unicyclists.

2.1.2 The Landscape

When designing the setting of Diamond Park, we tried to create an environment that: (1)
would be familiar and inviting for people of all ages and backgrounds, (2) could encompass a
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wide range of activities, and (3) would evoke a sense of place and a spirit of community. To do
this, we relied on ideas from many sources including landscape design and town planning, see
Greenbie (1981) and Wylson & Wylson (1994).

The layout of Diamond Park was inspired by the landscape parks created in the 18th and
19th centuries by Humphrey Repton and Frederick Law Olmsted (Fabos, Milde & Weinmayr,
1968). In these parks, the deliberate planning of views, the mixture of wooded and open
space, and a combination of man-made and natural features help draw the visitor through the
physical setting. As in formal gardens, a number of meeting places such as the Central Plaza
were created in Diamond Park.

The potentially alienating nature of a virtual experience led to the decision to design Dia-
mond Park's buildings as iconic representations of familiar architecture (Venturi, Scott Brown
& Izenour, 1977). A range of building styles appear throughout the park, each serving a spe-
ci�c purpose. Major public buildings such as the Orientation Center and Museum are based
on neoclassical models. A vernacular Little House, hidden within its grove of trees, provides a
contrast to the futuristic \expo style" of the Outer Space Building. A romantic 19th century
Folly set on an inaccessible rocky island (shown in the background of Figure 7) hints at the
wilder nature of the park's outlying reaches.

The park's textures were hand-painted in a conscious e�ort to create a slightly nostalgic,
familiar place where �rst-time visitors would feel comfortable. By hand-painting all textures,
we had much greater control over their level of detail. In addition, each one could be designed
to be reused in a number of contexts, thereby minimizing our use of texture memory.

2.1.3 The Soundscape

A key feature of Diamond Park is that the audio environment is just as carefully designed
as the visual environment. For example, the di�erent parts of the park are associated with
their own characteristic sounds. The Poet's Grove (see Figure 7) was created to showcase the
importance of ambient sound. The grove is quite simple graphically|a grove of trees and a
small plaza with benches|but once within this space, visitors enter a contemplative audio
environment where poetry emanates mysteriously from the trees.

2.1.4 Tools

The experience of creating the graphic models for Diamond Park highlighted a number of
weaknesses in currently available modeling tools. To start with, it was quite di�cult to �nd
a tool that would do an adequate job of helping us minimize the number of polygons in the
models we were creating.

Another problem stemmed from the sheer size of the models. It was often essential to have
multiple people working on the park at the same time. We sometimes had the models divided
into as many as 25 separate sections being modi�ed in parallel. It would have been valuable
to have much better support than our tools o�ered for version control and for stitching pieces
back together after modi�cation.

A number of problems stemmed from frustrations involved in creating 3D images through
an inherently 2D interface. For example, using a 2D mouse to draw objects in 3D is a slow and
painful process. In addition, when looking at a shadowless image with no depth cues, it is very
di�cult to position objects in 3D. The simple modeling task of placing trees throughout the
park took more than a week, because it was di�cult to tell when the base of a tree was on the
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6 Diamond Park

ground, let alone exactly where the tree was in the overall landscape.
A key part of our e�ort was creating the underlying terrain for Diamond Park. Unfor-

tunately, terrain creation tools for virtual environments are almost non-existent. Most com-
mercially available tools either work primarily with measured data available from the U.S.
government or provide limited and unrealistic tools for creating terrain features. The creation
of realistic looking hills and valleys for Diamond Park was done by �rst drawing by hand a
high resolution gray-scale image where brighter areas represented higher hills. The data in this
image was then used as a height map and converted into terrain polygons by a commercial tool.

To create the park's Velodrome, we wrote a velodrome generator program, so that we could
easily experiment by changing such variables as maximum bicycling speed, track length, and
in�eld dimensions. In general, it would be helpful if there were more tools whose basic mode
of operation was assembling 3D models from parameterized parts, rather than merely creating
polygons one at a time.

2.2 Related Environments

There are only two kinds of multi-user virtual environments that have a long track record.
The �rst of these is the kind of military simulation system typi�ed by SIMNET (Pope, 1989;
Calvin, et al., 1993) and the Distributed Interactive Simulation protocol (DIS) (Standard,
1993) that grew out of SIMNET. These systems feature large complex 3D landscapes and large
numbers of users (supported by expensive special-purpose hardware). However, they focus
on people shooting at each other from a distance rather than talking in groups. In addition,
they are intended for staging preplanned exercises, rather than supporting an evolving on-line
community.

The second line of multi-user virtual environments began with the multi-user dungeon games
(MUDs) that became popular at universities in the 70's and 80's and have matured through
systems like LucasFilm's Habitat (Morningstar & Farmer, 1991) and become common in the
form of chat rooms on various on-line services. In general, MUDs are primarily text based using
at most simple 2D graphics. However, they support large numbers of interacting users. At the
forefront of research on MUDs, the Jupiter system (Curtis & Nichols, 1994) adds support for
live audio and video, but not 3D graphics. In the course of his work on Jupiter, it was Pavel
Curtis who coined the term `social virtual reality'.

Recently, a number of systems have appeared that extend MUDs into the realm of 3D
graphics. These include NTT Software's CyberCampus (http://www.is.ntts.com), Sony's
Community Place (Honda, Matsuda, Rekimoto & Lea, 1995) (http://sonypic.com/vs/), and
ImagiNation Network's CyberPark (http://www.inngames.com/). In CyberCampus, users
interact in a simple 3D world featuring live audio and 2 Hz video. The Community Place
browser and CyberPark support multiple people in a shared 3D graphical environment with
background sounds but no live audio.

OnLive! Technologies' Traveler browser software (http://www.onlive.com/) supports live
audio-based conversation and ambient sound in a 3D virtual environment. However, Traveler
environments are designed speci�cally for 3D chat rather than for a variety of social interaction.
OnLive's avatars consist of large, oating heads without bodies or limbs, which are adequate
for conversation but not for physically-based activities.

Using bicycling as a motif, Diamond Park goes beyond chat by introducing complex inter-
action with a rich 3D environment. Unlike the systems above, Diamond Park has not been
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�elded to a wide audience. Rather, utilizing hardware that can support both a detailed visual
and a detailed audio environment, Diamond Park shows what the growth of PC power and
network speeds will soon allow to be �elded.

A �nal line of development relevant to Diamond Park is other virtual environments de-
signed speci�cally for bicycling. In 1989, the Cyberia team at AutoDesk created a PC-based
virtual world for bicycling (see pages 188{189 in Rheingold, 1991). Seated on a station-
ary bicycle called the HiCycle, a user could explore a varied 3D terrain. Currently, Tectrix
(http://www.tectrix.com/products/VRBike/VR Bike.html) and RacerMate (http://www.
wsmith.com/velolinq/racemate/race3.htm) produce commercial systems of a similar avor,
using PC's and Nintendo game consoles, respectively. These systems provide some support for
multi-user interaction by allowing a small number of machines to be connected together as long
as they are located in the same room.

3 Spline

Diamond Park was implemented using a software platform called Spline (for Scalable Plat-
form for Large Interactive Network Environments) that provides comprehensive support for
the key features of the environments we seek. In particular, Diamond Park was implemented
using Spline version 1.5 which was completed in the fall of 1995. We are currently nearing
completion of Spline version 3.0, which improves on Spline 1.5 in many ways. However, the
basic architecture and approach of Spline 3.0 are the same as Spline 1.5. The following presents
the core features that are shared by all versions of Spline.

3.1 The World Model

Above all else, Spline provides a convenient architecture for implementing multi-user interac-
tive environments. This architecture is centered on a world model that mediates all interaction.
Figure 8 illustrates the application programming model presented by Spline. It shows �ve
applications interacting through the world model.

Spline applications do not communicate directly with each other, but rather only with the
world model. This allows applications to be written without thinking about how communica-
tion is achieved. An application does exactly the same things when it is interacting with an
application running in shared memory on the same machine as it does when interacting with

World Model

application
application

application

applicationapplication

Figure 8: Spline's programming model.
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8 Diamond Park

an application connected via the Internet.
Spline's world model is not a scene graph, but rather an object-oriented database that does

not consider one kind of content to be any more important than another. In particular, we
believe that audio information and autonomous behavior are at least as important as visual
information and should not be limited by constraints inherited from visual rendering.

The world model speci�es what objects exist in the virtual world, where they are, what
they look like, and what sounds they are making. The world model does not contain historical
information, but rather just a snapshot of what the virtual world is like at the current moment.
As the virtual world changes second by second, the world model changes.

The emphasis in the design of the world model is on the term `database', not `object ori-
ented'. The objects have methods associated with them, but by far the dominant operation
consists of reading and writing data stored in the instance variables of world model objects.
Applications observe the virtual world by retrieving data from the world model.

Applications a�ect the virtual world by adding, removing, and modifying objects in the
world model. To avoid readers/writers conicts, each object in the world model has one process
as its owner and only the owning process can modify it. However, the ownership of an object
can be transferred from one process to another.

By itself, Spline does not cause objects to persist over time. An object exists only so long
as the application that owns it runs. To have persistent objects, an application must provide
persistent processes that accept ownership of these objects. These processes could make use of
a persistent �le format for Spline objects to provide e�cient long term support for infrequently
visited parts of a virtual world.

3.2 Scalability

Application programmers using Spline are encouraged to think in terms of Figure 8. How-
ever, it would not work well to use a centralized architecture when actually implementing Spline.
Rather, Spline operates as shown in Figure 9. To provide low latency interaction with the world
model, the world model is replicated so that a copy resides in each application process. Mes-
sages sent over the computer network linking the processes are used to propagate changes from
one world model copy to another.

A central feature of Spline is that it is designed to be scalable to a large number of users
(e.g., thousands) interacting in real time. Two key aspects of Spline support this: providing
only approximate equality of local world model copies and dividing the world model into chunks
each of which is communicated only to the small group of users that are actually interested in
it, rather than to all the users of the world model.

Distributed databases typically require that all local copies of the database must agree ex-
actly on the information in the database. However, this requires object locking and handshaking
that is incompatible with real-time interaction if there are more than a very small number of
users. In contrast, Spline focuses at all times on speed, providing only approximate equality
between world model copies.

The primary way world model copies are only approximately equal is that di�erent users
observe things as occurring at slightly di�erent times. We call this a relativity model of com-
munication and is not unlike the real world. When you hear sounds from distant sources, you
do not hear a sound that is being made now, but rather a sound that was made seconds ago.
Therefore, people in di�erent locations do not hear the same things at the same time. How
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World Model World Model

World Model

World Model

application

application

World Model

application

application application

network

Figure 9: Spline's communication model.

great the di�erences are depends on how far apart the sound sources and people are.
Similarly, when a Spline process �nds out about a world model change, it is not �nding

out about a change that is happening now, but rather one that happened some time ago. How
long ago this is depends on the network `distance' between the two processes. In general, this
distance is not more than a couple hundred milliseconds and does not lead to world model
di�erences that are unduly large.

Having only approximate equality of world model copies allows real-time interaction, but
does not of itself prevent the computation required to maintain each local world model copy
from growing in proportion to the total number of simultaneous users of a virtual world. To
prevent this, Spline breaks the world model up into many small chunks called locales (Barrus,
Waters & Anderson, 1996) and communicates information about a given locale only to the
small number of users that are near enough to that locale to be interested in it. Each locale
is associated with a separate multicast communication channel so that processes that are not
interested in a locale do not have to expend any processing ignoring it. This allows Spline to
scale based solely on the maximum number of users that are gathered in any one locale, rather
than on the total number of users in the virtual world.

3.3 Spline Servers

A signi�cant feature of Figure 9 is that it does not contain a central process. To minimize
latency, and prevent bottlenecks, the primary communication in Spline is peer-to-peer rather
than passing through centralized processes.

In Spline 1.5, 100% of the communication was peer-to-peer. However, in Spline 3.0 cen-
tralized processes are used for four key services. The way these processes interact with Spline
applications is illustrated in Figure 10.

In the lower right of the �gure is the session manager. It handles the connection of new users
to an on-going Spline session and their eventual disconnection. Its workload is proportional only
to the number of users that enter or leave the session in a given minute, not the total number
of connected users.
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World Model World Model

World Model

World Model

application

World Model

application

network

server

World Model

application

World Model

application

server

World Model

application

World Model

application

session manager

Figure 10: Spline servers.

One or more Spline servers are included in a Spline session to provide three important
services. One of these services supports users with slow network connections (e.g., modems)
that do not allow them to operate as �rst class Spline peers and two of the services support
peer processes.

To support a user with a low speed link, a Spline server intercepts all communication to
and from the user. The message tra�c to the user is compressed to take maximum advantage
of the bandwidth available. As part of this, audio streams are combined and localized before
sending them to the user. Spline servers are replicated as needed so that no one server has to
support more users than it can handle. Two are shown in Figure 10.

When the locus of attention of a Spline process enters a new locale, it needs to be informed
of the objects that exist in the locale. To allow the process to obtain this information very
quickly, Spline servers are used to cache the current state of each locale. This state can be
rapidly downloaded to processes that become interested. Responsibility for locales is parceled
out among a set of Spline servers, which is made large enough that no one server is responsible
for a larger piece of the virtual world than it can easily handle.

Because the world model copy in a Spline process only contains information about the
objects in the locales the process is attending to, there has to be an explicit mechanism for
locating far away objects in the virtual world. This is done by having the Spline servers act as
name servers associating names with specialized objects called beacons. A process can use this
name service to rapidly locate any beacon. As with locales, responsibility for the name space
is parceled out among a set of Spline servers, which is made large enough that no one server is
responsible for more beacons than it can easily handle.

As shown in Figure 10, Spline 3.0 will utilize a hybrid communication model in which
client/server communication is primarily point-to-point but server/server communication is
peer-to-peer using multicast. In addition, users with su�ciently fast network connections (e.g.,
users on corporate intranets) can interact directly with each other and the servers using peer-
to-peer multicast.
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network

Application
interface

network
interface

application

inter-process communication

world model

application support

Figure 11: A Spline process.

3.4 A Spline Process

The structure of a single Spline process is shown in Figure 11. The dashed box at the top
of the �gure shows how an application written using Spline �ts into the picture.

The foundation of Spline is the inter-process communication module. It provides all the
processing necessary to maintain approximate consistency between the world model copies
associated with a group of communicating Splines, sending messages describing changes in the
world model caused by the local application and receiving messages from other Spline processes
about changes made remotely. The network interface of Spline speci�es the format of these
messages. Any process that obeys this interface can interoperate with Spline.

The messages sent by Spline are of three kinds, corresponding to three kinds of data in the
world model: small rapidly changing objects, large slowly changing objects, and continuous
streams of data. An important feature of Spline is that it includes an e�cient scheme for
synchronizing these di�erent kinds of data.

The most prevalent kind of object in the world model is small things that can change rapidly.
For example, an object representing something in the virtual world (e.g., a chair) requires only
a small description|i.e., to specify its position and orientation, whether it is contained in
some other object, and which appearance should be used when displaying it. Spline allows the
features of small objects to be changed very rapidly.

Messages describing changes in small objects are sent using single User Datagram Protocol
(UDP) messages. This allows them to be communicated very rapidly. The objects must be
small enough so that a message describing one will �t in one UDP message.

Graphic models, recorded sounds, and behaviors are represented using large objects. These
objects are identi�ed by Universal Resource Locators (URLs) and communicated using standard
World Wide Web protocols. Standard formats are used so that standard tools can be used to
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create particular models, sounds, and behaviors. In Spline 3.0 the primary formats will be
VRML, WAVE, and Java respectively. There is no limitation on the size of the large objects
in Spline, but it must be realized that several seconds can be required to communicate them.
Fortunately, since these objects change infrequently, this latency can generally be masked by
preloading the objects before they need to be used.

The �nal kind of object in the world model corresponds to continuous streams of data such
as sound captured by a microphone. These streams are communicated in small chunks using
UDP messages. At the moment, Spline does not support video streams. When it does, they
will be communicated in a similar fashion, but of necessity using larger messages.

A central feature of Spline is that using the various messaging approaches above, every
kind of data in the world model can be communicated between Spline processes. Therefore,
applications can modify and extend every aspect of a virtual world. Further, while it is often
advantageous to prestore data for an application to use (i.e., by delivering it on a CD-ROM)
this is not necessary. Once started, an application will fetch everything it needs that has not
been prestored.

3.5 The Spline API

Spline's Application Program Interface (API) consists primarily of operations for creat-
ing/deleting objects in the world model and reading/writing instance variables in these objects.
The application support module contains various facilities that make application writing easier.

The core of Spline is written in ANSI C. However, for the convenience of application writers,
high level language interfaces are provided as well. In Spline 1.5 the primary high level API was
Scheme. An interactive interface was created by interfacing GNU Scheme to Spline. Having
an interactive interface greatly speeds the implementation of applications by supporting more
rapid evolution. In Spline 3.0, Java will be the primary high level interface.

Another interesting application support tool consists of special support for the smooth
motion of objects. The simplest way for an application to move an object along a trajectory from
one position and orientation to another is to repetitively set the object's position and orientation
to one spot after another along the trajectory. However, to get smooth appearing motion by
this method, the position and orientation must be speci�ed many times per second (i.e., 30
times or more) which leads to high computation and communication costs. Spline provides
interpolation-based facilities that allow smooth motion to be achieved while communicating at
most a few positions and orientations per second.

Another common problem experienced in virtual worlds is the need to move an avatar or
other object along the surface of the ground, while avoiding �xed obstacles. To support this,
Spline provides a general terrain following facility (Barrus & Waters, 1996). Given any 3D
point, this facility can determine the height of the `ground' below a query point and whether
a collision with a �xed obstacle is occurring in only a few microseconds. This is done by
organizing the polygons describing the terrain in a virtual world in a non-uniform depth, axis-
aligned quadtree structure where the leaves contain at most a small number of polygons. Inside
each leaf, polygon data is stored using both bounding boxes and a 2D binary partitioning tree
to limit the number of oating point operations during the �nal polygon intersection check.

It is expected that world builders will build additional facilities like smooth motion and
terrain following. This is easy to do by subclassing Spline's built-in objects.
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Figure 12: Typical con�guration supporting a user.

3.6 Rendering

Figure 12 shows Spline being used to support an application that interacts with a human
user. The primary feature of the �gure is that three Spline applications are used in this situation.
The main application (in the dashed box) presents an interface to the user and interacts with
the Spline process in the middle of the �gure.

Visual and audio rendering modules are provided as part of Spline; however rather than
being tightly integrated with Spline, they are separate applications running on top of Spline.
They use the same API as other applications and do not have to be tightly coupled with the
main application.

One advantage of the loose coupling of renderers is that the renderers interacting with a
person can run in separate Spline processes from the main application. This allows them to
operate on separate machines in situations where maximum performance is required. In Spline
1.5 visual and audio rendering was required to run in separate processes. In Spline 3.0 the
primary mode of operation is for them to run in the same process with the main application,
sharing a single copy of the world model as shown in Figure 12.

The greatest advantage of the loose coupling between rendering and Spline is that Spline is
not tied to any one renderer. Rather, Spline is designed to be easily interfaced to almost any
renderer. For example, the Spline interface for the visual render used by Diamond Park was
implemented in only two weeks. Default renderers are supplied with Spline, but it is expected
that demanding applications will switch to renderers that are tuned to the task at hand.

Consider visual rendering as an example. In the world model, objects can have positions,
orientations, and appearances. Visual rendering is controlled by visual Point of View (POV)
objects that act as cameras. Using an explicit object for this allows Spline to support a wide
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Figure 13: Typical con�guration supporting a simulation.

variety of interaction models including through-the-eyes views and more distant views. By
moving a visual POV around, a user process controls what is rendered. The visual renderer
creates a scene graph by combining the appearances associated with the objects that are near
enough to be seen and renders the scene graph from the vantage point speci�ed by the visual
POV object. Spline itself does nothing with the graphic models that describe the appearances
of objects. The only thing that matters is that the visual renderer being used can load them.

Audio rendering is supported in a similar fashion. The world model contains objects repre-
senting sources of sounds. These objects specify the places where the sounds are located. They
can either be point sources or di�use ambient sources. Sound to be played through these objects
can be captured live from a microphone or prestored in recorded sound objects. The point of
view from which a given user perceives sound is represented by an audio POV object. The audio
renderer creates an audio scene graph by combining the sounds associated with sound source
objects that are near enough to be heard and renderers this scene graph from the vantage point
speci�ed by the audio POV object. Spline itself does nothing with sound encodings. The only
thing that matters is that the audio renderer being used can decode them.

3.7 Supporting Simulations

From the earliest days of work on Spline, we paid close attention to supporting interaction
with computer simulations as well as people. The way this is done is shown in Figure 13.

A simulation connected to Spline operates just like any other application using the same
API to interact with the world model. However, no visual or audio rendering is needed, because
there is no person to see or hear it. Large powerful computers without support for graphics
or sound can be used to manage shared content. Complex simulations, intelligent agents, and
large persistent databases can all be directly connected to a virtual world using Spline.

It is important to note that it is a great deal easier to say that a simulation interacts with
the world model just like any other application than it is to make it possible for a simulation to
e�ectively interact with the world model. The reason for this is that applications supporting a
user have a human being in the loop and simulations do not.
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For example, it is typically easy for a person to look at an avatar and determine which
way the avatar is facing, based on a rendered image. However, it verges on impossible for a
program to tell where the face of an avatar is by looking at a list of polygons. To deal with this
kind of problem, the object hierarchy used in Spline's world model has been designed to make
information such as which way an avatar is facing easily accessible to programs. Speci�cally,
Spline's world model contains an object class that is used to identify avatars as opposed to other
kinds of objects and is designed so that an application can easily determine which direction is
up for a given object and which way the object faces.

3.8 Hardware/Software Requirements

The primary operating environment for Spline 1.5 was IRIX on SGI machines. However,
the core modules shown in Figure 11 are easily portable and were tested under HPUX on HP
machines. In contrast, the renderers for Spline 1.5 were strongly tied to SGI machines.

The visual renderer for Spline 1.5 was implemented using the Performer toolkit from SGI.
Speci�cally, it was implemented by modifying the sample Performer application called Pery
so that the scene graph to be displayed was obtained from Spline's world model. The audio
renderer for Spline 1.5 used standard algorithms to create stereo sound for the user to hear
and to capture what the user says into a microphone. Volume attenuation was used to indicate
distance and stereo panning was used to indicate direction. Although much of the audio renderer
for Spline 1.5 is basically machine independent, the lower levels of the renderer are closely tied
to the particular sound board API used on SGI machines.

The primary operating environment for Spline 3.0 will be Windows 95 on Pentium-based
PCs. The �nal choice of default renderers for Spline 3.0 has not yet been made. Unfortunately,
it does not appear that any choice today will support applications with graphic models as
complex as Diamond Park on PCs. However, given the rapid pace of development of graphics
accelerator boards, this should be possible soon.

3.9 Related Platforms

To achieve scalability to large numbers of users, Spline adopts the basic approach pio-
neered by SIMNET (Calvin, et al., 1993) and DIS (Standard, 1993) namely the realization that
achieving real-time performance in a scalable distributed system requires giving up on having
a completely consistent view of the world model throughout the entire system. In Spline 1.5
we also borrowed a number of architectural ideas from SIMNET and DIS, particularly the
use of messages with complete object state (rather than incremental updates) as a means of
coping with the unreliability of UDP, the use of keep-alives as a way to reduce the impact of
lost messages and for informing late comers of the current state of the simulation, peer-to-peer
messaging with no central services for scalability and fault tolerance, and dead-reckoning to
reduce the number of messages about object motion.

However, Spline goes beyond DIS in �ve important ways: (1) Spline is a complete platform
providing visual and audio rendering modules not just a communication standard, (2) much
greater emphasis is placed on communicating audio information, (3) every kind of data in the
world model can be transmitted between Spline processes at run time, (4) the ownership of
objects can be transferred from one process to another, and (5) the world model is broken up
into locales that are communicated separately. Spline shares this last feature with NPSNET
(Macedonia et al., 1994; 1995) (http://www-npsnet.cs.nps.navy.mil/npsnet/) but as dis-
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cussed in (Barrus, Waters & Anderson, 1996), Spline's `locales' are more exible than the `areas
of interest' in NPSNET.

In Spline 3.0 we have diverged further from DIS. We have adopted a di�erent strategy for
object state messages that is built on the Scalable Reliable Multicast protocol (Floyd, Jacobson
& Weinmayr). Being able to depend on the eventual delivery of certain kinds of messages has
permitted us to eliminate keep-alives, and has simpli�ed robust deletion of objects from the
world model and transfer of ownership. By arranging for in-order arrival of messages on a per-
object basis we are also able to use di�erential messages that encode changes to objects rather
than sending full object descriptions in each message. We have also introduced a scalable set
of servers to manage shared resources (see Figure 10).

Much recent work on shared 3D spaces has focused on the World Wide Web (WWW) using
the Virtual Reality Modeling Language (VRML). For the most part, these systems support only
�xed background scenes, with limited sharing of avatars. Further, most currently available
commercial multi-user platforms rely on a single, central server, which puts a limit on the
scalability of the system and increases latency.

The systems that are most related to Spline are ones that have experimented with one or
more of the same basic techniques for achieving greater scalability|namely, relaxing consis-
tency, avoiding central servers, partitioning the virtual world, and communicating behaviors
rather than state changes.

Like Spline, DIVE (Carlsson & Hagsand, 1993; Hagsand, 1996) (http://www.sics.se/dce/
dive/dive.html) avoids central servers, and relies instead on peer-to-peer messaging. DIVE's
simulations are partitioned into separate virtual worlds, each with its own world database and
multicast communications. A process may only participate in one world at a time, but may
leave and enter new groups dynamically. If it is the �rst to enter a world, a process initializes
the world state from a �le. As the simulation progresses, each participating process maintains
a complete copy of the world model using reliable multicast protocols and distributed locks to
keep the world up-to-date and consistent. Processes joining later are informed of the current
world state by one of the processes that is already participating in that world.

Community Place (Lea, Honda & Matsuda, in press) has adopted a hybrid client-server/
peer-to-peer approach where servers partition the world spatially and establish multicast groups
to support those partitions. They have been studying how to apply di�erent models of dis-
tributed consistency to distributed virtual environments.

In BrickNet (Singh, et al., 1994) servers manage the communication between clients while
also acting as object request brokers. Clients \own" their objects, but may \lease" some of their
capabilities to other clients. Depending on the circumstances, leasing may be read-only, or may
allow modi�cation. These object sharing operations are mediated by the BrickNet server. Both
BrickNet (Singh et al, 1995) and the Environment Manager built on the MR Toolkit (Wang,
Green & Shaw 1995) (http://web.cs.ualberta.ca/~graphics/MRToolkit.html) share pro-
gram code to build structure and execute object behaviors in virtual worlds. Like BrickNet,
WAVES (Kazman, 1996) and RING (Funkhouser, 1995) overcome some of the limitations of a
central server by incorporating multiple communicating servers.

MERL-TR-96-02a November, 1996



& Spline 17

Diamond
Park

Simulation

network

Figure 14: Three visitors in Diamond Park.

4 Diamond Park & Spline

In addition to being an experiment in the creation of a social virtual reality system, Diamond
Park was an experiment in the use of Spline. In particular, it tests the claim that Spline makes
it easy to create such systems.

4.1 Diamond Park Implementation

Figure 14 illustrates a setup similar to the one that was used to demonstrate Diamond Park
at COMDEX in November, 1995. The setup features Spline supporting three visitors: two on
bicycles (see Figure 2) and one on a unicycle. The Spline process in the upper right supports
the Diamond Park setting itself|i.e., the landscape, the buildings, the background sounds, and
the automated tour buses.

The outline boxes in Figure 14 correspond to standard parts of Spline. The solid boxes
correspond to code speci�cally written for Diamond Park. Most of the features of the park
(e.g., visitors seeing and talking to each other) are directly supported by Spline, with only a
small amount of code being particular to the park. For instance, the speci�c features of the
park setting (e.g., the motion of the tour buses) are implemented using 600 lines of Scheme
code, which took only a couple of weeks to write.

The only other code that had to be written speci�cally for Diamond Park was support for
interaction with the speci�c interface devices used with the park. For example, 3,000 lines of C
code written in 3 weeks were required to implement a device driver to communicate with the
mechanical bicycling device (see Figure 2) and a mathematical simulation that computes how
the bicycle should move and what pedal resistance visitors should feel as they pedal around the
park. The unicycle interface is basically similar, but was somewhat easier to implement, since
it merely takes mouse and keyboard input rather than interacting with special hardware.

All in all, the code for Diamond Park consists of about 6,000 lines created in 3 man-months.
The version of Spline used to support Diamond Park (Spline 1.5) consists of about 25,000 lines
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of C code and required 4 man-years of design and implementation.
Spline greatly reduced the code needed to support Diamond Park; however, there were

other areas where large amounts of e�ort were still required. In particular, designing what
should happen in Diamond Park took approximately a man-year of e�ort and constructing the
3D visual models consumed another 8 months. Designing the soundscape and creating the
appropriate prerecorded sounds required a few months of e�ort.

The concept of locales in Spline (Barrus, Waters & Anderson, 1996) had a fundamental
impact on the design of Diamond Park in two ways. First, by partitioning the park into
sections that are handled separately, locales allow the park to be much more complex than it
otherwise could be. In particular, the insides of complex buildings such as the Velodrome and
Outer Space Building are placed in separate locales from each other and the outside landscape.
This allows the use of more complex 3D models, because no two of these models ever have to be
rendered at the same time. Second, locales support a number of interesting e�ects in the park
such as allowing the interior of the Outer Space Building to be much bigger than its exterior
and supporting rapid travel from one place to another in the park through the obelisks.

A �nal point is that the basic architectural approach of Spline, which uses the world model
database to mediate all the interaction between various parts of an application, proved very
useful when implementing Diamond Park. Ten people worked on the park. For the most part,
they worked in isolation, debugging their code in single-user mode by testing that it correctly
interacted with the Spline world model. In a �nal system integration phase that lasted only
a week, these pieces were put together to form the full Diamond Park experience. Except for
some minor teething problems stemming from the fact that the integration caused both the
world model and the message tra�c between Spline processes to grow to ten times the size we
had ever experimented with before, integration went without incident.

4.2 Performance

Returning again to Figure 14, it is interesting to consider the amount of computation and
communication required when supporting Diamond Park with Spline. When demonstrating the
park we use SGI machines connected by an Ethernet local area network (LAN).

In the situation in Figure 14, the world model of Diamond Park as a whole contains ap-
proximately 600 objects with only 100-500 objects represented in any one process at a given
moment. (The entire landscape of the park is only one object.) The graphic models associated
with these objects contain some 55,000 polygons, but typically only about 6,000{12,000 poly-
gons have to be rendered for a user at any given moment. Depending on where they are, the
users in Figure 14 hear 3{6 sound sources localized and then mixed together.

The most costly part of supporting Diamond Park is the visual rendering of the 3D graphic
models. However, because Spline's audio rendering takes place purely in software, it is also
costly. Further, to minimize latency while preventing sound drop outs, sound rendering must
be given much higher priority than visual rendering. The Diamond Park application itself and
the overhead introduced by Spline runs a distant third in computational demands.

The performance obtained with Diamond Park depends on exactly what machines are used
to support the individual users. We often support a single user by running all three Spline
activities (visual renderer, audio renderer, and application) on a single-processor SGI Reality
Station. In this situation, we achieve frame rates of 6{12 Hz depending on how much of the
park is in view. O�oading sound rendering to a second machine improves visual rendering
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performance to 7.5{15 Hz. When creating a video tape of Diamond Park, we used a four-
processor Onyx for visual rendering and o�oaded all other processing to other machines. In
that situation, we achieved frame rates of 20{60 Hz.

A key question for Spline in general is exactly how much network bandwidth is required
per user. However, because of our use of an Ethernet LAN, network usage was of little concern
to the Diamond Park demonstration. As a result, we paid very little attention to minimizing
bandwidth when implementing Spline 1.5, and therefore data about the network usage of Spline
1.5 is of little value. For example, sound streams were communicated using 16-bit linear samples
at 16,000 samples per second. This amounts to 256 kilobits per second per user. Using readily
available encodings the sound bandwidth could easily be reduced by more than an order of
magnitude. We have paid a great deal more attention to bandwidth while implementing Spline
3.0. We will run experiments testing the bandwidth requirements and scalability of Spline 3.0
as soon as the implementation of Spline 3.0 has been completed.

5 Future Directions

This paper presents Diamond Park and Spline 1.5, the software platform Diamond Park is
built on. This work was completed in November 1995. Through 1996, the focus of research
on social virtual reality at MERL has been on the creation of an improved software platform
called Spline 3.0. We expect that Spline 3.0 will be completed in early 1997.

There are three key di�erences between Spline 3.0 and Spline 1.5. First, Spline 3.0 has
been redesigned in a host of detailed ways to take advantage of the lessons learned by building
Diamond Park. The basic skeletal structure of the system is the same, but essentially every
part of the API has been improved in one way or another.

Second, Spline 3.0 has been reimplemented from the ground up with Windows 95 on PCs
as the primary platform. We intend that like Spline 1.5, Spline 3.0 will run on SGI machines;
however, we have focused on PCs to create a system that can be very widely used.

Third, Spline 3.0 will be much better integrated with other systems relevant to the de-
velopment of distributed virtual environments. Spline 3.0 will use VRML as its principal 3D
modeling �le format. In contrast, the models for Diamond Park were created using tools with
open but non-standard formats. Spline 3.0 will use Java as its principal API language. In con-
trast, Spline 1.5 used Scheme as its principal API language. Spline 3.0 will support operation
over the Internet as it exists today. Spline 1.5 has been used almost exclusively on local area
networks.

In 1997, the focus at MERL will shift away from implementing Spline to using it. We plan
to do this for two reasons. On one hand, it would be unwise to continue modifying Spline
without evaluating the bene�ts of the modi�cations made to date. On the other hand, we at
MERL are interested in returning to an investigation of novel applications.

In this regard, it is worthy of note that Spline 1.5 has been used to support two other
signi�cant applications in addition to Diamond Park. As described in (Walker & Torres, 1995),
Spline 1.5 forms the basis for a multi-user drama system called VIVA (for Virtual Interaction
with Virtual Actors). In VIVA human users perform some of the roles in a play and a com-
puter simulation performs the rest. The human-controlled and computer-controlled characters
interact on a simple 2.5D stage. Because the script the human users are following is known
in advance, it is easy for the computer simulations to track what the human users are saying
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using speech recognition and say their own lines using speech generation or prerecorded sound.
Another application of Spline 1.5 was the implementation of a networked music environment

called Network Rave created by Michael Casey. In this application, a 3D environment contains
several parts of a piece of commercially produced dance music. Users y through objects in
the environment to cause changes in the piece. Since the environment is networked, users hear
the changes that other users make as well as their own contributions. Network Rave utilizes
the full audio capability of Spline, including live speech streams, ten simultaneous high-quality
(32kHz) sample-synchronized audio loops, and control over the speaker position and volume
for each loop in response to user actions. By switching on di�erent pre-composed audio loops,
users create and mix the music themselves. However, because they are combining components
in carefully designed ways, the result always sounds coherent and synchronized.

The �rst experiment we intend to perform with Spline 3.0 is detailed scalability testing.
To date, our use of Spline has involved at most about a dozen simultaneously interacting
processes. We plan to create an arti�cial application that is parameterized so that a variety of
di�erent communication loads can be simulated. Using this, we will experiment with hundreds
of communicating Spline processes and if we can obtain the use of a su�ciently large number
of computers, thousands of processes.

At MERL, we are particularly interested in education as an application for social virtual
reality. For instance, we would like to create an environment for foreign language practice. Such
an environment would feature human users talking to each other and to intelligent simulations
capable of simple conversations in the foreign language. An interesting �rst step in this direction
might be to use a VIVA-like system in conjunction with foreign language plays.

In addition to using Spline within MERL, we intend to make Spline 3.0 available free of
charge for research purposes soon after the system is completed. For rapid progress to be
possible, many experiments in social virtual reality must be pursued in parallel.
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