MITSUBISHI ELECTRIC RESEARCH LABORATORIES
CAMBRIDGE RESEARCH CENTER

Time Synchronization In Spline

Richard C. Waters

TR-96-09  April, 1996

Abstract
The Spline scalable platform for interactive environments makes it easy to build
virtual worlds where multiple people interact with each other and with computer
simulations in a 3D visual and audio environment. A key problem shared by
Spline and many other systems is achieving accurate time synchronization of
events and data streams.

In Spline, synchronization is achieved through the use of timestamps. Given
the nature of the audio and visual data supported by Spline, timestamps on
the order of 64 bits are required to accurately specify the absolute position
of individual pieces of data in time. Nevertheless, synchronization is achieved
by using timestamps only 32 bits long, thereby saving bandwidth, storage and
computation time.

The use of 32-bit timestamps is made possible by reducing the precision
and range of the timestamps required by the data. The precision is limited by
grouping data that is sampled at high frequency into lower frequency chunks,
and giving each chunk a low precision timestamp. The range is limited by using
an efficient form of modular arithmetic for expressing timestamps.

For more information on Spline visit http://www.merl.com.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research pur-
poses provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Mitsubishi Electric Research Laboratories of Cambridge, Massachusetts; an acknowledgment
of the authors and individual contributions to the work; and all applicable portions of the copyright notice.
Copying, reproduction, or republishing for any other purpose shall require a license with payment of fee to

Mitsubishi Electric Research Laboratories. All rights reserved.

Copyright © Mitsubishi Electric Research Laboratories, 1996
201 Broadway, Cambridge, Massachusetts 02139



Contents

1. Introduction . . . . . . . ... . ...
1.1 The Synchronization Problem . . . . ... ... ... ...
1.2 An Efficient Solution. . . . . .. ... ... .. ......
1.3 Generality . . . ... oL

2.8pline . ... e
3. High Precision Absolute Timestamps . . . ... ... ... ...
4. Reducing Precision Via Data Chunking . . . .. ... ... ...

5. Reducing Range Via Modular Arithmetic . . . . ... ... ...
5.1 The Computational Complexity of Modular Arithmetic
5.2 Quotient-Normalized Modular Timestamps . . . . . . ..
5.3 Periodic Renormalization . . . . .. ... ... .. ....
5.4 Adjusting For Clock Differences Between Machines . . . .

6. Iifficient Buffering of Chunked Data . . . . . .. ... ... ...
7.Conclusion . . . . ... Lo
Acknowledgments . . .. ..o Lo

References . . . . . . . . .o



Waters 1

1 Introduction

Our long term goal is creating social virtual reality systems where people can interact in
real time for learning, work and play. In particular, we seek to create virtual worlds featuring:
multiple, simultaneous, geographically separated users; multiple computer simulations interact-
ing with the users; spoken interaction between the users; immersion in a 3D visual and audio
environment; and comprehensive run-time modifiability and extendability.

To explore the ways that social virtual reality systems can best support work and education
as well as entertainment, we believe that it is essential to create and rapidly evolve a number of
actual systems. To make this kind of exploration possible, we have focussed much of our effort
over the past two years on the creation of a flexible platform called Spline (Scalable PLatform
for INteracive Environments) for building social virtual reality systems.

The goal of Spline is to allow an application writer to focus on creating the content of a
particular world without worrying about communication and synchronization between multiple
users. In comparison to other tools for supporting 3D virtual worlds, Spline is notable in that
it supports both visual and audio interaction between people, allows runtime extensions of all
kinds of data, and is designed to support large numbers of users.

The first use of Spline has been to support a multi-user virtual world called Diamond Park
[1]. Diamond Park is a social virtual reality system in which multiple geographically separated
users can speak to each other and participate in joint activities. The most important part of a
visit to the park is meeting and talking with other visitors. We have chosen to focus primarily on
social interaction in Diamond Park, because we believe that good support for social interaction
will be the most important feature of social virtual reality applied to any purpose.

The central theme of Diamond Park is bicycling. Visitors to the park can explore a square
mile of 3D terrain. In addition to the 3D animated avatars of human users, the park contains a
number of computer simulations including a tour bus. Diamond Park is notable for providing
a relatively high level of visual and auditory detail while maintaining interactive frame rates.
We consider it a major validation of Spline that while Diamond Park required the construction
of many large graphical models and large amounts of recorded sounds, very little code had to
be written over and above what is contained in Spline itself.

1.1 The Synchronization Problem

In a typical use of Spline, a number of computers running Spline communicate a variety of
different kinds of information over a computer network. This information includes live audio
(e.g., the spoken interaction of users), changes in the appearance of the virtual world (e.g.,
altered positions of objects), and events (e.g., commands to play prerecorded sound effects).
(Although it could readily be incorporated into the architecture, Spline does not currently
support video.)

To support a quality immersive experience, it is important that the various streams of data
coming to a particular Spline node be accurately synchronized before presentation to the user.
For example, this is needed to ensure that the sound of a door slamming in the virtual world
will be heard at the same moment that the door is seen to close, rather than earlier or later.

In Spline, synchronization must be achieved in the face of an inherently messy communi-
cation environment in which UDP multicast messages are used to communicate data over an
asynchronous wide area network such as the internet. In particular, the messages from a single

MERL-TR-96-09 April, 1996



2 Time Synchronization in Spline

source are not guaranteed to arrive in order and may have latencies that differ by 100 msecs or
more. The latencies experienced by messages from different sources may differ even more.

As a result, it is not possible for the Spline processes sending data to ensure that the data
will arrive at a given receiver in a synchronous fashion. Rather, explicit timestamps are used as
the foundation of synchronization in Spline. Whenever a piece of data is sent in a message, it is
accompanied by a timestamp specifying when it should be used. Synchronization occurs at the
receiver where pieces of data are stored in buffers and removed for use at the times specified.

Since Spline supports 48 kHz audio and non-stop operation over extended periods of time,
timestamps with a precision of 0.02 msec ranging over years would be required to specify
the exact absolute positions in time of individual data samples. Such timestamps would be
straightforward to use, but would occupy 64 bits of storage. Using 64-bit timestamps would
be costly because they use a lot of space and, on 32-bit machines, require the use of multiple
precision arithmetic.

Because the typical Spline session involves the communication of a large amount of data,
synchronization and the manipulation of timestamps is a significant part of the activity of
Spline. As a result, using 64-bit timestamps would introduce a significant amount of overhead.
To avoid this, Spline has been designed to operate with compact timestamps that can be much
more efficiently manipulated.

1.2 An Efficient Solution

Two key observations make it possible to use 32-bit or even 16-bit timestamps instead of
64-bit timestamps. First, audio samples are used only in groups rather than individually. By
appropriately breaking the audio into chunks, timestamps with a precision of only 1 msec can
be used.

Second, while non-stop operation is important, synchronization never involves pieces of data
that are far apart in time, but rather only pieces of data that are quite close to each other in
time. In particular, while it is not possible to guarantee that data will arrive at the correct
millisecond, it is in general trivial to guarantee that it will arrive within at most a second of
the right time. This observation suggests the use of modular arithmetic to reduce the range of
timestamps that have to be accommodated at any one time.

Using standard forms of modular arithmetic would reduce the amount of memory needed
to represent timestamps; however, it would lead to increased computation. The reason for this
is that the standard algorithms for manipulating modular numbers are more complex than the
corresponding algorithms for manipulating absolute numbers. Fortunately, the fact that the
modular numbers to be manipulated are known to correspond to absolute numbers that are
near to each other makes it possible for Spline to use a special form of modular arithmetic in
which timestamps are represented in terms of a periodically changing base plus an offset. In
this representation, many kinds of manipulation are just as fast as the equivalent operations
applied to absolute numbers (see Section 5.2).

In Spline, we use modular, millisecond timestamps with a modulus of one week. These
timestamps can be accommodated in 32 bits, thereby saving storage, communication band-
width, and computation time in comparison with 64-bit timestamps. We chose to use 32-bit
timestamps modulo one week, because it allows Spline to tolerate clock-synchronization errors
between machines of a day or more. In addition, this choice allows Spline to conveniently refer
to times several days in the future and durations of up to one week.

MERL-TR-96-09 April, 1996



Waters 3

1.3 Generality

The approach to timestamps presented here was developed in the context of Spline. How-
ever, it could be used to support synchronization in a wide range of contexts. Specifically, the
approach should be valuable whenever high precision synchronization is required in a non-stop
system, but the events that have to be simultaneously considered for synchronization are known
in advance to be near to each other in time.

If the maximum interval between events whose timestamps have to be compared can be
sufficiently limited, it is possible to go beyond the approach used in Spline and use timestamps
with even fewer than 32 bits. For example, in some situations one could choose to use mod-
ular, millisecond timestamps with a modulus of only 15 seconds. Such timestamps could be
accommodated in only 16 bits, providing an even greater savings in storage and communication

bandwidth.

2 Spline

Before discussing the timestamps used in Spline in greater detail, it is useful to consider
the basic way that Spline operates. Spline provides a convenient architecture for implementing
multi-user interactive environments that is based on a shared world model. The world model
is a distributed object-oriented database containing information about everything in a virtual
world—where things are, what they look like, what sounds they are making, etc. Applications
interact with each other by making changes in the world model and observing changes made
by other applications.

The world model simultaneously supports four different kinds of data: large slowly changing
data (e.g., graphic models, recorded sounds), small rapidly changing data (e.g., the positions of
objects), real time data streams (e.g., user speech), and actions (programs that run remotely in
Spline processes). A key feature of Spline is that it includes an efficient scheme for synchronizing
these different kinds of data.

To allow rapid interaction between individual applications and the world model, Spline
distributes the world model, maintaining a partial copy of the model locally in each Spline
process. This copy contains the parts of the model that are relevant to what the process is
doing—i.e., are sufliciently near to the process’s focus of attention and consisting of the kinds
of objects the process is interested in. Spline provides all the processing necessary to maintain
consistency between the world model copies associated with a group of communicating Splines,
sending update messages when necessary. To minimize computation and communication, the
Spline world model is broken up into compact regions called ‘locales’ that are communicated
using separate multicast communication channels (see [2]).

To allow applications to modify and extend all aspects of a virtual world, mechanisms are
provided so that all four of the types of data in the world model can be transmitted between
Spline processes at run time. Standard formats are used for graphic models and recorded sounds
so that standard tools can be used to create graphic models and recorded sounds.

The structure of a single Spline process is shown in Figure 1. The inter-process communi-
cation module sends out multicast messages describing changes in the local world model copy
made by the local application and receives messages from other Spline processes about changes
made remotely.

Spline’s Application Program Interface (API) consists primarily of operations for creat-

MERL-TR-96-09 April, 1996



4 Time Synchronization in Spline

application

opem |
interface

application support

|
( world model )
|

inter-process communication

opem |
interface

Figure 1: A Spline process.

ing/deleting objects in the world model and reading/writing data fields in these objects. The
application support module contains various tools that facilitate interaction between an appli-
cation and the local world model copy. Foremost among these is an interactive interface created
by interfacing GNU Scheme to Spline. This greatly speeds the implementation of applications
by supporting interactive experimentation.

Figure 2 shows Spline being used to support an application that interacts with a human
user. The figure shows three Spline processes. The application itself presents an interface to
the user and interacts with the Spline process in the middle of the figure. Visual and audio
rendering modules that are supplied as part of Spline interact with separate Spline processes
on the left and right of the figure. It is likely, but not necessary, that the three Spline processes
in Figure 2 run on a single machine.

Spline’s visual renderer is implemented using the Performer toolkit from SGI. In particular,
it was implemented by modifying SGI’s Perfly example so that the scene graph to be displayed
is obtained from Spline’s world model. Each object in the world model that has a visual
appearance has an associated graphical model. The ‘camera’ specifying the point of view
(POV) of a given user is represented as an object in the world model called a visual POV.
(Using an explicit object for this allows Spline to support a wide variety of interaction models
including a through-the-eyes view and more distant views.) The graphical models for the world
model objects that are sufficiently near the visual POV to be potentially visible are combined
together into a scene graph, which is then rendered by Performer. It is easy for Spline to
support any graphical format that can be loaded into Performer.

Spline’s audio renderer uses standard algorithms to capture what the user says as data in

MERL-TR-96-09 April, 1996



Waters 5

PEAN

application

visual renderer audio renderer

‘1 + 1 + 1
i1 i1 i1
i1 i1 i1

i P P

network

Figure 2: Typical configuration supporting a user.

the world model and create stereo sound for the user to hear. Spline supports both prerecorded
sounds and live sound streams between users. Speaker objects in the world model represent
the places from which sound emanates. They can be either point sources or diffuse ambient
sources. Sound streams are typically transmitted over the network using either an 8-bit Ulaw
encoding at 64 kbits/second or ADPCM encoded at 32 kbits/second. The point of view from
which a given user perceives sound is represented by an aural POV object. Volume attenuation
is used to indicate distance and differential attenuation of the left and right channels is used
to indicate direction. In the future, we anticipate using better audio rendering algorithms to
create a more detailed auditory environment.

At the current time, the parts of Spline shown in Figure 1 run on both SGI machines and
HP machines; however, the visual and audio renderers in Figure 2 run only on SGI machines.
We anticipate porting Spline to PCs shortly, using plug-in boards to support visual and audio
rendering.

The prime point of comparison between Spline and other platforms for supporting multi-
user interactive environments is the fact that Spline is scalability to large numbers of users and
more comprehensive, supporting: both 3D graphics and live conversation.

To achieve scalability to large numbers of users, Spline adopts the basic approach pioneered
by SIMNET [3] and the distributed interactive simulation protocol (DIS) that grew out of
SIMNET. However, Spline goes beyond DIS in five important ways: (1) Spline is a complete
platform providing visual and audio rendering modules, not just a communication standard, (2)
much greater emphasis is placed on communicating audio information, (3) every kind of data
in the world model can be transmitted between Spline processes at run time, (4) the ownership
of objects can be transferred from one process to another, and (5) the world model is broken

MERL-TR-96-09 April, 1996



6 Time Synchronization in Spline

up into locales that are communicated separately [2].

There is currently a great deal of activity surrounding VRML and Java and the developers
of these tools are quite interested in supporting multi-user interaction. However, these tools do
not yet support interaction between users. VRMIL 1.0 is strictly a graphical modeling language
and Java is a scripting language that supports the easy and safe transport of programs between
different machines. VRML and Java are both very valuable tools and we intend to combine
them with Spline. This should be straightforward to do, since there is actually very little overlap
in the capabilities of the three systems—they complement each other rather than competing.

3 High Precision Absolute Timestamps

As noted in the introduction, Spline uses timestamps as the basis for synchronization. Each
piece of data sent over the network is tagged with a timestamp. Synchronization is achieved
by buffering data on receipt so as to convert inherently variable transmission delays into a
constant delay corresponding to the worst case transmission delay. In order to reduce the
overhead introduced by synchronization, it is important that timestamps be very efficiently
manipulated and compared.

A central question regarding timestamps is exactly how much computer memory is needed
to represent a single timestamp. This is determined by two key factors: the precision needed
in the timestamps and the total range of timestamps required.

The level of precision needed for timestamps is determined by the properties of the human
perceptual system and the data being transmitted. The precision needed when synchronizing
visual changes is limited by the time sensitivity of the human visual system and the frame rates
of various visual media. FExcept for certain special situations, the human eye cannot respond
to differences in time less than several tens of milliseconds. Accordingly, visual media typically
have frame rates no greater than 100 Hz. All in all, a precision of 10 msecs or so should be
adequate for visual synchronization.

The precision needed when synchronizing audio changes is limited by the time sensitivity
of the human hearing system and the sample rates of various audio formats. The ear is much
more sensitive to time differences than the eye. Differences of only a few milliseconds can be
heard. Further, audio media have a wide range of sample rates, including some that are very
high. For example, CDs use a sample rate of 44,100 Hz and a sample rate of 48,000 Hz is used
in some other digital media. All in all, audio synchronization requires much higher precision
that visual synchronization. A precision approaching 0.01 msec is needed if individual sound
samples are to be exactly positioned in time.

Most basically, the range of timestamps required depends on how long the system is intended
to operate. In the case of Spline, we desire non-stop operation over months or even years. It
is expected that while a typical user will probably participate in a Spline session for at most a
few hours at a time, the session itself could in principle continue indefinitely with users coming
and going. To support this, the timestamps used must be able to represent times ranging over
long periods. To be on the safe side, one should pick a generous range such as 100 years.

The analysis above leads to the conclusion that synchronization in Spline requires time-
stamps with a precision of 0.01 msec ranging over 100 years or so. Unfortunately, a large
number of bits are required to represent timestamps of this precision and range. In particular,
log, (100,000 X 60 x 60 X 24 x 365 x 100) = 49 bits. Further, given current computer architec-

MERL-TR-96-09 April, 1996



Waters 7

tures, there is no practical way to use only 49 bits; rather one has to step up to 64 bits. (Note
that 32 bits suffices for a range of only about 11 hours at a precision of 0.01 msec.)

Using 64-bit timestamps, synchronization would be straightforward, but costly. To start
with, a lot of space is required because 64 bits are required for every timestamp in network
messages and elsewhere. In addition, a lot of computation time is required because most current
computers do not support computation with integers of more than 32 bits. Manipulating 64-bit
numbers requires multiple precision calculation routines rather than simple instructions.

Fortunately, as discussed in the following two sections, it is possible to achieve effective syn-
chronization with timestamps that have significantly less precision and greatly reduced range.

4 Reducing Precision Via Data Chunking

The dominant consideration when determining the level of precision needed for timestamps
is the requirements of audio. This is true in part because the human audio system is more
sensitive to synchronization, or the lack thereof, than the visual system. However, the human
audio system only requires a precision of 1 msec or so.

The force behind the need for a precision as small as .01 msec comes not from a need to
synchronize sounds as a whole with each other or visual phenomena to anywhere near this
accuracy, but rather by the need to position individual sound samples with respect to each
other within a single sound very accurately. This additional need for synchronization can be
eliminated by appropriately chunking the data.

Since audio samples never occur in isolation, but only as part of long sequences of samples,
nothing is lost by requiring that they be grouped together into chunks. If the length in time
of the chunks is required to be exactly representable using the precision of timestamps chosen,
then the chunking makes it possible to use timestamps with much lower precision.

Specifically, Spline uses millisecond timestamps and requires that audio data be broken
up into chunks, where each chunk is an exact integer number of milliseconds in length. For
example, at a sound sample rate of 8,000 Hz, a chunk can contain 8 samples (1 msec), 16 (2
msecs), 32 (4 msecs), etc., but not 33 samples (4.125 msecs). At the music CD sound rate
of 44,100 Hz, a chunk can contain 441 samples (10 msecs), 882 (20 msecs), etc., but not 100
samples (2.268 msecs). If a sound as a whole is not an integral number of milliseconds in length,
the last chunk is padded with silence.

Using chunks that correspond to an exact integer number of msecs insures that when using
msec timestamps successive chunks will line up exactly one right after the other, without a gap
or overlap of even a single sample. However, the first chunk will be forced to line up exactly at
a millisecond time boundary. This represents a small loss of precision in comparison with using
more precise timestamps; however, the error is not detectable by the human ear.

The discussion above focuses on audio; however, the same chunking approach could be used
for any kind of data where the precision required to position individual samples is significantly
greater than the precision required by the human perceptual system.

5 Reducing Range Via Modular Arithmetic

In Section 3, it was pointed out that the timestamps being used in Spline have to be able
to express times throughout the entire lifetime of a Spline session, which can be very long.

MERL-TR-96-09 April, 1996



8 Time Synchronization in Spline

However, when used for synchronization, timestamps are not used one at a time, but rather in
pairs. The key question really is what is the greatest difference in time between two timestamps
that have to be compared? A Spline session can last for months without the timestamps on
two pieces of data to be synchronized ever differing by more than a few seconds. Spline takes
advantage of this fact by using modular timestamps.

In particular, instead of using the absolute time in milliseconds as a timestamp, Spline uses
the time in milliseconds modulo one week. Since one week in milliseconds is 1000 X 60 X 60 X 24 x
7 = 604,800,000, which is less than 232 = 4,294,967, 296, these timestamps can be expressed
using only 32 bits. (Following the Unix convention, time is calculated relative to January 1,
1970. The detailed reasons for choosing one week in milliseconds as opposed to some other
number less than 2% are discussed in later sections of this paper.)

Using modular timestamps, one can precisely and unambiguously synchronize any two events
that are separated in absolute time by less than one half the modulus. However, with regard
to longer time intervals, one has no useful information.

In the case of Spline, the modulus is one week and synchronization is supported for events
differing by no more than 3.5 days. The fact that longer intervals cannot be handled is unim-
portant, because Spline never has to simultaneously consider events separated by such large
intervals. In particular, using asynchronous networks, it is not possible to guarantee that data
will arrive at the correct millisecond, or perhaps even in the right second, but it is trivial to
guarantee that it will arrive without a few seconds of the right time, and therefore without
question much less than 3.5 days from the arrival time of any data it should be synchronized
with.

5.1 The Computational Complexity of Modular Arithmetic

Using modular arithmetic to change from 64- to 32- bit timestamps saves memory space
and communication bandwidth by reducing the size of timestamps, but does not necessarily
save computation time. The reason for this is that, in general, arithmetic operations on 32-bit
modular numbers are much more complex than operations on 32-bit absolute numbers. To
understand this, one must consider a few facts about modular arithmetic.

The fundamental relationship between an absolute number X and the corresponding mod-
ular number z with respect to a modulus m is the following:

X = X'xm+z

In general, modular numbers are required to be what we will call ‘remainder-normalized’. This
means that it is required that 0 < z < m. In this situation, z is the remainder of dividing X
by m and X’ is the quotient of X divided by m. For example, since

57 = 6x10-3; and

57 = Hx1047; and

B7 = 4x104+17;
the remainder-normalized representation of 57 modulo 10 is 7, while -3 and 17 are modular
representations that are not remainder-normalized.

To compute the sum Z of two absolute numbers X and Y, one can use a single machine
instruction. However to add the corresponding remainder-normalized modular numbers 2 and

MERL-TR-96-09 April, 1996



Waters 9

y one has to add the numbers and then remainder-normalize the result, using a computation
like the following, which requires several machine instructions instead of just one.

Z=Xx+7y;

if (z>=m) z =2z - m;

return z;
For example, if 57 modulo 10 is added to 58 modulo 10, the normalized result is 5 = 7+ 8 — 10.

An even greater problem arises when using modular numbers as a basis for comparing
the absolute numbers they correspond to. To start with, one must assume that the absolute
numbers differ by no more than half the modulus, because without such an assumption, the
comparison makes no sense. For example, suppose one is asked to use the two base 10 modular
numbers 4 and 7 as a basis for comparing the corresponding absolute numbers. The modular
number 4 corresponds to the absolute numbers 4, 14, 24, 34, etc. The modular number 7
corresponds to the absolute numbers 7, 17, 27, 37, etc. Without some assumption about which
absolute numbers the modular numbers can correspond to, there is no way to compare the
modular numbers. If 4 corresponds to 34 while 7 corresponds to 17, then 4 corresponds to the
larger absolute number. Alternatively, if 4 corresponds to 14 and 7 corresponds to 17, then 7
corresponds to the larger absolute number.

However, if one assumes that the absolute numbers corresponding to 4 and 7 differ by no
more than 5 (which is one half of the modulus 10) then one can definitively state that the
absolute number 4 corresponds to is less than the absolute number 7 corresponds to. The
reason for this is that the corresponding absolute numbers might be 14 and 17 or 24 and 27,
but pairs like 24 and 17, that differ by more than 5 are ruled out. In every permitted pair, the
absolute number corresponding to 4 is less than the absolute number corresponding to 7.

Even with the assumption above, determining which of two remainder-normalized modular
numbers corresponds to the larger absolute number is complex. The basic problem is that one
must compensate for the remainder-normalization when making the comparison. In particular,
due to remainder-normalization, it is possible for a modular number to be numerically smaller
than another modular number and yet correspond to a larger absolute number. For example,
while the base 10 modular number 4 corresponds to a smaller absolute number than than the
base 10 modular number 7, the base 10 modular number 1 corresponds to a larger absolute
number. The reason for this that under the assumption above, it must be the case that if 1
corresponds to 11 then 7 corresponds to 7, not 17.

To determine whether an absolute number X is less than another absolute number Y one
can use a single comparison instruction; however, comparing the corresponding remainder-
normalized modular numbers requires a computation like the following, which again requires
several machine instructions instead of just one.

z = - x;

if (z < -m/2 || (0 < z & 2z < m/2)) return TRUE;
return FALSE;

Note that in both of the code fragments above, the number of bits used to represent the
intermediate result z must be sufficient to represent the sum of two modular numbers and to
represent negative numbers corresponding to differences between modular numbers. It is there-
fore important that one week is not only less than 232, but also less than 2°° = 1,073, 741, 824,
because this allows 32-bit numbers to be used to represent both timestamps and intermediate
calculations involving timestamps without fear of overflow or underflow.

MERL-TR-96-09 April, 1996



10 Time Synchronization in Spline

5.2 Quotient-Normalized Modular Timestamps

To avoid the computational complexities presented in the last section, Spline does not use
remainder-normalized modular numbers. Rather it uses modular numbers that are what we
will call ‘quotient-normalized’. Specifically, given two modular numbers z and y

X = X’><m—|—ac;
Y = Y'xm+y;

instead of requiring that 0 < z < m and 0 < y < m, quotient-normalization requires that X' =
Y’ = @ for some particular () while requiring only that —m < z < 2+ m and —m < y < 2*m.
At any given moment, all the timestamps in existence in a given Spline process are normalized
to correspond to the same quotient (). One can think of quotient normalized modular numbers
as representing numbers by an offset from an agreed common base. For example, 17, 24, and
31 might be represented by the base 10 quotient normalized modular numbers -3, 4, and 11
respectively using the common quotient 2.

(Note that quotient normalized modular numbers require 2 + logy(m) bits to represent
them. However, as noted above, at least this many bits is also required if remainder-normalized
numbers are to be manipulated efficiently).

Quotient-normalization is appropriate for synchronization because, since all the pieces of
data under consideration for synchronization at any one moment are known to be relatively
close to each other in time, it is not unreasonable to require that X’ = Y”’. In situations where
modular numbers corresponding to widely different absolute numbers have to be simultaneously
considered, this restriction would be untenable.

The value of quotient-normalization for synchronization is that the normalization used does
not complicate the process of comparing two timestamps. In particular, one can determine
whether a quotient-normalized modular number corresponds to a smaller absolute number
than another quotient-normalized modular number by simply comparing the modular numbers
themselves using a single machine instruction. The reason for this is that since X' =Y’, X <Y
if and only if z < y.

Further, if one maintains a group of quotient-normalized numbers with —6 < 2z < m 4+ ¢
where 0 < § < m, then the quotient-normalized numbers can be incremented (or decremented)
by small amounts without fear of overflow or having to consider renormalizing the group of
numbers.

Because quotient-normalized modular numbers can be manipulated so efficiently, quotient-
normalization makes it possible for Spline to gain the space efficiencies of a modular represen-
tation without paying a price of greater computation every time timestamps are compared and
incremented.

5.3 Periodic Renormalization

One aspect of quotient-normalized modular numbers that is more complex than remainder
normalized modular numbers is that the notion of normalization is a group phenomenon. If
it is decided that the quotient ¢) has to be changed, then every modular number in use must
be simultaneously changed. However, the amortized cost of this need not be great, because
renormalization need not be frequent.

Specifically, with a modulus of 1 week, quotient-normalized timestamps only have to be
renormalized once per week—a negligible expense. (One reason Spline’s timestamp modulus is

MERL-TR-96-09 April, 1996



Waters 11

chosen to be large is to guarantee that renormalization will be a very infrequent event.) The
only complexity involved is that Spline must keep track of precisely where every timestamp is
stored so that it is prepared to renormalize them when necessary.

At the start of each cycle of operation of the system, Spline calculates the remainder normal-
ized time modulo one week. Whenever the result is less than the modular time corresponding
to the last operational cycle, this indicates that time has moved from the end of one week to
the beginning of the next week. To compensate for this, Spline renormalizes all the timestamps
currently stored by subtracting one week from them. This guarantees not only that the time-
stamps are always quotient normalized, but also that they are almost remainder-normalized in
the sense that —6 < & < m + 6 for a 6 on the order of no more than a second or so.

Note that the check for the need to renormalize happens very seldom in comparison to the
number of times that individual timestamps are manipulated and that the number of times
renormalization actually has to be performed is extremely small.

5.4 Adjusting For Clock Differences Between Machines

Spline neither assumes nor enforces a rigid synchronization between the clocks on different
machines. As a result, it is entirely possible for two machines running Spline to disagree on what
week the current time is in and therefore on the appropriate value of (). In particular, when
one machine shifts to a new week and moves all its timestamps into that week, it may continue
to receive timestamps in the previous week from other machines for some time. This has to be
detected so that when these timestamps are read into the machine they can be converted to
the same week as the other timestamps in the machine.

As a basis for detecting when timestamps in incoming messages have to be renormalized,
Spline assumes that while the clocks on the various machines in a Spline session need not be
rigidly synchronized, they must be approximately synchronized. Specifically, Spline assumes
that the clocks on two communicating machines differ by no more than 24 hours. In com-
parison to a modulus of 1 week this is a relatively small difference, and makes it possible to
unambiguously determine the relative values of () on two machines. (Allowing for large differ-
ences between the clocks on communicating machines is a second reason why a large modulus
is used by Spline.)

In particular, the values of () on two machines cannot differ by more than 1. If they differ,
then it must be the case that one machine is near the end of a week and the other machine is
at the beginning of the next week.

Suppose that machine M has just switched from one week to the next. In this situation,
the timestamp representing the current time on M will be small. If M receives a message
with a timestamp referring to the same week, the timestamp will also be small and all is well.
However, if M receives a message with a timestamp corresponding to the prior week, then the
timestamp will be large because it must refer to the end of the prior week. Observing the large
timestamp, M knows that this message comes from a machine that has not yet made the switch
to the current week. M adjusts the timestamp in the message forward to the current week, by
subtracting the modulus from it.

Alternatively, suppose that M is nearing the time when it will switch to the next week. In
this situation, the timestamp representing the current time on M will be large. If M receives a
message with a timestamp referring to the same week, the timestamp will also be large and all is
well. However, if M receives a message with a timestamp corresponding to the next week, then

MERL-TR-96-09 April, 1996



12 Time Synchronization in Spline

the timestamp will be small because it must refer to the beginning of the next week. Observing
the small timestamp, M knows that this message comes from a machine that has already made
the switch to the next week. M switches the timestamp back to the current week, by adding
the modulus to it.

Note that testing whether the times have to be renormalized in a message is a relatively
simple operation and that this operation only has to be applied when messages enter a Spline
process, not when manipulating individual timestamps in the process. Further, actual renor-
malization of times in a message very seldom has to occur, because communicating pairs of
machines almost always agree on what week it is.

It should also be noted that adjusting for clock differences between machines consists of
more than just insuring that the timestamps in use are appropriately quotient-normalized. In
particular, a given Spline process maintains estimates of the differences between its clock and
the clocks used by each of the Spline processes sending data to it. These estimates are used
to adjust the timestamps in the messages received so as to cancel out clock differences. For
example, if machine M estimates that the clock on another machine M’ is running 150 seconds
behind the clock on machine M, then M will add 150 seconds to every time specified by machine
M.

The clock difference estimates are determined based on an additional timestamp field in
each message. This field contains the exact time the message was sent (according to the
sending machine). A simple difference between this field and the time of receipt (according
to the receiving machine) is used as the basis for estimating the clock difference between the
sending and receiving machines. This method of estimation deliberately conflates the actual
clock difference with the transit time of the message. This is done because it is just as essential
to adjust for transit time as for clock differences. Because the transit times of individual
messages between two machines can vary significantly, time difference estimates derived from
many different messages are statistically combined to yield a reliable estimate of the true time
difference between a given pair of machines.

For example, suppose that the clock on machine M’ is running 200 msecs behind the clock
on machine M. Suppose further that messages from M’ to M take an average of 11 msecs to
go from one machine to the other. This would result in M having a clock difference estimate
for M’ of 211 msecs, which in turn would cause 211 msecs to be added to every timestamp sent
from M’ to M. This guarantees that messages sent from M’ that (from the perspective of M’)
contain times immediately in the future will appear to M to contain times that are immediately
in the future as opposed to in the past.

In addition to a single timestamp on a message indicating when it should be used, a message
can contain additional timestamps used for other purposes such as specifying when some activity
should stop. These additional timestamps are adjusted and renormalized in exactly the same
way as the main timestamp.

6 Efficient Buffering of Chunked Data

Once the timestamps in a message have been normalized, all that remains for Spline to do
is ensure that the data in the message is used when specified. For most kinds of data, this
is simple to do. The messages are simply stored in a buffer until the time specified by their
timestamps, at which time they are retrieved for processing.

MERL-TR-96-09 April, 1996



Waters 13

Data T

Buffer length N

data length I, starting at time U

Figure 3: The buffering of sound data.

However, to efficiently handle chunks of sound data, more complex processing is required
as depicted in Figure 3. The central difficulty with sound data is that there is a lot of it. A
key thing that needs to be avoided is repeatedly moving the data around from place to place
in memory. When a message with a chunk of data in it is received, this data must be moved to
some buffer for storage until such time as it can be used. It is highly desirable to insure that
the data is moved only once before it is used, rather than moving it several times, because each
time the data is copied, a significant amount of computation is used.

The top of Figure 3 depicts a chunk of data with a renormalized timestamp 7. The data is
copied into a portion of a buffer whose total length is NV msecs. Typical values of N are from
1000 to 2000 msecs, i.e., 1 to 2 seconds.

The buffer is treated as a ring with the position B of the data in the buffer calculated by
computing the remainder of T" divided by N. It will be appreciated that T itself was computed
by taking the remainder of dividing an absolute time 7 by the timestamp modulus m = 1
week in milliseconds. Thus By = (7 modulo m) modulo N. In general, this kind of double
use of modular arithmetic can lead to a complex and confusing relationship between By and
7. However, in Spline, it is required that N be a divisor of m. When this is the case, then (7
modulo m) modulo N = 7 modulo N and thus By simply equals 7 modulo N.

To satisfy the requirement that N be a divisor of m, it is helpful to select a timestamp
modulus that has many divisors. In this regard, a modulus of 1 week in msecs, which equals
210 % 33 x 5% x 7, is particularly convenient. The wide range of divisors afforded by this number
makes it possible to obtain a buffer length approximately equal to almost any desired length.

The bottom of Figure 3 shows a chunk of data of length I msecs, being read out of the
buffer for use at time U. The location By of the data in the buffer is computed by taking
the remainder of U modulo N. Two aspects of this are worthy of note. First, using modular
arithmetic to compute By effectively retrieves the data that was most recently placed in the
buffer at the specified position. For this to work, the buffer has to be large enough that the
data corresponding to some particular time will have a chance to be read out before data about
some future time overwrites it. For example, if a system operates in such a way that sound

MERL-TR-96-09 April, 1996



14 Time Synchronization in Spline

data is never sent until less than 1 second before it should be used, then a buffer length of a
little more than 1 second will be sufficient to ensure that future data will not overwrite older
data before the older data can be used.

Second, if the length L of the data chunks to be read out is chosen so that L is a divisor of
the buffer length N, then things can be arranged so that the chunk to be read out will always
be a contiguous piece of memory rather than wrapping around from the end of the buffer to
the beginning. This makes it possible to use the data directly out of the buffer, rather than
copying it to a staging area before use.

It should be noted that the approach shown in Figure 3 handles incoming messages even if
they are received out of order. The data in each message is simply put in the appropriate place
in the buffer, from which it can be read out, in order, later.

7 Conclusion

By taking advantage of the fact that the human perceptual system is strictly limited in
the level of synchronization that it can detect and the fact that even under an assumption
of non-stop operation, synchronization of data communicated in real time is a local process
only requiring the comparison of timestamps that are near each other, it is possible to achieve
synchronization using 32-bit modular timestamps. By using quotient-normalization instead of
remainder-normalization, the advantages of reduced computation can be obtained in addition to
reduced memory and network bandwidth requirements. The use of 32-bit modular timestamps
was presented in the context of the Spline scalable platform for interactive environments, but
could be useful in a wide variety of situations in which multimedia data has to be communicated
in real time.

In a situation where the clocks on a group of communicating machines could be quite closely
synchronized, it should be possible to support synchronization with 16-bit modular timestamps.
In particular, if the sum of the maximum clock difference and the maximum message transit
time were on the order of only a second or so, then it should be possible to operate with
a timestamp modulus of 15 seconds which is 1000 x 15 = 15,000 msecs, which is less than
211 = 16384 and therefore allows quotient-normalized timestamps to be represented in 16 bits.
Beyond the stringent requirements on clock synchronization, the only obvious problem with
this would be that the total number of timestamps being stored at any one time would have to
be kept small since renormalization would have to occur four times per minute.

In Spline, it was decided to go with the much larger modulus of 1 week in milliseconds for
a number of reasons. Using a large modulus reduces the frequency at which renormalizations
have to occur and allows Spline to tolerate large differences among the clocks on a group of
communicating machines. Beyond this, the exact choice of 1 week has many virtuous properties.
To start with, 222 < 1 week in msecs < 23°, which means that 1 week is close to the largest
modulus that allows quotient-normalized numbers to be represented in 32 bits. In addition, the
fact that 1 week in milliseconds has a wide range of divisors allows for a great deal of freedom
in picking the buffer length N in Figure 3 and therefore also allows a great deal of freedom
in picking L. Lastly, 1 week is a unit that is easy to remember and understand. In Spline
we use numbers limited to 1 week in milliseconds not only to represent timestamps (which are
largely hidden from the application programmer), but also to represent durations (which are a
prominent part of the application program interface).

MERL-TR-96-09 April, 1996



Waters 15

Acknowledgments

The author and David B. Anderson are the principal architects and implementors of Spline.
Additional major contributions to Spline were made by John W. Barrus, Joe Marks, David
Marmor, Michael A. Casey, and William S. Yerazunis.

References

[1] Anderson D.B., Barrus J.W., Brogan D.C., Casey M.A., McKeown S.G., Sterns I.B., Waters R.C.,
& Yerazunis W.S. (1996) “Diamond Park and Spline: A Social Virtual Reality System with 3D
Animation, Spoken Interaction, and Runtime Modifiability”, MERL TR 96-02.

[2] Barrus J.W., Waters R.C., & Anderson D.B. (1996) “Locales and Beacons: Efficient and Precise
Support for Large Multi-User Virtual Environments”, IEEE Virtual Reality Annual International
Symposium, (Santa Clara CA, March 1996), 204-213, IEEE Computer Society Press, Los
Alamitos CA.

[3] Calvin J., et al (1993) “The SIMNET Virtual World Architecture”, Proc. IEEE Virtual Reality
Annual International Symposium, 450-455, (Seattle WA, Sept. 1993).

MERL-TR-96-09 April, 1996



