
MERL - A MITSUBISHI ELECTRIC RESEARCH LABORATORY

QOTA:
A Fast, Multi-Purpose Algorithm For

Terrain Following In Virtual Environments

John W. Barrus
 Richard C. Waters

MERL-TR-96-17 September, 1996

Abstract
To keep avatars and other moving objects on the ground in virtual environments, it is nec-

essary to find the points where these objects should contact the terrain. This is often done using
collision detection; however, this is inefficient, because general collision detection solves a
problem that is inherently more complex than merely determining terrain contact points. Be-
cause the Quick Oriented Terrain Algorithm (QOTA) focuses solely on the problem of inter-
secting lines of a predetermined orientation with a terrain model, it provides very rapid support
for terrain following. For example, given a 13,000 polygon terrain, QOTA running on a
250MHz R4400 MIPS processor can calculate an intersection point in less than 19 microsec-
onds (1.9 x 10-5 seconds).

Given a preferred orientation, such as the direction of the gravity vector, for the lines to be
intersected with a terrain, QOTA uses a pre-processing step that sorts the terrain polygons into
a quadtree and adds bounding boxes and polygon edge equation parameters to speed up poly-
gon containment checking. In the example above, this preprocessing takes approximately 2
seconds.

In addition to terrain following, QOTA is useful for detecting certain limited kinds of colli-
sion detection and determining containment.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in
part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial
copies include the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories of Cam-
bridge, Massachusetts; an acknowledgment of the authors and individual contributions to the work; and all applicable portions of
the copyright notice. Copying, reproduction, or republishing for any other purpose shall require a license with payment of fee to
Mitsubishi Electric Research Laboratories. All rights reserved.

Copyright © MERL - A Mitsubishi Electric Research Laboratory, 1996
201 Broadway, Cambridge, Massachusetts 02139

1

Introduction
Although interactive virtual environments usually don’t have a full physically-based simulation of

gravity, they often include a simplified simulation of the effects of gravity. In particular, they often re-
quire that a mobile object, such as a user’s avatar, must follow the terrain, remaining in contact with the
ground at all times. In addition to providing greater realism, this has the advantage of reducing the user’s
navigation problem from 6 degrees of freedom to only 3. A user can move in 2 dimensions on the ter-
rain and rotate, but the elevation, pitch and roll are constrained by the terrain.

Terrain contact points can be straightforwardly determined using standard collision detection algo-
rithms. However, these algorithms are relatively expensive. Many virtual environments avoid this ex-
pense by utilizing a flat terrain with a constant altitude everywhere. This makes terrain following trivial,
but lacks realism.

Our experience with Diamond Park [Anderson 96] suggests that a complex and varied terrain pro-
vides significantly increased interest and realism for the participants. To allow the use of a complex ter-
rain without incurring unreasonable computational costs, the Quick Oriented Terrain Algorithm (QOTA,
pronounced kota) was developed as part of the Scalable Platform for Large Interactive Networked Envi-
ronments (Spline) [Anderson 96].

The key insight that leads to an efficient solution for terrain following is that while a terrain model
specifies a surface in 3D space, it is essentially 2D in nature−it can be viewed as a 2D map marked with
heights. More specifically, it is assumed that like other 3D models, a terrain model is composed of poly-
gons. However, while a terrain model may contain tens of thousands of polygons, a ray parallel to the
gravity vector will intersect only a single polygon (or in the case of an overhang, at most a couple of
polygons).

This implies that determining where a falling object will hit a terrain can be done in two steps. The
first step determines which polygon(s) the object might possibly strike and can be done purely in two
dimensions. The second step determines the height of the intersection point by doing more general inter-
sections with only a very small number of polygons.

In the first step, it is important to realize that the goal is to discard the huge number of polygons the
object cannot possible strike as rapidly as possible. QOTA does this by sorting the polygons into an axis-
aligned quadtree. Using this representation, QOTA can zero in on a small number of relevant polygons
using O(logn) simple comparisons where n is the number of polygons.

A second insight is that while a terrain may contain many complex features, the scale of these fea-
tures is large in comparison with the size of the objects we wish to place upon it. This means that it is
typically sufficient to approximate a local patch of the terrain by a plane and place an object on this
plane. The value of this in turn is that any three intersection points in the local neighborhood will suffice
to specify the plane. There is no need to determine where particular points of an object intersect the ter-
rain.

For example, consider driving a simulated car on a virtual road. Each time the X-Y position1 of the
car changes, the placement of the car on the terrain could be calculated as follows. Z values are calcu-
lated corresponding to three X-Y positions arrayed in a triangle whose size is roughly the same as the
footprint of the car. The three values obtained are used to define a plane and the wheels of the car are
placed on this plane. The fact that the bottoms of the wheels will be slightly above or below the terrain
surface, will typically not be visible to the user. (If a terrain contains features whose size and scale are
comparable to the object being placed on it, then there is little alternative but to use full collision detec-
tion and incur the associated costs.)

A final insight is that in an interactive virtual environment, terrain following will be repetitively ap-
plied to a given object many times per second. This means that the object will only move a small dis-

1 To simplify the presentation, it is assumed that the fundamental orientation of the terrain is parallel

to the X-Y plane of a Cartesian coordinate system and that the gravity vector points toward negative Z.
However, this is not a requirement imposed by QOTA.

2

tance between calculations and any errors induced by basing intersections on a preferred orientation in-
stead of on the actual direction of motion will be slight.

For example, one could use the following alternative approach to positioning a simulated car on a
virtual road. First, it is assumed that the car was previously positioned on the road and has just been
moved by only a small amount in X and/or Y. One can use this motion to estimate the new X-Y posi-
tions of the bottoms of the four wheels and then determine the corresponding Z values. The wheels are
then moved up or down as appropriate. Because this may change the tilt of the car, this may cause the X-
Y positions of the wheels to change as well, which can lead to errors in the final Z positioning. However,
because the original change in X-Y position was small, the change in tilt must be small and the resulting
errors must be small. (Again, if small changes in X or Y can lead to massive changes in Z, then there is
in general little alternative but to use full collision detection.)

The QOTA Data Structure
Externally, QOTA represents a terrain as a list of convex polygons. (Two specific polygon data for-

mats are currently supported. More can easily be added.) The terrain formed by combining the polygons
can be arbitrarily complex. In particular, the polygons can overlap and there can be holes caused by gaps
between the polygons. The polygon list can be an entire graphic model or, for greater efficiency, just the
part of the model that corresponds to the ground.

When the polygons are read into memory, they are sorted into a quadtree representation for rapid ac-
cess. This preprocessing takes approximately 2 seconds for 10,000 polygons. Once preprocessing is
complete, the terrain data can be repeatedly accessed very rapidly. (Although it is not yet supported, it
would be straightforward to create an on-disk format for the quadtree structure so that loading of terrain
models would be faster.)

In addition to the terrain, the user specifies a preferred orientation called the ‘gravity vector’ (the di-
rection that objects fall toward the terrain). The first step of preprocessing transforms the coordinate
system used to represent the polygons so that the gravity vector is aligned with the negative Z axis. The
use of a transformed coordinate system allows QOTA to accommodate any arbitrary gravity vector while
using axis aligned computations in its internal operations. (The 3x3 rotation matrix R used to accomplish
this, and its inverse, are saved so that they can be used to convert back and forth between the virtual-
environment coordinate system and the terrain-following coordinate system, when the terrain data is ac-
cessed.)

Once the gravity vector has been aligned with the Z axis, the polygons are projected onto the X-Y
plane. (Almost all the processing done by QOTA is performed in two dimensions.) The contents of the
data structure used to represent a polygon are summarized in Table 1.

The next step in the process is building a quadtree structure (see for example [Samet 89]) in which
each leaf of the quadtree contains the polygons that intersect the area enclosed by the leaf. The resulting
quadtree nodes contain the data shown in Table 2.

The nodes in the quadtree are either leaves in which case they contain a list of the polygons that in-
tersect the BBox of the leaf or they are non-leaf nodes in which case they specify two axis-aligned cut
lines that divide the node into four child nodes. To minimize memory usage, the quadtree structure con-
tains only one copy of each polygon. Polygons are referred to by pointers from every quadtree leaf that
intersects them.

The quadtree for a list of polygons is constructed recursively as follows. Initially, all the polygons

Data Description
BBox 2D axis-aligned bounding box
Vertices Vertices of polygon
Lines List of 2D line equations
plane 3D Plane equation

Table 1. Polygon data structure.

Data Description
BBox 2D axis-aligned bounding box
Xdiv, Ydiv X and Y division points
Child[4] Child nodes
PolyList Polygons intersecting leaf

Table 2. Data stored in quadtree node.

3

are placed in a single leaf node (the root node). The
BBox for the root node is then computed by trav-
ersing the list of vertices and computing the mini-
mum and maximum X and Y values.

The algorithm then continues by selecting leaves
containing many polygons and breaking them up
into smaller leaves that, on average, contain fewer
polygons. This process is controlled by two pa-
rameters Maxpoly and Maxdepth. Maxpoly specifies
a desired upper limit on the number of polygons in
any one leaf. Maxdepth specified a maximum al-
lowed depth in the quadtree created.

The quadtree continues to grow as long as there
is any leaf node N that contains more than Maxpoly
polygons and is at less than Maxdepth in the quad-
tree. If there is such a node, it is converted into a
non-leaf node with four leaf-node children as fol-
lows.

X and Y values are chosen to divide the BBox of
N into quadrants and stored in Xdiv and Ydiv. In the
current implementation of QOTA, this is done by
creating four equally sized quadrants. This is simple
and quite effective. However, using a better division
technique could create a more balanced and other-
wise more optimal result.

Once the child nodes have been created, N is
converted into a non-leaf node and each polygon that
was in N is placed in each child that it intersects.

The quadtree construction process is illustrated
in Figure 1, which shows a four-polygon terrain converted into a quadtree with Maxpoly = 3 and Max-
depth = 3. Note that using the simple cut-line selection algorithm above, it is likely that there will always
be a node containing all four polygons no matter how great a depth is allowed. However, as the depth
increases, the area covered by quadtree leaves containing four nodes drops, and therefore it becomes less
and less likely that determining a given terrain intersection point will require considering all four poly-
gons. (The only way to avoid having a leaf node containing all four polygons is to choose cut lines that
pass through the vertex shared by the polygons.)

Accessing Terrain Data
Once a QOTA quadtree has been created, the Z value corresponding to an X-Y point P can be very

rapidly determined in three steps as follows. (Note that if the gravity vector in the virtual world is not
parallel to the Z axis, the rotation matrix R used when creating the quadtree is applied to convert the ter-
rain-intersection request into the form above.)

The first step is to search the quadtree to determine which leaf node P is in. This is extremely fast,
because two simple comparisons suffice to determine which child contains a given point in a non-leaf
node (see Table 3). One consequence of the high speed of this step is that it is not very important that the
simple algorithm above does not lead to a well balanced quadtree, but rather to one where areas with
many small polygons have more quadtree leaves than those with larger polygons.

1 2

4 3

D

A
B

C

AD ABCD BCD D

ABCD

AB B BC ABCD

A AB ABCD AD

Root Level

1st Level

2nd Level

3rd Level

Figure 1. A simple terrain and QOTA quadtree.

4

Once the right quadtree leaf has been found, the polygons in the leaf are checked to see which poly-
gons (if any) contain the point P. For each polygon this is done in two steps. First, a fast check of the
polygon’s BBox (see Table 1) is done to determine whether the position might possibly be in the poly-
gon. If it might be, then line equations corresponding to the edges of the polygon are used to determine
whether the point P is in fact in the polygon.

There is a line equation for each of the polygon’s edges. Given two consecutive vertices V x y1 1 1= (,)
and V x y2 2 2= (,) going counterclockwise around the polygon, the line equation isAx By C+ = − where
A y y= −2 1, B x x= −1 2 , and C x y x y= −2 1 1 2.

The polygon interior, which must be convex, is the intersection of the positive half planes specified
by the line equations for the polygon. That is to say if Ax By C+ < − for any of the line equations then P
is not contained in the polygon.

The above method for determining whether a point is in a polygon is illustrated in Figure 2. The
dotted line around the figure is the BBox of a quadtree leaf, which contains parts of 7 polygons. One of
these polygons (shaded gray) is a triangle. The figure shows the BBox of the triangle and its three line
equations. The point P is in the bounding box, but is on the negative side of line equation A.

Once a 2D point P is found to be contained in the 2D projection of a polygon, the Z value of the cor-
responding 3D point on the polygon is determined by solving the plane equation for the polygon. Spe-
cifically, if the plane the polygon is in is defined by the equation ax by cz d+ + + = 0, then for a given X
and Y, Z a c X b c Y d c= − − −(/) (/) (/) .

It may be the case that a given input point P intersects no polygons or several. In the first situation,

Operation compare add mult
Find quadtree
child

2 0 0

BBox containment 1 to 4 0 0
Line equation eval 1 1 2
Intersect with
plane

0 2 2

Table 3. Number of floating point operations
per calculation for terrain following.

Positive

Negative

Point P

Axis-aligned bounding box

line A

line C

line B

Figure 2. Bounding box and line equations for
determining point/polygon containment.

5

an indication is returned that P does not correspond to any part of the terrain. In the later case, it is typi-
cally most useful to return either the nearest point below a specified starting Z value, or the nearest point
above this value, or both. (If the gravity vector in the virtual world is not parallel to the Z axis, then the
inverse of the rotation matrix R used when creating the quadtree is applied to convert the results into the
coordinate system of the virtual environment.)

Evaluation
Table 4 illustrates the effect of using different values of Maxpoly and Maxdepth when creating a

QOTA quadtree. It summarizes four different quadtrees created for the 13,346 polygon outdoor terrain
for Diamond Park. As Maxpoly is reduced, the number of quadtree nodes (and therefore the amount of
memory required) rises rapidly, but the average number of polygons per leaf node falls. This is essen-
tially a time-space tradeoff since traversing the quadtree is much faster than checking for the containment
of a point in a polygon.

The most interesting number in Table 4 is the last column. It shows the expected number of polygon
containment tests that need to be performed when accessing a single terrain data point. This is the aver-
age number of polygons in a leaf, weighted by the areas of the BBoxs of the leaves. As Maxpoly is re-
duced, one eventually reaches a state of diminishing returns where the extra memory required is not justi-
fied by the small additional reductions in the average number of polygon containment tests.

Figure 3 is a bird’s eye view of part of Diamond Park. The picture shows the terrain and the build-
ings on the terrain. Figure 4 shows the corresponding portion of the Maxpoly = 12 and Maxdepth = 12
quadtree for the terrain. In the figure, the BBox of each leaf is drawn as a square. The level of gray used
to draw the square indicates the number of polygons in the leaf, with light gray indicating a large number
of polygons (e.g., near 12) and dark gray indicating a small number of polygons (e.g., near 1). It can be
seen that much smaller quad nodes are needed in complex areas of the scene such as the edge of the oval
building in the upper left and near the looping path in the lower right.

Max
poly

Max
depth

Num
nodes

Mega
Bytes

Avg
tests

400 5 105 1.1 319.0
16 12 6394 1.7 9.3
12 12 9069 1.9 7.2
8 14 17865 2.6 5.2

Table 4. Statistics on Diamond Park quadtrees.

Figure 3. A scene in Diamond Park
Figure 4. QOTA quadtree corresponding to

Figure 3. A scene in Diamond Park

6

Many people creating virtual environments on Silicon Graphics workstations use the Iris Per-
former ® toolkit. This library includes a set of subroutines for high-speed collision detection. These
routines support the efficient intersection of arbitrary line segments with the geometry in the environment
and are often used for terrain following.

 Table 5 compares QOTA with the collision detection algorithm in Performer version 1.2. The test
was done on a 250MHz R4400 MIPS processor using the 13,346 polygon Diamond Park terrain with
QOTA operating on a quadtree with Maxpoly = 12 and Maxdepth = 12. In this terrain, the raw polygon
data corresponds to a gravity vector aligned along negative Z, so no rotations are needed when deter-
mining terrain intersections.

The numbers in Table 5 are the times in microseconds required to determine a single terrain inter-
section point. The first line shows the average time required to determine an intersection point when
there is one. The second line shows the average time required to determine that there is no intersection
point when none exists. QOTA works particularly well in this latter situation.

When you consider that Performer’s collision detection algorithm is more general than QOTA and
therefore doing a fundamentally harder task, it is not surprising that QOTA is many times faster. The
fundamental reason for this is that while QOTA’s interface is basically the same (intersecting lines with
polygons) QOTA demands that all the lines be parallel a particular preselected direction and preproc-
esses the data to make intersections with lines parallel to this direction very fast.

Another difference between Performer’s collision detection and QOTA is that Performer operates on
the actual polygons in the scene graph. This saves memory in comparison to QOTA’s use of an entirely
different data structure. However, it runs the risk of involving more polygons than necessary in terrain
following. (In Table 5, QOTA and Performer are applied to exactly the same data.) In addition, it is
worthy of note that with distributed virtual environments, the computer running a simulation is not nec-
essarily the same as the machine running the graphical display of the environment. As a result, it can be
beneficial that QOTA operates on a data structure that is separate from the scene graph used to generate
images.

Comparing QOTA with fast collision detection algorithms in general (see for example [Cohen 95]
and [Gottschalk 96]) it is interesting to note that the basic approach to efficiency in these algorithms is
very similar in spirit to the approach used by QOTA. In particular, bounding boxes and space-dividing
data structures are used to rapidly eliminate data that is irrelevant to determining a particular collision
point. Further, there is a fundamental reliance on spatial and temporal coherence. The key reason why
QOTA is faster is that it attacks a simpler problem, which can be reduced almost entirely to 2D opera-
tions instead of 3D operations.

Other Uses of QOTA
Although designed primarily for terrain following, QOTA can be used for a variety of additional

tasks. For example, in Spline, QOTA is used for a restricted kind of collision detection and the fast de-
termination of 3D containment, in addition to terrain following.

QOTA can be used for detecting simple collisions with fixed obstacles by creating terrains with holes
in them. If an object attempts to move into one of these holes, QOTA can rapidly determine that the ob-
ject is no longer over the terrain and the application can react by refusing to let the object enter the hole.
For example, the Diamond Park terrain has holes in it corresponding to the walls of buildings and bodies
of water. The Diamond Park application uses QOTA to determine when users attempt to enter these
holes and prevents them from doing so. As a result, users cannot go through walls or enter the lakes.

Performer QOTA
Avg intersect time 1881 19
Avg no intersect time 1892 13

Table 5. Comparison of QOTA and Performer.

7

To provide for scalability, virtual worlds constructed using Spline are divided into chunks called lo-
cales [Barrus 96]. As objects move about in the virtual world it is important to detect when they leave
the boundary of one locale and move into another. This determination is done using QOTA.

Each locale is associated with a terrain model. This is used for terrain following in the locale. How-
ever, it is also used to determine whether a given point is or is not in the locale. This is done by design-
ing the boundary of the locale’s terrain so that it matches the boundary of the locale. In addition, a de-
scription of the ceiling of the locale is provided either by adding extra polygons the terrain object repre-
senting the floor or in a separate terrain object. QOTA is then used to determine not only whether there is
a floor polygon below a given test point but also whether there is a ceiling polygon above the test point.
If both polygons exist, then the test point is within the 3D volume specified by the locale. Otherwise it is
not.

Future Directions
We expect future work on QOTA to focus on three issues: refining the algorithm for greater effi-

ciency and flexibility, using the algorithm for a greater variety of tasks, and preparing the code so that it
can be widely distributed.

The key efficiency issue in QOTA is the structure of the quadtree. One possible direction of im-
provement concerns X-Y orientation. Currently, QOTA never alters the X-Y orientation. However, if
the terrain has a natural orientation (e.g., is long and thin in some direction) then it would be valuable to
rotate the coordinate system to align this orientation with the X or Y axis.

The most promising direction for speeding up QOTA is improving the way that cut lines are chosen
when a quadtree node is broken up. By using a more intelligent approach, it should be possible to
achieve better balance in the quadtree. More importantly, by choosing cut lines that pass through verti-
ces it should be possible to reduce the number of polygons per leaf, without greatly increasing preproc-
essing cost. If one is willing to spend much more time on preprocessing, one could explicitly seek to in-
crease the size of leaves containing zero or one polygon while decreasing the size of leaves containing
more polygons.

An interesting aspect of QOTA is that it is not restricted to use merely in Cartesian coordinates.
Rather, it only requires that data be represented in some pair of coordinates that are orthogonal to some
third test direction. For example QOTA could be used to support terrain following on the surface of a
spherical planet under the influence of a radial gravitational field. All that is needed is to represent the
vertices of the surface polygons internally in terms of the spherical coordinates θ and φ, and their dis-
tance r from the center of the sphere instead of the Cartesian coordinates X, Y, and Z. QOTA can then
be used to find intersections of radial lines with spherical patches corresponding to the polygons. This
transformation to spherical coordinates could happen on the fly just in the same way that the gravity
vector is currently transformed to point in the negative Z direction. A similar approach could be used
when modeling a rotating space station by using cylindrical coordinates.

When parts of a terrain are moving with respect to each other, it should be possible to keep several
quadtrees, each one containing only pieces which don’t move with respect to one another. Since access to
the polygons is so quick (especially for rejection) it is possible to check several different sets of terrain
polygons in the same visual frame without degrading performance of a virtual environment application.

Polygons could be added to a QOTA quadtree dynamically, sorting them into the appropriate leaves.
If this causes a leaf to contain too many polygons, the leaf could be dynamically split. Eventually, in-
cremental modification could lead to a severely unbalanced quadtree, but many polygons could be added
before this problem could arise.

A potential further use of QOTA is in generating shadows cast by fixed (or very slowly moving) light
sources. This is a natural application of QOTA because it calls for determining the intersection of many
parallel rays with a terrain. The direction of these rays is determined by the location of the light source
and will, in general, be different from the direction of gravity. However, the calculation required is
identical in form to determining gravity-based terrain intersections. All that is needed is the construction

8

of an additional QOTA quadtree corresponding to the light direction. Spherical coordinates could be used
for projecting shadows cast by a point light source. Motion of the light source can be accommodated by
recreating the quadtree. However, since this is relatively expensive, it is important that the light source
move only very slowly.

Before it can be widely distributed, QOTA needs to be tested more completely and polygon loaders
have to be implemented for additional common graphic modeling formats. By early 1997, we intend to
make QOTA freely available for research use along with the other parts of Spline.

References
Anderson D.B., Barrus J.W., Brogan D.C., Casey M.A., McKeown S.G., Sterns I.B., Waters R.C., Yera-

zunis W.S. (1996) Diamond Park and Spline: A Social Virtual Reality System with 3D Animation,
Spoken Interaction, and Runtime Modifiability, MERL technical report 96-02, January 1996, submit-
ted to Presence.

Barrus J.W., Waters R.C., Anderson D.B. (1996) “Locales and Beacons: Efficient and Precise Support
for Large Multi-User Virtual Environments”, Proc. VRAIS 96, Santa Clara CA, March 1996, pp 204—
213.

Cohen J., Lin M., Manocha D., Ponamagi M., (1995) “I-collide: An Interactive and Exact Collision De-
tection System for Large-Scale Environments”, in Proc. ACM Interactive 3D Graphics Conference, PP
189-196.

Gottschalk S., Lin M.C., Manocha D. (1996) “OBBTree: A Heirarchical Structure for Rapid Interference
Detection”, to appear in Proc. of Siggraph ’96, New Orleans,LA, August 1996.

Samet H. (1989) Spatial Data Structures: Quadtrees, Octrees and Other Hierarchical Methods, Addison
Wesley, Reading MA.

