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Generating Models from Multiple Volumes

using Constrained Elastic SurfaceNets

Michael E. Leventon and Sarah F. F. Gibson

Abstract

Three dimensional models of anatomical structures are currently used to aid in

medical diagnosis, treatment, surgical guidance, and surgical simulation. Limitations

on the resolution of medical scans can cause artifacts to appear in the models that

do not exist in the patient's anatomy. The most severe artifacts occur due to the

low sampling rate between image slices of a scan. This paper describes a method

of combining two orthogonal scans to generate a model with higher resolution than

models created from either of the scans alone. The two scans are �rst registered to

each other and then a net of linked surface nodes is initialized for each of the scans.

The nodes from the two nets are then merged and relaxed, subject to constraints set

by the resolution of each scan. This generates a smooth surface representation which

stays faithful to the original binary data.

1 Introduction

The generation of three-dimensional models of anatomical structures from medical imagery is

important for applications such as surgical simulation, planning, and image-guided surgery.

An internal scan typically consists of high-resolution data in the imaging plane and sig-

ni�cantly lower resolution between imaging slices. The lack of high-resolution information
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Figure 1: Two MR scans of a person's knee. The scan on the left was acquired sagittally
while the scan on the right was acquired axially. Both images have high resolution in-plane,
but have about one quarter the resolution between planes.

along the scanning direction causes aliasing or terracing artifacts in anatomical surface mod-

els, which can be distracting or misleading to surgeons. For surgical simulation, the terraces

subtract from the realism of the visualization and create very noticeable ridges when using

haptics to feel the object's surface.

These terracing artifacts can be reduced by increasing the resolution of the scan. However,

for CT scans, higher resolution between imaging planes subjects patients to a higher dose of

radiation. For MR scans, longer scan times are necessary to achieve higher resolution, which

is more costly and is more di�cult for the patient, who must remain absolutely still during

image acquisition.

For clinical practice, scans are usually acquired in more than one orthogonal direction.

For example, instead of acquiring a single very high resolution sagittal MR scan, lower reso-

lution sagittal and axial scans may by acquired (see �gure 1). Surgeons and radiologists use

information from both acquisitions for diagnosis, surgical guidance, and treatment. Similarly,

2



we are interested in combining the information from two scans to produce three dimensional

models of internal structures that have higher resolution than models created from either

of the scans alone. The method proposed here is an extension of the Constrained Elastic

SurfaceNet described in [10], which generates models from a single scan.

2 Previous Work

Two basic methods are commonly used to �t surfaces to binary data. In the �rst, the binary

data is low-pass �ltered, and an algorithm such as Marching Cubes is applied, where the

surface is built through each surface cube at an iso-surface of the grey-scale data [18]. In

order to remove terracing artifacts and reduce the number of triangles in the triangulated

surface, surface smoothing and decimation algorithms can be applied. However, because

these procedures are applied to the surface without reference to the original segmentation,

they can result in loss of �ne detail.

In the second general method for �tting a surface to binary data, the binary object is

enclosed by a parametric or spline surface. Control points on the surface are moved towards

the binary data in order to minimize an energy function based on surface curvature and

distance between the binary surface and the parametric surface. McInerney and Terzopoulos

used such a technique to detect and track the surface of the left ventricle in sequences of MRI

data [20] and Takanahi et al. used a similar technique to generate a surface model of muscle

from segmented data [22]. This approach has two main drawbacks for general applications.

First, it is di�cult to determine how many control points will be needed to ensure su�cient

detail in the �nal model. Second, this method does not handle complex topologies easily.
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Recently, Gibson [10] introduced Constrained Elastic SurfaceNets which �t an elastic net

of nodes over the surface of a binary segmented dataset and move the node positions to

reduce the surface curvature while constraining the net to remain within one voxel of the

binary surface. This approach produces smooth surface models from binary segmented data

that are faithful to the original segmentation.

3 Dual SurfaceNets

Dual SurfaceNets extend the original SurfaceNet approach by combining information from

two orthogonal volume image scans. The use of Dual SurfaceNets requires a number of

preprocessing steps. First, the object of interest is segmented or extracted from each of the

scans. The scans are then registered into a common coordinate frame, and a SurfaceNet is

initialized for each of the segmentations. The dual relaxation process then relaxes the shapes

of the SurfaceNets subject to constraints based on the resolution of the two scans.

3.1 Segmentation

The anatomical structures that appear in an internal scan such as MR and CT must be

explicitly extracted or segmented from the scan before they can be directly used for surface

model generation. By segmentation, we refer to the process of labeling individual voxels in

the volumetric scan by tissue type, based on properties of the observed intensities as well as

known anatomical information about normal subjects.

The segmentation is performed using automated techniques and semi-automated tech-

niques. With CT data, segmentation can be performed relatively automatically using inten-
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sity thresholding or other low-level image processing. However, with MRI, image segmen-

tation is challenging and generally requires more sophisticated algorithms and signi�cant

human input. An example of a semi-automatic segmentation method developed by the Sur-

gical Planning Lab at Brigham & Women's Hospital, uses real-time ray tracing running

on a Thinking Machines Inc. CM-2 to render segmented tissues as parameter values are

dynamically varied. The parameters of interest are the intensity thresholds used to de�ne

intensity-based tissue classi�ers. These thresholds are interactively modi�ed and both 2D

slices and 3D renderings of the resultant classi�ers are viewed in real time. If necessary, fur-

ther structural correction of the segmentation is performed by interactively editing the 2D

slices. Such editing consists of highlighting regions of interest with the mouse and specifying

the desired label for the contained pixels.

3.2 Registration

To combine the information from two scans of the patient into one three-dimensional model,

both datasets must be in the same coordinate system. Registering rigid objects requires

solving the six degree of freedom pose of the object in one scan with respect to the object

in the other scan. While sophisticated methods exist to register the scans directly from the

image data [30, 31], a straightforward registration algorithm is used here because the binary

segmentation is available. The best alignment of the models is found by performing stochastic

gradient descent on the sum of squared di�erences of the smoothed segmented images. In

practice, this straightforward registration method performs well on well-segmented binary

image data.
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Figure 2: LEFT: A single SurfaceNet is built around an object and then relaxed, producing
a smooth surface free of terracing. RIGHT: Two nets are built for the two orthogonal
image scans. In this example, the red coded image and its node points have high horizontal
resolution, but low vertical resolution, while the blue coded net has opposite properties.
Nodes of both nets are initialized at the center of each cell and then relaxed subject to
constraints to generate the smooth object surface shown in green.

3.3 Generating the SurfaceNet

Given a segmented image of an object, an initial SurfaceNet is created as described in [10].

The �rst step in generating a SurfaceNet is to locate cells that contain surface nodes. A

cell is de�ned by 8 neighboring voxels in the binary segmented data, 4 voxels each from 2

adjacent planes. If all 8 voxels have the same binary value, then the cell is either entirely

inside or entirely outside of the object. If at least one of the voxels has a binary value that

is di�erent from its neighbors, then the cell is a surface cell. The net is initialized by placing

a node at the center of each surface cell and linking nodes that lie in adjacent surface cells.

Each node can have up to 6 links, one each to its right, left, top, bottom, front, and back

neighbors. Figure 2a illustrates the creation of a net from a binary image.
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3.4 Relaxation of a Single SurfaceNet

Once de�ned, the SurfaceNet can be relaxed to reduce terracing artifacts while remaining

faithful to the input segmentation [10]. To relax the net, each node is repositioned to reduce

an energy measure in the links. In the examples presented here, SurfaceNets were relaxed

iteratively by considering each node, p[i], in sequence and moving that node towards a

position equi-distant between its linked neighbors.

p̂[i] =
1

#fN (i)g

X

j2N (i)

p[j] (1)

where N (i) is the set of linked neighbors of point i. The energy is computed as the sum of

the squared lengths of all of the links in the SurfaceNet1. De�ning the energy and relaxation

in this manner without constraints will cause the SurfaceNet to shrink to a single point.

Hence, to remain faithful to the original segmentation, a constraint is applied that keeps

each node inside its original surface cell. This constraint favors the original segmentation

over smoothness and forces the surface to retain thin structures and cracks.

3.5 Dual Relaxation of SurfaceNets

Relaxing a single SurfaceNet of an object signi�cantly reduces the artifacts contained in the

model. However, if the resolution in the scan is low in one direction, there may not be

enough information in one scan to fully constrain the model and remove the terraces. We

1Alternative energy measures and relaxation schemes are also feasible. For example, a system that adjusts

node positions to reduce local curvature would produce smoother surfaces and with less sharp corners than

the method used here.
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therefore consider using two scans, where one has higher resolution along the direction where

the other has lower resolution, as illustrated in �gure 1.

To relax two models of an object together, the individual SurfaceNets are built as de-

scribed above. The two SurfaceNets, once aligned in the same coordinate frame, are itera-

tively relaxed towards one another with the constraint that each node much lie within its

surface cell. In one relaxation step, each point p[i] in the �rst net is updated by taking an

average (weighted by distance) of the points q[j] in the other net.

p̂[i] =

P
j w(p[i]; q[j])q[j]P

j w(p[i]; q[j])
; (2)

where

w(u; v) = e
�1

2�2
jju�vjj2 (3)

The point p̂[i] could violate its constraint by lying outside its cell, c[i]. The new position of

the point, p0[i] is p̂[i] if it lies inside the cell and the closest point on the cell boundary if p̂[i]

lies outside the cell. In the next iteration, the second net is relaxed towards the �rst. After

each full dual relaxation step, the nets are each relaxed individually for one iteration. The

individual relaxation keeps each net smooth as they merge. The iteration progresses until

the positions of some user-de�ned fraction of the nodes have converged, at which time one

of the two nets is chosen to generate the �nal triangle model.

If the segmentation and registration were ideal, then the true surface would always lie

in the intersection of the surface cells of the two images. In this case, the two nets would

converge on the identical surface with all surface cell constraints satis�ed. Figure 2b shows
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a 2D example of a surface passing through the surface cells of two nets.

In general, the surface cells of the two scans do not overlap perfectly due to imaging,

segmentation, and registration errors. We therefore provide a means of relaxing the con-

straints to allow the nets to merge more closely. After a few iterations, any point that is

pulled outside its constraining cell cannot meet a corresponding point in the other net. This

signi�es discrepancies between the two models. In these instances, the constraining cell of

every such point is dilated (preserving aspect ratio) by a small amount at the end of the it-

eration, allowing those points to move closer to the other net in the next iteration. Although

the resultant net can move more than one voxel from the segmentations, the �nal model is

guaranteed to be between the two initial models.

4 Results

Results of the dual relaxation are shown in �gures 6 through 9. The �rst test dataset is

of a femur. One scan was acquired axially at a resolution of 0:27mm� 0:27mm� 1:00mm.

The other scan (of the same person) was acquired sagittally (one year later) at a resolution

of 0:25mm � 0:25mm � 1:40mm. The femur was segmented manually from both images2.

Figure 6 shows the results of running Marching Cubes [18], individual SurfaceNets [10],

and Dual SurfaceNets on the images. No decimation was performed on any of the models.

Notice the terracing artifacts in the models generated with Marching Cubes and individual

SurfaceNets along the direction that the scans were acquired. The model generated using

Dual SurfaceNets on both scans represents the �ne details in the original scans well but does

2These datasets were provided by the Surgical Planning Lab of Brigham and Women's Hospital.
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not contain the terraces.

In the second example, we consider building a model from extremely low resolution

scans. Figure 7 shows results of model generation from subsampled versions of the original

segmentations. The axial and sagittal scans were subsampled by a factor of 4 to resolutions

of 1:09mm� 1:09mm� 4:00mm and 1:00mm� 1:00mm� 5:60mm respectively. The model

generated using Dual SurfaceNets at the low resolution contains slightly less detail than the

high resolution version, but it is remarkably smooth and free of terracing artifacts, while

remaining faithful to the original segmentations.

The surface models can be visually veri�ed by superimposing the relaxed net on the image

data. Figure 8 shows the input segmentations to the Dual SurfaceNet algorithm and the

�nal result of the net. The top row consists of the full resolution image, and the bottom row

shows the subsampled images. Despite the blockiness evident in all the input segmentations

(especially in the subsampled images), the �nal models are very smooth and capture the

details of the femur.

The Dual SurfaceNet algorithm was also tested on a subsampled MR skin model. One

image was acquired sagittally and one axially. Both were subsampled to 2:0mm� 2:0mm�

6:0mm. The results of running the various model generation methods are shown in �gure 9.

Notice that the axial scan is cropped below the nose and on the top of the head. The model

generated using both SurfaceNets is smooth above the nose, but contains the same terracing

artifacts as the sagittal SurfaceNet below the nose (where there was no information present

from the axial scan).
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Figure 3: A plot of the amount that the nodes of each net are displaced from their initial
positions (at the centers of their cells). Over 97% of the nodes lie within one voxel of the
starting point.

5 Validation

Three dimensional models of anatomical structures are now routinely used by surgeons when

treating patients [13]. Thus, there is a clear need to validate the process by which such models

are generated. One method of validating the result of relaxing Dual SurfaceNets is by visual

inspection. The 3D model can be superimposed onto the original grayscale image, as shown

in �gure 8. The borders of the model can be con�rmed by examining each slice of the image.

In SurfaceNets, each node of the model is guaranteed to lie within one voxel of the original

binary segmentation. Dual SurfaceNets can uphold the same constraints, but in practice

these constraints need to be relaxed slightly to e�ectively combine the information in both

nets. The distance that a node strays from its initialization point (the center of its cell)

can be constrained during the relaxation. Furthermore, upon convergence, the distribution

of displacements can be viewed to determine the goodness of the �t. Figure 3 graphs the
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Figure 4: A plot of the distance of each node from the low resolution nets to the nearest
node in the high resolution (ground-truth) segmentation.

fraction of nodes that lie within a certain distance of their original positions. In these scans,

the distances from one corner to the other in a voxel are 1.07 mm and 1.44 mm for the axial

and sagittal scans respectively. In both nets, over 97% of the points lie within one voxel of

their starting position.

The validation process is often hindered by the di�culty in obtaining ground truth.

While we do not have explicit ground truth, we generated the low resolution femur model

and then compared the result with the high resolution femur segmentation. Ideally, each

point of the low resolution model should fall near the high resolution surface. Figure 4 plots

the fraction of nodes that are within a certain distance of a point on the high resolution

model. The voxel extents of the axial and sagittal scans used in generation of the nets are

4.28mm and 5.78mm respectively. The majority of model points fall within a millimeter of

the high resolution model, and 98% lie within one sub-sampled voxel of the original data.
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a b c d
Figure 5: An illustration of the di�culty in merging features that are not registered well. If
(a) and (b) are the two input models of the same object, the bump is most likely the same
feature, in which case the ideal merge would produce one bump in the middle (d), versus (c)
where two bumps result.

The �nal model is not only very smooth, but also faithful to the input segmentation.

6 Future Work

The promising initial results described herein provide various directions of future work.

The Dual SurfaceNets currently rely heavily on the segmentation and registration of the

anatomical structures being accurate. Nodes are currently attracted to nodes of the other

model based solely on distance (see de�nition of w, equation 3). Slight registration or

segmentation errors could cause the closest point on the other net to be di�erent from the

corresponding point. Thus sub-structures in the objects do not overlap, resulting in the

merging of di�erent features. Figure 5 illustrates this problem. These assumptions can

be relaxed by adding a richer feature correspondence measure. We are exploring methods

of including normal information and/or curvature information in the weighting function.

Consider a new weighting function,

w(u; n̂u; �u; v; n̂v; �v) = fdist(u; v) + �1fnorm(n̂u; n̂v) + �2fcurv(�u; �v) (4)

where fdist, fnorm, and fcurv are strictly positive and decrease monotonically as the arguments

diverge. For a node to attract another, it must be close and have similar normal and
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curvature. One major di�culty of this approach is determining how to weight these various

factors. The addition of richer features will help in merging non-rigid structures such as

cortex, cartilage, or meniscus. In e�ect, the local, non-rigid registration can be computed

during relaxation of the nets.

Another interesting extension involves accounting for shape change. A SurfaceNet does

not change topology during relaxation. However, in some cases, the two nets may have

di�erent topologies, preventing them from merging completely. After relaxing both nets, it

is not clear which net should be used as the result. We plan to explore methods of adapting

the topology of the net during the relaxation process to account for the di�erences in the

models.
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Figure 6: Surface models of the high resolution scan of the femur. The top and bottom sets
of images show two views of the same models. For each scan, the model has been gener-
ated using Marching Cubes and SurfaceNets. The model generated using Dual SurfaceNets
combined the information from both scans.
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Figure 7: Surface models of a low resolution (subsampled) scan of the femur. The top and
bottom sets of images show two views of the same models. For each scan, the model has
been generated using Marching Cubes and SurfaceNets. The model generated using Dual
SurfaceNets combined the information from both scans.
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Figure 8: Models of the femur overlayed on the original grayscale data. The top row of
images are the original high resolution scans. The bottom row of images are the subsampled
scans. The �rst two images in each row are the segmentation input to the Dual SurfaceNets.
The result of relaxing the nets is shown in the third image.
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Figure 9: Surface models of a low resolution (subsampled) scan of a head. The model
has been generated using Marching Cubes, SurfaceNets, and Dual SurfaceNets. Note the
artifacts in the Dual SurfaceNet model beyond the extent of the axial scan.

17



[7] S. Gibson. Linked volumetric objects for physics-based modeling. submitted to IEEE

Trans. on Visualization and Computer Graphics, 1998.

[8] S. Gibson. Using distance maps for accurate surface representation in sampled volumes.

submitted to SIGGRAPH'98, 1998.

[9] S. Gibson, C. Fyock, E. Grimson, T. Kanade, R. Kikinis, H. Lauer, N. McKenzie,

A. Mor, S. Nakajima, H. Ohkami, R. Osborne, J. Samosky, and A. Sawada. Volumetric

object modeling for surgical simulation. Medical Image Analysis, 1998. to appear in

spring, 1998.

[10] S. Gibson. Constrainted Elastic SurfaceNets: generating smooth surfaces from binary

segmented data. In MICCAI, 1998.

[11] S. Gibson, J. Samosky, A. Mor, C. Fyock, E. Grimson, T. Kanade, R. Kikinis, H. Lauer,

N. McKenzie, S. Nakajima, H. Ohkami, R. Osborne, and A. Sawada. Simulating

arthorscopic knee surgery using volumetric object representations, real-time volume ren-

dering and haptic feedback. In Proc. CVRMed-MRCAS'97, pages 368{378. Springer,

1997.

[12] J.P. Gourret, N. Magnenat-Thalmann, and D. Thalmann. Simulation of object and

human skin deformations in a grasping task. In Proc. SIGGRAPH 89, pages 21{30,

1989.

[13] E. Grimson, M. Leventon, G. Ettinger, A. Chabrerie, F. Ozlen, S. Nakajima, H. At-

sumi, R. Kikinis, P. Black. Clinical Experience with a High Precision Image-guided

Neurosurgery System In MICCAI 98, 1998.

[14] K. Hohne, M. Bomans, A. Pommert, M. Riemer, C. Schiers, U. Tiede, and G. Wiebecke.

3D visualization of tomographic volume data using the generalized voxel model. The

Visual Computer, 6(1):28{36, February 1990.

[15] A. Kaufman. Volume Visualization. IEEE Computer Society Press, Los Alamitos, CA,

1991.

[16] R. Koch, M. Gross, F. Carls, D. von Buren, G. Fankhauser, and Y. Parish. Simulating

facial surgery using �nite element models. In Proc. SIGGRAPH 96, pages 421{428,

1996.

[17] Y. Lee, D. Terzopoulos, and K. Waters. Realistic modeling for facial animation. In

Proc. SIGGRAPH 95, pages 55{62., 1995.

[18] W. Lorensen and H. Cline. Marching cubes: a high resolution 3D surface construction

algorithm. In Proc. SIGGRAPH 87, pages 163{169, 1989.

18



[19] S. Lu, D. Cui, R. Yagel, R. Miller, and G. Kinzel. A 3Dcontextual shading method

for visualization of diecasting defects. In Proc. Visualization'96, pages 405{407. IEEE,

1996.

[20] T. McInerney and D. Terzopoulos. Deformable models in medical image analysis: a

survey. Medical Image Analysis, 1(2):91{108, 1996.

[21] A. Mor, S. Gibson, and J. Samosky. Interacting with 3-dimensional medical data: Haptic

feedback for surgical simulation. In Proc. Phantom User Group Workshop'96, 1996.

[22] I. Takanahi, S. Muraki, A. Doi, and A. Kaufman. 3D active net for volume extraction.

In Proc. SPIE Electronic Imaging'98, pages 184{193, 1998.

[23] R. Osborne, H. P�ster, H. Lauer, N. McKenzie, S. Gibson, W. Hiatt, and T. Ohkami.

EM-Cube: An architecture for low-cost real-time volume rendering. In Proc. SIG-

GRAPH/Eurographics Workshop on Graphics and Hardware, pages 131{138, 1997.

[24] J. Russ. The Image Processing Handbook. CRC Press, Boca Raton, FL, 1992.

[25] W. Schroeder, W. Lorensen, and S. Linthicum. Implicit modeling of swept surfaces and

volumes. In Proc. Visualization'94, pages 40{45. IEEE, 1994.

[26] D. Terzopoulos and K. Waters. Physically-based facial modeling, analysis, and anima-

tion. Journal of Visualization and Computer Animation, 1:73{80, 1990.

[27] G. Thurmer and C. Wurthrich. Normal computation for discrete surfaces in 3D space.

In Proc. Eurographics'97, pages C15{C26, 1997.

[28] S. Wang and A. Kaufman. Volume sampled voxelization of geometric primitives. In

Proc. Visualization'93, pages 78{84. IEEE, 1993.

[29] S. Wang and A. Kaufman. Volume-sampled 3D modeling. IEEE Computer Graphics

and Applications, 14:26{32, 1994.

[30] W.M. Wells III, P. Viola, H. Atsumi, S. Nakajima, R. Kikinis. \Multi-Modal Vol-

ume Registration by Maximization of Mutual Information". Medical Image Analysis,

1(1):35{51, 1996.

[31] J. West, J. Fitzpatrick, et al. \Comparison and evaluation of retrospective intermodality

image registration techniques." In Medical Imaging: Image Processing, volume 2710 of

Proc. SPIE, Newport Beach, California, February 1996.

[32] R. Yagel, D. Cohen, and A. Kaufman. Discrete ray tracing. IEEE Computer Graphics

and Applications, 12:19{28, 1992.

19


	Title Page
	Title Page
	page 2


	Generating Models from Multiple Volumes Using Constrained Elastic SurfaceNets
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19


