
Quantum-PEFT: Ultra parameter-efficient fine-tuning
Toshiaki Koike-Akino(1,2), Francesco Tonin(2), Yongtao Wu(2), Leyla Naz Candogan(2), Volkan Cevher(2)

(1)Mitsubishi Electric Research Laboratories (MERL), 201 Broadway, Cambridge, MA 02139, USA
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Introduction

• Parameter-efficient fine-tuning (PEFT) is a cost-effective framework for
downstream task to specialize pre-trained large foundation models.

• Low-rank adaptation (LoRA)[1] variants achieve excellent performance.
• We propose a novel framework, named Quantum-PEFT, that leverages
quantum unitary parameterizations, achieving orders-of-magnitudes higher
compression rates over state-of-the-art PEFT methods.

Quantum-Inspired Machine Learning

• Quantum machine learning (QML) is an emerging framework leveraging
quantum processing units (QPUs) for AI tasks.

• QML realizes ultra-efficient operations due to exponential expressivity.

• We introduce generalized QML framework based on alternating RY/CZ
simplified two-design ansatz[2].
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Figure: QML: (a) General pipeline for quantum neural network (QNN), embedding classical data x
and variational parameters θ to control measurement y. (b) Simplified two-design ansatz. (c)
Generalized quantum-inspired network.
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Figure: Proposed modules with corresponding tensor diagrams: (a) generalized RY modules for
orthogonal nodes on Stiefel manifold VK(N

′); (b) generalized CZ modules for diagonal nodes on
either O(1)N

′
or RN ′

. Top K ′ columns are trainable parameters in B as intrinsic rank.

Quantum-PEFT
• Pauli parameterization enables logarithmically fewer number of trainable
parameters.
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Figure: Tensor diagram
of LoRA variants.

Table: Comparison of different PEFT methods and their
computational requirements.

Method # Trainable Parameters

LoRA (TTD) 2NK
AdaLoRA (CP) 2NK +K

Quantum-PEFT (TD: QT) 2NK −K2

Quantum-PEFT (TD: QP) 2(2L + 1) log2(N) +K
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Figure: Mixed-precision Quantum-PEFT in 3-dimensional TRD tensor network. Each tensor node
and tensor parameter can have non-uniform bit assignments. Adaptive bit loading depends on
group range ∆. Assignment of 0 bit corresponds to adaptive structural pruning.

Experiments

• 3 transfer learning tasks: LLM GLUE benchmark[4]; E2E challenge[5];
ImageNet to CIFAR10 classification.

• 3 foundation models: DeBERTaV3[6]; GPT2 Medium[7]; ViT[8].

• 5 baseline methods: LoRA[1]; AdaLoRA[3]; BitFit[9]; HAdapter[10];
PAdapter[11].

Results
• Quantum-PEFT shows competitive performance with extremely fewer
number of trainable parameters.

• Quantization and mixed-precision Quantum-PEFT keep good performance
over full-precision PEFT.

Table: Results with DeBERTaV3 base on GLUE benchmark. We present the Matthew’s correlation
for CoLA, the average correlation for STS-B, and the accuracy for other tasks. In each column,
the best-performing PEFT approach is highlighted in bold and the second best is underlined.

Method
# Trainable
Parameters

SST-2 CoLA RTE MRPC STS-B

FT 184M 95.63 69.19 83.75 89.46 91.60

BitFit 0.1M 94.84 66.96 78.70 87.75 91.35
HAdapter 0.61M 95.30 67.87 85.56 89.22 91.30
PAdapter 0.60M 95.53 69.48 84.12 89.22 91.52
HAdapter 0.31M 95.41 67.65 83.39 89.25 91.31
PAdapter 0.30M 94.72 69.06 84.48 89.71 91.38
LoRA 0.33M 94.95 68.71 85.56 89.71 91.68
AdaLoRA 0.32M 95.80 70.04 87.36 90.44 91.63

Quantum-PEFT 0.013M 95.85 67.85 86.57 90.78 91.06

Table: Results for different adaptation methods on the E2E benchmark and GPT2 Medium model.
Quantum-PEFT achieves similar performance as LoRA with 4 times less trainable parameters.

Method
# Trainable
Parameters

BLEU NIST METEOR ROUGE-L CIDEr

FT 354.92M 68.2 8.62 46.2 71.0 2.47

AdaLoRA 0.38M 64.64 8.38 43.49 65.90 2.18
LoRA 0.39M 66.88 8.55 45.48 68.40 2.31

Quantum-PEFT 0.098M 67.46 8.58 45.02 67.36 2.31

Table: Results for ViT transfer learning from ImageNet-21k to CIFAR10. Base ViT is quantized
with 3 bits.

Method Original FT LoRAK=1 LoRAK=2 LoRAK=4 Quantum-PEFT

# Parameters — 85.81M 0.037M 0.074M 0.147M 0.007M
Accuracy 76.21% 98.05% 98.14% 98.30% 98.39% 98.46%

Table: Quantization impact on Lie parameters with Taylor parameterization for ViT transfer
learning from ImageNet-21k to CIFAR10. Base ViT is not quantized.

Quantization FP32 INT8 INT4 INT3 INT2 INT1

# Bits per parameter 32 8.25 4.25 3.25 2.25 1.25
Accuracy (Uniform Bit Loading) 98.81% 98.79% 98.78% 98.75% 98.67% 97.96%
Accuracy (Adaptive Bit Loading) 98.81% 98.78% 98.87% 98.80% 98.77% 98.64%
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