

Quantum-PEFT: Ultra parameter-efficient fine-tuning

Toshiaki Koike-Akino^(1,2), Francesco Tonin⁽²⁾, Yongtao $Wu^{(2)}$, Leyla Naz Candogan⁽²⁾, Volkan Cevher⁽²⁾

⁽¹⁾Mitsubishi Electric Research Laboratories (MERL), 201 Broadway, Cambridge, MA 02139, USA

⁽²⁾Laboratory for Information and Inference Systems (LIONS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland

Introduction

- Parameter-efficient fine-tuning (**PEFT**) is a cost-effective framework for downstream task to specialize pre-trained large foundation models.
- Low-rank adaptation (LoRA)[1] variants achieve excellent performance.
- We propose a novel framework, named **Quantum-PEFT**, that leverages quantum unitary parameterizations, achieving orders-of-magnitudes higher compression rates over state-of-the-art PEFT methods.

Quantum-Inspired Machine Learning

- Quantum machine learning (QML) is an emerging framework leveraging quantum processing units (QPUs) for AI tasks.
- QML realizes ultra-efficient operations due to exponential expressivity.
- We introduce generalized QML framework based on alternating RY/CZ simplified two-design ansatz[2].

Experiments

- 3 transfer learning tasks: LLM GLUE benchmark[4]; E2E challenge[5]; ImageNet to CIFAR10 classification.
- **3 foundation models**: DeBERTaV3[6]; GPT2 Medium[7]; ViT[8].
- **5** baseline methods: LoRA[1]; AdaLoRA[3]; BitFit[9]; HAdapter[10]; PAdapter[11].

Results

- Quantum-PEFT shows competitive performance with extremely fewer number of trainable parameters.
- Quantization and mixed-precision Quantum-PEFT keep good performance over full-precision PEFT.

Table: Results with DeBERTaV3 base on GLUE benchmark. We present the Matthew's correlation for CoLA, the average correlation for STS-B, and the accuracy for other tasks. In each column, the best-performing PEFT approach is highlighted in **bold** and the second best is underlined.

Figure: QML: (a) General pipeline for quantum neural network (QNN), embedding classical data xand variational parameters θ to control measurement y. (b) Simplified two-design ansatz. (c) Generalized quantum-inspired network.

Figure: Proposed modules with corresponding tensor diagrams: (a) generalized RY modules for orthogonal nodes on Stiefel manifold $\mathcal{V}_K(N')$; (b) generalized CZ modules for diagonal nodes on either $O(1)^{N'}$ or $\mathbb{R}^{N'}$. Top K' columns are trainable parameters in B as intrinsic rank.

Quantum-PEFT

• Pauli parameterization enables logarithmically fewer number of trainable

Method	# Trainable Parameters	SST-2	CoLA	RTE	MRPC	STS-B
FT	184M	95.63	69.19	83.75	89.46	91.60
BitFit	0.1M	94.84	66.96	78.70	87.75	91.35
HAdapter	0.61M	95.30	67.87	85.56	89.22	91.30
PAdapter	0.60M	95.53	<u>69.48</u>	84.12	89.22	91.52
HAdapter	0.31M	95.41	67.65	83.39	89.25	91.31
PAdapter	0.30M	94.72	69.06	84.48	89.71	91.38
LoRA	0.33M	94.95	68.71	85.56	89.71	91.68
AdaLoRA	0.32M	<u>95.80</u>	70.04	87.36	90.44	<u>91.63</u>
Quantum-PEFT	0.013M	95.85	67.85	86.57	90.78	91.06

Table: Results for different adaptation methods on the E2E benchmark and GPT2 Medium model. Quantum-PEFT achieves similar performance as LoRA with 4 times less trainable parameters.

-	Method	# Trainable Parameters	BLEU	NIST	METEOR	ROUGE-L	CIDEr
-	FT	354.92M	68.2	8.62	46.2	71.0	2.47
-	AdaLoRA	0.38M	64.64	8.38	43.49	65.90	2.18
	LoRA	0.39M	66.88	8.55	45.48	68.40	2.31
	Quantum-PEFT	0.098M	67.46	8.58	<u>45.02</u>	<u>67.36</u>	2.31

Table: Results for ViT transfer learning from ImageNet-21k to CIFAR10. Base ViT is quantized with 3 bits.

Method	Original	FT	$LoRA_{K=1}$	$LoRA_{K=2}$	$LoRA_{K=4}$	Quantum-PEFT
# Parameters		85.81M	0.037M	0.074M	0.147M	0.007M
Accuracy	76.21%	98.05%	98.14%	98.30%	98.39%	98.46%

Table: Quantization impact on Lie parameters with Taylor parameterization for ViT transfer learning from ImageNet-21k to CIFAR10. Base ViT is not quantized.

Quantization	FP32	INT8	INT4	INT3	INT2	INT1
# Bits per parameter	32	8.25	4.25	3.25	2.25	1.25

parameters.

(c) Quantum-PEFT (TD)

Table: Comparison of different PEFT methods and their computational requirements.

Method	# Trainable Parameters			
LoRA (TTD)	2NK			
AdaLoRA (CP)	2NK + K			
Quantum-PEFT (TD: Q_T)	$2NK - K^2$			
Quantum-PEFT (TD: Q_P)	$2(2L+1)\log_2(N) + K$			

Figure: Tensor diagram of LoRA variants.

Figure: Mixed-precision Quantum-PEFT in 3-dimensional TRD tensor network. Each tensor node and tensor parameter can have non-uniform bit assignments. Adaptive bit loading depends on group range Δ . Assignment of 0 bit corresponds to adaptive structural pruning.

Accuracy (Uniform Bit Loading) 98.81% 98.79% 98.78% 98.75% 98.67% 97.96% Accuracy (Adaptive Bit Loading) 98.81% 98.78% 98.87% 98.80% 98.77% 98.64%

References

- [1] E.J. Hu, et al., "LoRA: Low-rank adaptation of large language models," ICLR, 2021.
- [2] M. Cerezo, et al., "Cost function dependent barren plateaus in shallow parametrized quantum circuits," Nature communications, 12(1):1791, 2021.
- [3] Q. Zhang, et al., "Adaptive budget allocation for parameter-efficient fine-tuning," ICLR, 2023.
- [4] A. Wang, et al., "GLUE: A multi-task benchmark and analysis platform for natural language understanding," ICLR, 2019.
- [5] J. Novikova, et al., "The E2E dataset: New challenges for end-to-end generation."
- [6] P. He, et al., "DeBERTaV3: Improving DeBERTa using electra-style pre-training with gradient-disentangled embedding sharing."
- [7] A. Radford, et al., "Language models are unsupervised multitask learners." OpenAI blog, 1(8):9, 2019.
- [8] A. Dosovitskiy, et al., "An image is worth 16x16 words: Transformers for image recognition at scale," ICLR, 2020.
- [9] E.B. Zaken, et al., "Bitfit: Simple parameter-efficient fine-tuning for transformer-based masked language-models," Annual Meeting of the Association for Computational Linguistics, 2022.
- [10] N. Houlsby, et al., "Parameter-efficient transfer learning for NLP," ICML, 2019.
- [11] J. Pfeiffer, et al., "AdapterFusion: Non-destructive task composition for transfer learning," EACL 2021.

ICML Workshop ES-FoMo-II 2024: koike@merl.com, {francesco.tonin, yongtao.wu, leyla.candogan, volkan.cevher}@epfl.ch

Mixed-Precision Tensor Network