TR2022-074
GaN Distributed RF Power Amplifier Automation Design with Deep Reinforcement Learning
-
- "GaN Distributed RF Power Amplifier Automation Design with Deep Reinforcement Learning", International Conference on Artificial Intelligence Circuits and Systems (AICAS), June 2022.BibTeX TR2022-074 PDF
- @inproceedings{Sun2022jun,
- author = {Sun, Yuxiang and Benosman, Mouhacine and Ma, Rui},
- title = {GaN Distributed RF Power Amplifier Automation Design with Deep Reinforcement Learning},
- booktitle = {International Conference on Artificial Intelligence Circuits and Systems (AICAS)},
- year = 2022,
- month = jun,
- url = {https://www.merl.com/publications/TR2022-074}
- }
,
- "GaN Distributed RF Power Amplifier Automation Design with Deep Reinforcement Learning", International Conference on Artificial Intelligence Circuits and Systems (AICAS), June 2022.
-
Research Areas:
Artificial Intelligence, Communications, Electronic and Photonic Devices, Machine Learning, Optimization
Abstract:
Radio frequency (RF) circuit design demands rich experience of practical know-how and extensive simulation. Complicated interactions among different building components must be considered. This becomes more challenging at higher frequency and for sophisticated circuits. In this study, we proposed a novel design automation methodology based on deep reinforcement learning (RL). For the first time, we applied RL to design a wideband non-uniform distributed RF power amplifier known for its high dimensional design challenges. Our results show that the design principles can be learned effectively and the agent can generate the optimal circuit parameters to meet the design specifications including operating frequency range (2-18GHz), output power (>37dBm), gain flatness (<4dB) and average return loss (>5.8 dB) with GaN technology. Notably, our well-trained RL agent outperforms human expert given the same design task, with 78% accuracy and offers generalizability, which is lacked in the conventional optimization approach to shorten the time-to-market.
Related News & Events
-
AWARD International Conference on Artificial Intelligence Circuits and Systems (AICAS) 2022 Openedges Award Date: June 15, 2022
Awarded to: Yuxiang Sun, Mouhacine Benosman, Rui Ma.
Research Area: Artificial IntelligenceBrief- The committee of the International Conference on Artificial Intelligence Circuits and Systems (AICAS) 2022, has selected MERL's paper entitled 'GaN Distributed RF Power Amplifier Automation Design with Deep Reinforcement Learning' as a winner of the AICAS 2022 Openedges Award.
In this paper MERL researchers propose a novel design automation methodology based on deep reinforcement learning (RL), for wide-band non-uniform distributed RF power amplifiers, known for their high dimensional design challenges.
- The committee of the International Conference on Artificial Intelligence Circuits and Systems (AICAS) 2022, has selected MERL's paper entitled 'GaN Distributed RF Power Amplifier Automation Design with Deep Reinforcement Learning' as a winner of the AICAS 2022 Openedges Award.