Artificial Intelligence
Making machines smarter for improved safety, efficiency and comfort.
Our AI research encompasses advances in computer vision, speech and audio processing, as well as data analytics. Key research themes include improved perception based on machine learning techniques, learning control policies through model-based reinforcement learning, as well as cognition and reasoning based on learned semantic representations. We apply our work to a broad range of automotive and robotics applications, as well as building and home systems.
Quick Links
-
Researchers
Jonathan
Le Roux
Toshiaki
Koike-Akino
Ye
Wang
Gordon
Wichern
Anoop
Cherian
Tim K.
Marks
Chiori
Hori
Michael J.
Jones
Kieran
Parsons
Daniel N.
Nikovski
Devesh K.
Jha
François
Germain
Suhas
Lohit
Jing
Liu
Matthew
Brand
Philip V.
Orlik
Pu
(Perry)
WangDiego
Romeres
Petros T.
Boufounos
Sameer
Khurana
Moitreya
Chatterjee
Siddarth
Jain
Hassan
Mansour
Kuan-Chuan
Peng
William S.
Yerazunis
Radu
Corcodel
Arvind
Raghunathan
Hongbo
Sun
Yebin
Wang
Ankush
Chakrabarty
Jianlin
Guo
Chungwei
Lin
Yanting
Ma
Yoshiki
Masuyama
Pedro
Miraldo
Bingnan
Wang
Ryo
Aihara
Stefano
Di Cairano
Saviz
Mowlavi
James
Queeney
Anthony
Vetro
Jinyun
Zhang
Jose
Amaya
Vedang M.
Deshpande
Christopher R.
Laughman
Dehong
Liu
Alexander
Schperberg
Wataru
Tsujita
Abraham P.
Vinod
Na
Li
-
Awards
-
AWARD MERL Wins Awards at NeurIPS LLM Privacy Challenge Date: December 15, 2024
Awarded to: Jing Liu, Ye Wang, Toshiaki Koike-Akino, Tsunato Nakai, Kento Oonishi, Takuya Higashi
MERL Contacts: Toshiaki Koike-Akino; Jing Liu; Ye Wang
Research Areas: Artificial Intelligence, Machine Learning, Information SecurityBrief- The Mitsubishi Electric Privacy Enhancing Technologies (MEL-PETs) team, consisting of a collaboration of MERL and Mitsubishi Electric researchers, won awards at the NeurIPS 2024 Large Language Model (LLM) Privacy Challenge. In the Blue Team track of the challenge, we won the 3rd Place Award, and in the Red Team track, we won the Special Award for Practical Attack.
-
AWARD University of Padua and MERL team wins the AI Olympics with RealAIGym competition at IROS24 Date: October 17, 2024
Awarded to: Niccolò Turcato, Alberto Dalla Libera, Giulio Giacomuzzo, Ruggero Carli, Diego Romeres
MERL Contact: Diego Romeres
Research Areas: Artificial Intelligence, Dynamical Systems, Machine Learning, RoboticsBrief- The team composed of the control group at the University of Padua and MERL's Optimization and Robotic team ranked 1st out of the 4 finalist teams that arrived to the 2nd AI Olympics with RealAIGym competition at IROS 24, which focused on control of under-actuated robots. The team was composed by Niccolò Turcato, Alberto Dalla Libera, Giulio Giacomuzzo, Ruggero Carli and Diego Romeres. The competition was organized by the German Research Center for Artificial Intelligence (DFKI), Technical University of Darmstadt and Chalmers University of Technology.
The competition and award ceremony was hosted by IEEE International Conference on Intelligent Robots and Systems (IROS) on October 17, 2024 in Abu Dhabi, UAE. Diego Romeres presented the team's method, based on a model-based reinforcement learning algorithm called MC-PILCO.
- The team composed of the control group at the University of Padua and MERL's Optimization and Robotic team ranked 1st out of the 4 finalist teams that arrived to the 2nd AI Olympics with RealAIGym competition at IROS 24, which focused on control of under-actuated robots. The team was composed by Niccolò Turcato, Alberto Dalla Libera, Giulio Giacomuzzo, Ruggero Carli and Diego Romeres. The competition was organized by the German Research Center for Artificial Intelligence (DFKI), Technical University of Darmstadt and Chalmers University of Technology.
-
AWARD MERL team wins the Listener Acoustic Personalisation (LAP) 2024 Challenge Date: August 29, 2024
Awarded to: Yoshiki Masuyama, Gordon Wichern, Francois G. Germain, Christopher Ick, and Jonathan Le Roux
MERL Contacts: François Germain; Jonathan Le Roux; Gordon Wichern; Yoshiki Masuyama
Research Areas: Artificial Intelligence, Machine Learning, Speech & AudioBrief- MERL's Speech & Audio team ranked 1st out of 7 teams in Task 2 of the 1st SONICOM Listener Acoustic Personalisation (LAP) Challenge, which focused on "Spatial upsampling for obtaining a high-spatial-resolution HRTF from a very low number of directions". The team was led by Yoshiki Masuyama, and also included Gordon Wichern, Francois Germain, MERL intern Christopher Ick, and Jonathan Le Roux.
The LAP Challenge workshop and award ceremony was hosted by the 32nd European Signal Processing Conference (EUSIPCO 24) on August 29, 2024 in Lyon, France. Yoshiki Masuyama presented the team's method, "Retrieval-Augmented Neural Field for HRTF Upsampling and Personalization", and received the award from Prof. Michele Geronazzo (University of Padova, IT, and Imperial College London, UK), Chair of the Challenge's Organizing Committee.
The LAP challenge aims to explore challenges in the field of personalized spatial audio, with the first edition focusing on the spatial upsampling and interpolation of head-related transfer functions (HRTFs). HRTFs with dense spatial grids are required for immersive audio experiences, but their recording is time-consuming. Although HRTF spatial upsampling has recently shown remarkable progress with approaches involving neural fields, HRTF estimation accuracy remains limited when upsampling from only a few measured directions, e.g., 3 or 5 measurements. The MERL team tackled this problem by proposing a retrieval-augmented neural field (RANF). RANF retrieves a subject whose HRTFs are close to those of the target subject at the measured directions from a library of subjects. The HRTF of the retrieved subject at the target direction is fed into the neural field in addition to the desired sound source direction. The team also developed a neural network architecture that can handle an arbitrary number of retrieved subjects, inspired by a multi-channel processing technique called transform-average-concatenate.
- MERL's Speech & Audio team ranked 1st out of 7 teams in Task 2 of the 1st SONICOM Listener Acoustic Personalisation (LAP) Challenge, which focused on "Spatial upsampling for obtaining a high-spatial-resolution HRTF from a very low number of directions". The team was led by Yoshiki Masuyama, and also included Gordon Wichern, Francois Germain, MERL intern Christopher Ick, and Jonathan Le Roux.
See All Awards for Artificial Intelligence -
-
News & Events
-
NEWS MERL researchers present 7 papers at CDC 2024 Date: December 16, 2024 - December 19, 2024
Where: Milan, Italy
MERL Contacts: Ankush Chakrabarty; Vedang M. Deshpande; Stefano Di Cairano; James Queeney; Abraham P. Vinod; Avishai Weiss; Gordon Wichern
Research Areas: Artificial Intelligence, Control, Dynamical Systems, Machine Learning, Multi-Physical Modeling, Optimization, RoboticsBrief- MERL researchers presented 7 papers at the recently concluded Conference on Decision and Control (CDC) 2024 in Milan, Italy. The papers covered a wide range of topics including safety shielding for stochastic model predictive control, reinforcement learning using expert observations, physics-constrained meta learning for positioning, variational-Bayes Kalman filtering, Bayesian measurement masks for GNSS positioning, divert-feasible lunar landing, and centering and stochastic control using constrained zonotopes.
As a sponsor of the conference, MERL maintained a booth for open discussions with researchers and students, and hosted a special session to discuss highlights of MERL research and work philosophy.
In addition, Ankush Chakrabarty (Principal Research Scientist, Multiphysical Systems Team) was an invited speaker in the pre-conference Workshop on "Learning Dynamics From Data" where he gave a talk on few-shot meta-learning for black-box identification using data from similar systems.
- MERL researchers presented 7 papers at the recently concluded Conference on Decision and Control (CDC) 2024 in Milan, Italy. The papers covered a wide range of topics including safety shielding for stochastic model predictive control, reinforcement learning using expert observations, physics-constrained meta learning for positioning, variational-Bayes Kalman filtering, Bayesian measurement masks for GNSS positioning, divert-feasible lunar landing, and centering and stochastic control using constrained zonotopes.
-
NEWS MERL Researchers to Present 2 Conference and 11 Workshop Papers at NeurIPS 2024 Date: December 10, 2024 - December 15, 2024
Where: Advances in Neural Processing Systems (NeurIPS)
MERL Contacts: Petros T. Boufounos; Matthew Brand; Ankush Chakrabarty; Anoop Cherian; François Germain; Toshiaki Koike-Akino; Christopher R. Laughman; Jonathan Le Roux; Jing Liu; Suhas Lohit; Tim K. Marks; Yoshiki Masuyama; Kieran Parsons; Kuan-Chuan Peng; Diego Romeres; Pu (Perry) Wang; Ye Wang; Gordon Wichern
Research Areas: Artificial Intelligence, Communications, Computational Sensing, Computer Vision, Control, Data Analytics, Dynamical Systems, Machine Learning, Multi-Physical Modeling, Optimization, Robotics, Signal Processing, Speech & Audio, Human-Computer Interaction, Information SecurityBrief- MERL researchers will attend and present the following papers at the 2024 Advances in Neural Processing Systems (NeurIPS) Conference and Workshops.
1. "RETR: Multi-View Radar Detection Transformer for Indoor Perception" by Ryoma Yataka (Mitsubishi Electric), Adriano Cardace (Bologna University), Perry Wang (Mitsubishi Electric Research Laboratories), Petros Boufounos (Mitsubishi Electric Research Laboratories), Ryuhei Takahashi (Mitsubishi Electric). Main Conference. https://neurips.cc/virtual/2024/poster/95530
2. "Evaluating Large Vision-and-Language Models on Children's Mathematical Olympiads" by Anoop Cherian (Mitsubishi Electric Research Laboratories), Kuan-Chuan Peng (Mitsubishi Electric Research Laboratories), Suhas Lohit (Mitsubishi Electric Research Laboratories), Joanna Matthiesen (Math Kangaroo USA), Kevin Smith (Massachusetts Institute of Technology), Josh Tenenbaum (Massachusetts Institute of Technology). Main Conference, Datasets and Benchmarks track. https://neurips.cc/virtual/2024/poster/97639
3. "Probabilistic Forecasting for Building Energy Systems: Are Time-Series Foundation Models The Answer?" by Young-Jin Park (Massachusetts Institute of Technology), Jing Liu (Mitsubishi Electric Research Laboratories), François G Germain (Mitsubishi Electric Research Laboratories), Ye Wang (Mitsubishi Electric Research Laboratories), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories), Gordon Wichern (Mitsubishi Electric Research Laboratories), Navid Azizan (Massachusetts Institute of Technology), Christopher R. Laughman (Mitsubishi Electric Research Laboratories), Ankush Chakrabarty (Mitsubishi Electric Research Laboratories). Time Series in the Age of Large Models Workshop.
4. "Forget to Flourish: Leveraging Model-Unlearning on Pretrained Language Models for Privacy Leakage" by Md Rafi Ur Rashid (Penn State University), Jing Liu (Mitsubishi Electric Research Laboratories), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories), Shagufta Mehnaz (Penn State University), Ye Wang (Mitsubishi Electric Research Laboratories). Workshop on Red Teaming GenAI: What Can We Learn from Adversaries?
5. "Spatially-Aware Losses for Enhanced Neural Acoustic Fields" by Christopher Ick (New York University), Gordon Wichern (Mitsubishi Electric Research Laboratories), Yoshiki Masuyama (Mitsubishi Electric Research Laboratories), François G Germain (Mitsubishi Electric Research Laboratories), Jonathan Le Roux (Mitsubishi Electric Research Laboratories). Audio Imagination Workshop.
6. "FV-NeRV: Neural Compression for Free Viewpoint Videos" by Sorachi Kato (Osaka University), Takuya Fujihashi (Osaka University), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories), Takashi Watanabe (Osaka University). Machine Learning and Compression Workshop.
7. "GPT Sonography: Hand Gesture Decoding from Forearm Ultrasound Images via VLM" by Keshav Bimbraw (Worcester Polytechnic Institute), Ye Wang (Mitsubishi Electric Research Laboratories), Jing Liu (Mitsubishi Electric Research Laboratories), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories). AIM-FM: Advancements In Medical Foundation Models: Explainability, Robustness, Security, and Beyond Workshop.
8. "Smoothed Embeddings for Robust Language Models" by Hase Ryo (Mitsubishi Electric), Md Rafi Ur Rashid (Penn State University), Ashley Lewis (Ohio State University), Jing Liu (Mitsubishi Electric Research Laboratories), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories), Kieran Parsons (Mitsubishi Electric Research Laboratories), Ye Wang (Mitsubishi Electric Research Laboratories). Safe Generative AI Workshop.
9. "Slaying the HyDRA: Parameter-Efficient Hyper Networks with Low-Displacement Rank Adaptation" by Xiangyu Chen (University of Kansas), Ye Wang (Mitsubishi Electric Research Laboratories), Matthew Brand (Mitsubishi Electric Research Laboratories), Pu Wang (Mitsubishi Electric Research Laboratories), Jing Liu (Mitsubishi Electric Research Laboratories), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories). Workshop on Adaptive Foundation Models.
10. "Preference-based Multi-Objective Bayesian Optimization with Gradients" by Joshua Hang Sai Ip (University of California Berkeley), Ankush Chakrabarty (Mitsubishi Electric Research Laboratories), Ali Mesbah (University of California Berkeley), Diego Romeres (Mitsubishi Electric Research Laboratories). Workshop on Bayesian Decision-Making and Uncertainty. Lightning talk spotlight.
11. "TR-BEACON: Shedding Light on Efficient Behavior Discovery in High-Dimensions with Trust-Region-based Bayesian Novelty Search" by Wei-Ting Tang (Ohio State University), Ankush Chakrabarty (Mitsubishi Electric Research Laboratories), Joel A. Paulson (Ohio State University). Workshop on Bayesian Decision-Making and Uncertainty.
12. "MEL-PETs Joint-Context Attack for the NeurIPS 2024 LLM Privacy Challenge Red Team Track" by Ye Wang (Mitsubishi Electric Research Laboratories), Tsunato Nakai (Mitsubishi Electric), Jing Liu (Mitsubishi Electric Research Laboratories), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories), Kento Oonishi (Mitsubishi Electric), Takuya Higashi (Mitsubishi Electric). LLM Privacy Challenge. Special Award for Practical Attack.
13. "MEL-PETs Defense for the NeurIPS 2024 LLM Privacy Challenge Blue Team Track" by Jing Liu (Mitsubishi Electric Research Laboratories), Ye Wang (Mitsubishi Electric Research Laboratories), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories), Tsunato Nakai (Mitsubishi Electric), Kento Oonishi (Mitsubishi Electric), Takuya Higashi (Mitsubishi Electric). LLM Privacy Challenge. Won 3rd Place Award.
MERL members also contributed to the organization of the Multimodal Algorithmic Reasoning (MAR) Workshop (https://marworkshop.github.io/neurips24/). Organizers: Anoop Cherian (Mitsubishi Electric Research Laboratories), Kuan-Chuan Peng (Mitsubishi Electric Research Laboratories), Suhas Lohit (Mitsubishi Electric Research Laboratories), Honglu Zhou (Salesforce Research), Kevin Smith (Massachusetts Institute of Technology), Tim K. Marks (Mitsubishi Electric Research Laboratories), Juan Carlos Niebles (Salesforce AI Research), Petar Veličković (Google DeepMind).
- MERL researchers will attend and present the following papers at the 2024 Advances in Neural Processing Systems (NeurIPS) Conference and Workshops.
See All News & Events for Artificial Intelligence -
-
Research Highlights
-
PS-NeuS: A Probability-guided Sampler for Neural Implicit Surface Rendering -
Quantum AI Technology -
TI2V-Zero: Zero-Shot Image Conditioning for Text-to-Video Diffusion Models -
Gear-NeRF: Free-Viewpoint Rendering and Tracking with Motion-Aware Spatio-Temporal Sampling -
Steered Diffusion -
Sustainable AI -
Robust Machine Learning -
mmWave Beam-SNR Fingerprinting (mmBSF) -
Video Anomaly Detection -
Biosignal Processing for Human-Machine Interaction
-
-
Internships
-
CV0084: Internship - Vital signs from video using computer vision and AI
MERL is seeking a highly motivated intern to conduct original research in estimating vital signs such as heart rate, heart rate variability, and blood pressure from video of a person. The successful candidate will use the latest methods in deep learning, computer vision, and signal processing to derive and implement new models, collect data, conduct experiments, and prepare results for publication, all in collaboration with MERL researchers. The candidate should be a Ph.D. student in computer vision with a strong publication record and experience in computer vision, signal processing, machine learning, and health monitoring. The successful candidate is expected to have published at least one paper in a top-tier computer vision or machine learning venue, such as CVPR, ECCV, ICCV, ICML, ICLR, NeurIPS, or AAAI, and possess strong programming skills in Python and Pytorch. Start date is flexible; duration should be at least 3 months.
Required Specific Experience
- Ph.D. student in computer vision or related field.
- Strong programming skills in Python and Pytorch.
- Published at least one paper in a top-tier computer vision or machine learning venue, such as CVPR, ECCV, ICCV, ICML, ICLR, NeurIPS, or AAAI.
-
ST0105: Internship - Surrogate Modeling for Sound Propagation
MERL is seeking a motivated and qualified individual to work on fast surrogate models for sound emission and propagation from complex vibrating structures, with applications in HVAC noise reduction. The ideal candidate will be a PhD student in engineering or related fields with a solid background in frequency-domain acoustic modeling and numerical techniques for partial differential equations (PDEs). Preferred skills include knowledge of the boundary element method (BEM), data-driven modeling, and physics-informed machine learning. Publication of the results obtained during the internship is expected. The duration is expected to be at least 3 months with a flexible start date.
-
CV0050: Internship - Anomaly Localization for Industrial Inspection
MERL is looking for a self-motivated intern to work on anomaly localization in industrial inspection setting using computer vision. The relevant topics in the scope include (but not limited to): cross-view image anomaly localization, how to train one model for multiple views and defect types, how to incorporate large foundation models in image anomaly localization, etc. The candidates with experiences of image anomaly localization in industrial inspection settings (e.g., MVTec-AD or VisA datasets) and usage of large foundation models are strongly preferred. The ideal candidate would be a PhD student with a strong background in computer vision and machine learning, and the candidate is expected to have published at least one paper in a top-tier computer vision, machine learning, or artificial intelligence venues, such as CVPR, ECCV, ICCV, ICML, ICLR, NeurIPS, or AAAI. Proficiency in Python programming and familiarity in at least one deep learning framework are necessary. The ideal candidate is required to collaborate with MERL researchers to develop algorithms and prepare manuscripts for scientific publications. The duration of the internship is ideally to be at least 3 months with a flexible start date.
Required Specific Experience
- Experience with Python, PyTorch, and large foundation models (e.g. CLIP, ALIGN, etc.).
See All Internships for Artificial Intelligence -
-
Openings
See All Openings at MERL -
Recent Publications
- "SMITIN: Self-Monitored Inference-Time INtervention for Generative Music Transformers", IEEE Open Journal of Signal Processing, January 2025.BibTeX TR2025-012 PDF
- @article{Koo2025jan,
- author = {Koo, Junghyun and Wichern, Gordon and Germain, François G and Khurana, Sameer and Le Roux, Jonathan}},
- title = {SMITIN: Self-Monitored Inference-Time INtervention for Generative Music Transformers},
- journal = {IEEE Open Journal of Signal Processing},
- year = 2025,
- month = jan,
- url = {https://www.merl.com/publications/TR2025-012}
- }
, - "Rotation-Equivariant Neural Networks for Cloud Removal from Satellite Images", Asilomar Conference on Signals, Systems, and Computers (ACSSC), January 2025.BibTeX TR2025-009 PDF
- @inproceedings{Lohit2025jan,
- author = {Lohit, Suhas and Marks, Tim K.}},
- title = {Rotation-Equivariant Neural Networks for Cloud Removal from Satellite Images},
- booktitle = {Asilomar Conference on Signals, Systems, and Computers (ACSSC)},
- year = 2025,
- month = jan,
- url = {https://www.merl.com/publications/TR2025-009}
- }
, - "SoundLoc3D: Invisible 3D Sound Source Localization and Classification Using a Multimodal RGB-D Acoustic Camera", IEEE Winter Conference on Applications of Computer Vision (WACV), December 2024.BibTeX TR2025-003 PDF
- @inproceedings{He2024dec2,
- author = {He, Yuhang and Shin, Sangyun and Cherian, Anoop and Trigoni, Niki and Markham, Andrew}},
- title = {SoundLoc3D: Invisible 3D Sound Source Localization and Classification Using a Multimodal RGB-D Acoustic Camera},
- booktitle = {IEEE Winter Conference on Applications of Computer Vision (WACV)},
- year = 2024,
- month = dec,
- url = {https://www.merl.com/publications/TR2025-003}
- }
, - "Temporally Grounding Instructional Diagrams in Unconstrained Videos", IEEE Winter Conference on Applications of Computer Vision (WACV), December 2024.BibTeX TR2025-002 PDF
- @inproceedings{Zhang2024dec,
- author = {Zhang, Jiahao and Zhang, Frederic and Rodriguez, Cristian and Ben-Shabat, Itzik and Cherian, Anoop and Gould, Stephen}},
- title = {Temporally Grounding Instructional Diagrams in Unconstrained Videos},
- booktitle = {IEEE Winter Conference on Applications of Computer Vision (WACV)},
- year = 2024,
- month = dec,
- url = {https://www.merl.com/publications/TR2025-002}
- }
, - "GPT Sonograpy: Hand Gesture Decoding from Forearm Ultrasound Images via VLM", Advances in Neural Information Processing Systems (NeurIPS), December 2024.BibTeX TR2024-175 PDF Presentation
- @inproceedings{Bimbraw2024dec,
- author = {{Bimbraw, Keshav and Wang, Ye and Liu, Jing and Koike-Akino, Toshiaki}},
- title = {GPT Sonograpy: Hand Gesture Decoding from Forearm Ultrasound Images via VLM},
- booktitle = {Advancements In Medical Foundation Models: Explainability, Robustness, Security, and Beyond Workshop at Neural Information Processing Systems (NeurIPS)},
- year = 2024,
- month = dec,
- url = {https://www.merl.com/publications/TR2024-175}
- }
, - "Slaying the HyDRA: Parameter-Efficient Hyper Networks with Low-Displacement Rank Adaptation", Advances in Neural Information Processing Systems (NeurIPS), December 2024.BibTeX TR2024-157 PDF Presentation
- @inproceedings{Chen2024dec,
- author = {{Chen, Xiangyu and Wang, Ye and Brand, Matthew and Wang, Pu and Liu, Jing and Koike-Akino, Toshiaki}},
- title = {Slaying the HyDRA: Parameter-Efficient Hyper Networks with Low-Displacement Rank Adaptation},
- booktitle = {Workshop on Adaptive Foundation Models: Evolving AI for Personalized and Efficient Learning at Neural Information Processing Systems (NeurIPS)},
- year = 2024,
- month = dec,
- url = {https://www.merl.com/publications/TR2024-157}
- }
, - "FV-NeRV: Neural Compression for Free Viewpoint Videos", Advances in Neural Information Processing Systems (NeurIPS), December 2024.BibTeX TR2024-176 PDF
- @inproceedings{Fujihashi2024dec,
- author = {Fujihashi, Takuya and Kato, Sorachi and Koike-Akino, Toshiaki}},
- title = {FV-NeRV: Neural Compression for Free Viewpoint Videos},
- booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
- year = 2024,
- month = dec,
- url = {https://www.merl.com/publications/TR2024-176}
- }
, - "MEL-PETs Defense for the NeurIPS 2024 LLM Privacy Challenge Blue Team Track", LLM Privacy Challenge at Neural Information Processing Systems (NeurIPS) 2024, December 2024.BibTeX TR2024-166 PDF Video Presentation
- @inproceedings{Liu2024dec,
- author = {{Liu, Jing and Wang, Ye and Koike-Akino, Toshiaki and Nakai, Tsunato and Oonishi, Kento and Higashi, Takuya}},
- title = {MEL-PETs Defense for the NeurIPS 2024 LLM Privacy Challenge Blue Team Track},
- booktitle = {LLM Privacy Challenge at Neural Information Processing Systems (NeurIPS) 2024},
- year = 2024,
- month = dec,
- url = {https://www.merl.com/publications/TR2024-166}
- }
,
- "SMITIN: Self-Monitored Inference-Time INtervention for Generative Music Transformers", IEEE Open Journal of Signal Processing, January 2025.
-
Videos
-
Software & Data Downloads
-
MEL-PETs Joint-Context Attack for LLM Privacy Challenge -
Learned Born Operator for Reflection Tomographic Imaging -
MEL-PETs Defense for LLM Privacy Challenge -
Retrieval-Augmented Neural Field for HRTF Upsampling and Personalization -
Transformer-based model with LOcal-modeling by COnvolution -
Sound Event Bounding Boxes -
Enhanced Reverberation as Supervision -
Gear Extensions of Neural Radiance Fields -
Long-Tailed Anomaly Detection Dataset -
Neural IIR Filter Field for HRTF Upsampling and Personalization -
Target-Speaker SEParation -
Pixel-Grounded Prototypical Part Networks -
Steered Diffusion -
Hyperbolic Audio Source Separation -
Simple Multimodal Algorithmic Reasoning Task Dataset -
Partial Group Convolutional Neural Networks -
SOurce-free Cross-modal KnowledgE Transfer -
Audio-Visual-Language Embodied Navigation in 3D Environments -
Nonparametric Score Estimators -
3D MOrphable STyleGAN -
Instance Segmentation GAN -
Audio Visual Scene-Graph Segmentor -
Generalized One-class Discriminative Subspaces -
Goal directed RL with Safety Constraints -
Hierarchical Musical Instrument Separation -
Generating Visual Dynamics from Sound and Context -
Adversarially-Contrastive Optimal Transport -
Online Feature Extractor Network -
MotionNet -
FoldingNet++ -
Quasi-Newton Trust Region Policy Optimization -
Landmarks’ Location, Uncertainty, and Visibility Likelihood -
Robust Iterative Data Estimation -
Gradient-based Nikaido-Isoda -
Discriminative Subspace Pooling
-