Internship Openings

19 / 59 Intern positions were found.

Mitsubishi Electric Research Labs, Inc. "MERL" provides equal employment opportunities (EEO) to all employees and applicants for employment without regard to race, color, religion, sex, national origin, age, disability or genetics. In addition to federal law requirements, MERL complies with applicable state and local laws governing nondiscrimination in employment in every location in which the company has facilities. This policy applies to all terms and conditions of employment, including recruiting, hiring, placement, promotion, termination, layoff, recall, transfer, leaves of absence, compensation and training.

MERL expressly prohibits any form of workplace harassment based on race, color, religion, gender, sexual orientation, gender identity or expression, national origin, age, genetic information, disability, or veteran status. Improper interference with the ability of MERL's employees to perform their job duties may result in discipline up to and including discharge.

Working at MERL requires full authorization to work in the U.S and access to technology, software and other information that is subject to governmental access control restrictions, due to export controls. Employment is conditioned on continued full authorization to work in the U.S and the availability of government authorization for the release of these items, which might include without limitation, obtaining an export license or other documentation. MERL may delay commencement of employment, rescind an offer of employment, terminate employment, and/or modify job responsibilities, compensation, benefits, and/or access to MERL facilities and information systems, as MERL deems appropriate, to ensure practical compliance with applicable employment law and government access control restrictions.


  • CA0055: Internship - Human-Collaborative Loco-Manipulation Robots

    • MERL seeks graduate students passionate about robotics to contribute to the development of a framework for legged robots with manipulator arms to collaborate with human in executing various tasks. The work will involve multi-domain research including planning and control, manipulation, and possibly vision/perception. The methods will be implemented and evaluated in high performance simulators and (time-permitting) in actual robotic platforms. The results of the interns are expected to be published in top-tier robotic conferences and/or journal.

      The internship should start in January 2025 (exact date is flexible) with an expected duration 3-6 months depending on agreed scope and intermediate progress.

      Required Specific Experience

      • Current/Past enrollment in a PhD program in Mechanical, Aerospace, Electrical Engineering, with a concentration in Robotics
      • 2+ years of research in at least some of: machine learning, optimization, control, path planning, computer vision
      • Experience in design and simulation tools for robotics such as ROS, Mujoco, Gazebo, Isaac Lab
      • Strong programming skills in Python and/or C/C++

      Additional Desired Experience

      • Development of planning and control methods in robotic hardware platforms
      • Acquisition and processing of multimodal sensor data, including force/torque and proprioceptive sensors
      • Prior experience in human-robot interaction, legged locomotion, mobile manipulation

    • Research Areas: Robotics, Control, Machine Learning, Optimization, Computer Vision, Artificial Intelligence
    • Host: Stefano Di Cairano
    • Apply Now
  • CA0095: Internship - Infrastructure monitoring using quadrotors

    • MERL seeks graduate students passionate about robotics to collaborate and develop a framework for infrastructure monitoring using quadrotors. The work will involve multi-domain research, including multi-agent planning and control, SLAM, and perception. The methods will be implemented and evaluated on an actual robotic platform (Crazyflies). The results of the internship are expected to be published in top-tier conferences and/or journals. The internship will take place during summer 2025 (exact dates are flexible) with an expected duration of 3-4 months.

      Please use your cover letter to explain how you meet the following requirements, preferably with links to papers, code repositories, etc., indicating your proficiency.

      Required Specific Experience

      • Current enrollment in a PhD program in Mechanical, Electrical Engineering, Computer Science, or related programs, with a focus on Robotics and/or Control Systems
      • Experience in some/all of these topics: multi-agent motion planning, constrained control, SLAM, computer vision
      • Experience with ROS2 and validation of algorithms on robotic platforms, preferably quadrotors
      • Strong programming skills in Python and/or C/C++

      Desired Specific Experience

      • Experience with Crazyflie quadrotors and the Crazyswarm library
      • Experience with the SLAM toolbox in ROS2
      • Experience in convex optimization and model predictive control
      • Experience with computer vision

    • Research Areas: Control, Computer Vision, Optimization, Robotics
    • Host: Abraham Vinod
    • Apply Now
  • CA0118: Internship - Spacecraft Guidance, Navigation, and Control

    • MERL is seeking highly motivated interns for research positions in guidance, navigation, and control of spacecraft. The ideal candidates are PhD students with experience in one or more of the following topics: astrodynamics, the three-body problem, relative motion dynamics, station keeping, rendezvous, landing, attitude control, orbit control, orbit determination, nonlinear estimation, scheduling problems, and optimization-based control. Publication of results produced during the internship is expected. The duration of the internships are 3-6 months, and the start dates are flexible.

      Required Specific Experience

      • Current enrollment in a PhD program in Aerospace, Mechanical, Electrical Engineering, or a related field
      • Strong programming skills in Matlab, Python, and/or C/C++

    • Research Areas: Control, Dynamical Systems, Optimization
    • Host: Avishai Weiss
    • Apply Now
  • CA0117: Internship - Feedforward-Feedback Co-Design

    • MERL is seeking a graduate student to develop a scalable optimization-based framework for feedforward-feedback co-design for nonlinear dynamical systems subject to path constraints. The framework will 1) support modeling and operational uncertainties, and 2) guarantee static and dynamic feasibility in closed-loop. The solution approach will leverage the state-of-the-art in sequential convex programming, contraction analysis, and first-order methods for semidefinite programming. The methods will be evaluated on high-dimensional motion planning problems in robotics. The results of the internship are expected to be published in top-tier conferences and/or journal in robotics, control systems, and optimization.

      The internship is expected to start in Spring or Summer 2025 with an expected duration of 3-6 months depending on the agreed scope and intermediate progress.

      Required Specific Experience

      • Current/Past enrollment in a Ph.D. program in Mechanical, Aerospace, Electrical Engineering, Computer Science, or Applied Mathematics.
      • 2+ years of research in at least some of: first-order algorithms for SDPs, contraction analysis, nonconvex trajectory optimization.
      • Strong programming skills in Python and/or C/C++.

    • Research Areas: Control, Optimization, Robotics, Dynamical Systems
    • Host: Purnanand Elango
    • Apply Now
  • CA0114: Internship - Trajectory planning for drones with controllable sensors

    • MERL is seeking an outstanding intern to collaborate with the Control for Autonomy team in the development of trajectory generation for mobile robots, e.g., drones, equipped with controllable sensors, for information acquisition tasks. The project objective is to optimize drone trajectories and the control of on board sensors (e.g., field of view, pointing angle, etc.) to maximize the amount of information acquired about specified monitored targets while reducing the mission duration. The ideal candidate is expected to be working towards a PhD with a strong emphasis on trajectory generation and control, optimization-based control and planning algorithms and constrained control. Strong programming skills in at least one among Matlab, Python, Julia, C/C++ are required. Experience with experimental drone platforms such as crazyflie, and related software frameworks, such as ROS, are desired. The expected start date is in the late Spring/Early Summer 2025, for a duration of 3-6 months.

      Required Specific Experience

      • Currently enrolled in a PhD program in Aerospace, Electrical, Mechanical Engineering, Computer Science, Applied Math or a related field
      • 2+ years of research in at least some of: optimization-based trajectory generation, convex and non-convex optimization, sensor modeling, information-aware planning
      • Strong programming skills in at least one among Matlab, Python, Julia, or C/C++
      • Validation of drone planning and control in simulations. Experience with drone experiments is a plus.

    • Research Areas: Control, Dynamical Systems, Optimization, Robotics, Machine Learning
    • Host: Stefano Di Cairano
    • Apply Now
  • CA0107: Internship - Perception-Aware Control and Planning

    • MERL is seeking a highly motivated and qualified intern to collaborate with the Control for Autonomy team in the development of visual perception-aware control. The overall objective is to optimize control policy where the perception uncertainty is affected by the chosen policy. Application areas include mobile robotics, drones, autonomous vehicles, and spacecraft. The ideal candidate is expected to be working towards a PhD with a strong emphasis on stochastic optimal control/planning or visual odometry and to have interest and background in as many as possible among: output-feedback optimal control, visual SLAM, POMDP, information fields, motion planning, and machine learning. The expected start date is in the late Spring/Early Summer 2025, for a duration of 3-6 months.

      Required Specific Experience

      • Current/Past enrollment in a PhD program in Mechanical, Aerospace, Electrical Engineering, or a related field
      • 2+ years of research in at least some of: optimal control, motion planning, computer vision, navigation, uncertainty quantification, stochastic planning/control
      • Strong programming skills in Python and/or C++

    • Research Areas: Machine Learning, Dynamical Systems, Control, Optimization, Robotics, Computer Vision
    • Host: Kento Tomita
    • Apply Now
  • CA0111: Internship - Nonconvex Trajectory Optimization

    • MERL is seeking a graduate student to develop an optimization-based framework for nonconvex trajectory generation with emphasis on continuous-time modeling/constraint satisfaction, convergence guarantees, and real-time performance. The framework will support hybrid dynamical systems, spatio-temporal logical specifications, multi-body systems, and contact-rich motion. The methods will be evaluated on real-world robotics applications based on locomotion, manipulation, and motion planning. The results of the internship are expected to be published in top-tier conferences and/or journal in robotics, control systems, and optimization.

      The internship is expected to start in Spring or Summer 2025 with an expected duration of 3-6 months depending on the agreed scope and intermediate progress.

      Required Specific Experience

      • Current/Past enrollment in a Ph.D. program in Mechanical, Aerospace, Electrical Engineering, Computer Science, or Applied Mathematics.
      • 2+ years of research in at least some of: sequential convex programming, augmented Lagrangian, operator-splitting first-order optimization algorithms, contact-rich motion, multi-body systems, signal temporal logic specifications, direct shooting and collocation methods.
      • Experience in design and simulation tools for robotics such as ROS, Mujoco, Gazebo, Isaac Lab.
      • Strong programming skills in Python and/or C/C++.

    • Research Areas: Control, Optimization, Robotics, Dynamical Systems
    • Host: Purnanand Elango
    • Apply Now
  • SA0044: Internship - Multimodal scene-understanding

    • We are looking for a graduate student interested in helping advance the field of multimodal scene understanding, focusing on scene understanding using natural language for robot dialog and/or indoor monitoring using a large language model. The intern will collaborate with MERL researchers to derive and implement new models and optimization methods, conduct experiments, and prepare results for publication. Internships regularly lead to one or more publications in top-tier venues, which can later become part of the intern''''s doctoral work. The ideal candidates are senior Ph.D. students with experience in deep learning for audio-visual, signal, and natural language processing. Good programming skills in Python and knowledge of deep learning frameworks such as PyTorch are essential. Multiple positions are available with flexible start date (not just Spring/Summer but throughout 2024) and duration (typically 3-6 months).

      Required Specific Experience

      • Experience with ROS2, C/C++, Python, and deep learning frameworks such as PyTorch are essential.

    • Research Areas: Artificial Intelligence, Computer Vision, Control, Machine Learning, Robotics, Speech & Audio
    • Host: Chiori Hori
    • Apply Now
  • OR0088: Internship - [Robot Learning]

    • MERL is looking for a highly motivated and qualified PhD student in the areas of machine learning and robotics, to participate in research on advanced algorithms for learning control of robots and other mechanisms. Solid background and hands-on experience with various machine learning algorithms is expected, and in particular with deep learning algorithms for image processing and object detection. Exposure to deep reinforcement learning and/or learning from demonstration is highly desirable. Familiarity with the use of machine learning algorithms for system identification of mechanical systems would be a plus, along with background in other areas of automatic control. Solid experimental skills and hands-on experience in coding in Python, PyTorch, and OpenCV are required for the position. Some experience with ROS2 and familiarity with classical mechanics and computational physics engines would be helpful, but is not required. The position will provide opportunities for exploring fundamental problems in incremental learning in humans and machines, leading to publishable results. The duration of the internship is 3 to 5 months, with a flexible starting date.

      Required Specific Experience

      • Python, PyTorch, OpenCV

    • Research Areas: Artificial Intelligence, Computer Vision, Control, Machine Learning, Robotics
    • Host: Daniel Nikovski
    • Apply Now
  • CV0063: Internship - Visual Simultaneous Localization and Mapping

    • MERL is looking for a self-motivated graduate student to work on Visual Simultaneous Localization and Mapping (V-SLAM). Based on the candidate’s interests, the intern can work on a variety of topics such as (but not limited to): camera pose estimation, feature detection and matching, visual-LiDAR data fusion, pose-graph optimization, loop closure detection, and image-based camera relocalization. The ideal candidate would be a PhD student with a strong background in 3D computer vision and good programming skills in C/C++ and/or Python. The candidate must have published at least one paper in a top-tier computer vision, machine learning, or robotics venue, such as CVPR, ECCV, ICCV, NeurIPS, ICRA, or IROS. The intern will collaborate with MERL researchers to derive and implement new algorithms for V-SLAM, conduct experiments, and report findings. A submission to a top-tier conference is expected. The duration of the internship and start date are flexible.

      Required Specific Experience

      • Experience with 3D Computer Vision and Simultaneous Localization & Mapping.

    • Research Areas: Computer Vision, Robotics, Control
    • Host: Pedro Miraldo
    • Apply Now
  • EA0071: Internship - Modeling and Estimation of Electrical Machines

    • MERL is seeking a highly motivated and qualified individual to conduct research in differentiable modeling, estimation and control of electrical machines. The ideal candidate should have solid backgrounds in dynamical modeling of electrical machines, parameter estimation, and control theory. A proven record of publishing results in leading conferences/journals is necessary. Demonstrated knowledge of sensorless drive and experience of using dSPACE for real-time HIL experimentation is a plus. Senior Ph.D. students in electrical engineering, control, and related areas are encouraged to apply. Start date for this internship is flexible and the duration is about 3 months.

    • Research Areas: Electric Systems, Control, Dynamical Systems
    • Host: Yebin Wang
    • Apply Now
  • EA0065: Internship - Planning and Control of Mobile Manipulators

    • MERL is seeking a highly motivated and qualified individual to conduct research in safe/robust whole-body motion planning and control of mobile manipulators. The ideal candidate should demonstrate solid background and track record of publications in the areas of robotic dynamics, motion planning, and control. Strong C++ and Python coding skills, knowledge of robotic software such as Pinocchio/Pybullet/MuJoCo, and optimization tools such as CasADi/PyTorch are a necessity. Ph.D. students in mechanical engineering, robotics, computer science, and electrical engineering are encouraged to apply. Start date for this internship is flexible and the duration is about 3 months.

      Required Specific Experience

      • Solid background and track record of conducting innovative research in the dynamic modeling, motion planning, and control of robotic systems.
      • Experience with C++/Python, Pinocchio, Pybullet, MuJoCo, CasADi, PyTorch.

    • Research Areas: Control, Robotics, Optimization
    • Host: Yebin Wang
    • Apply Now
  • EA0074: Internship - Control Policy Learning with Guarantee

    • MERL is seeking a highly motivated and qualified individual to conduct research in the integration of model- and learning-based control to achieve high precision positioning with guaranteed safety and robustness. The ideal candidate should have solid backgrounds in dynamical systems, control theory and state-of-the-art control policy learning algorithms, and strong coding skills. Prior experience on ultra-high precision motion control systems is a plus. Ph.D. students in learning and control are encouraged to apply. Start date for this internship is flexible and the duration is about 3 months.

    • Research Areas: Control, Machine Learning, Dynamical Systems
    • Host: Yebin Wang
    • Apply Now
  • ST0103: Internship - Data-Driven Control for High-Dimensional Dynamics

    • MERL is seeking a motivated and qualified individual to work on data-driven estimation and control of high-dimensional dynamical systems, with applications in indoor airflow optimization. The ideal candidate will be a PhD student in engineering or related fields with a solid background in estimation, control, and dynamical systems theory. Preferred skills include knowledge of reinforcement learning, data-driven control, nonlinear control, reduced-order modeling (ROM), and partial differential equations (PDEs). Publication of the results obtained during the internship is expected. The duration is expected to be at least 3 months with a flexible start date.

    • Research Areas: Artificial Intelligence, Control, Dynamical Systems, Machine Learning, Optimization, Computational Sensing
    • Host: Saviz Mowlavi
    • Apply Now
  • MS0106: Internship - Optimal Control of Multiphysical Systems

    • MERL seeks a qualified, highly-motivated graduate student for an internship in the area of systems-level dynamic modeling, analysis and optimal control of next-generation thermofluid systems used in heating, cooling and ventilation (HVAC) applications. HVAC systems for applications such as data centers or district heating and cooling are characterized as dynamic networks, described by a large sets of differential and algebraic equations expressing physics (conservation laws), together with discrete and continuous equations describing the action of control. These are large scale, hybrid, constrained nonlinear systems. The MS group at MERL invites qualified graduate students to join its efforts in system level dynamic modeling, analysis and especially control of these systems. The research results are expected to impact both development of new products at Mitsubishi Electric, and also be published in leading conferences and journals.

      Required Specific Experience

      • Strong education and experience with nonlinear differential-algebraic equations is required.
      • Strong education and working knowledge of optimal and nonlinear control theory is required.
      • Knowledge of mathematical methods for hybrid systems is an asset.
      • Some experience with thermofluid systems is an asset.

    • Research Areas: Control, Multi-Physical Modeling, Optimization
    • Host: Scott Bortoff
    • Apply Now
  • MS0102: Internship - Estimation and Calibration of Multi-physical Systems Using Experiments

    • MERL is looking for a highly motivated and qualified candidate to work on estimation and calibration of muti-physical systems governed by differential algebraic equations (DAEs). The research will involve study, development and efficient implementation of estimation/calibration approaches for large-scale nonlinear systems, e.g., vapor compression cycles, with limited experimental data. The ideal candidate will have a strong background in one or multiple of the following topics: nonlinear control and estimation, optimization, and model calibration; with expertise demonstrated via, e.g., peer-reviewed publications. Prior experience in working with experimental data, and programming in Julia/Modelica is a plus. Senior PhD students in mechanical, electrical, chemical engineering or related fields are encouraged to apply. The typical duration of internship is 3 months, and the start date is flexible.

      Required Specific Experience

      • Graduate student with 2+ years of relevant research experience

      Additional Desired Experience

      • Strong programming skills in Julia or Modelica
      • Prior experience in working with thermofluid systems
      • Prior experience in estimation/calibration of complex nonlinear systems using experimental data

      Mitsubishi Electric Research Labs, Inc. "MERL" provides equal employment opportunities (EEO) to all employees and applicants for employment without regard to race, color, religion, sex, national origin, age, disability or genetics. In addition to federal law requirements, MERL complies with applicable state and local laws governing nondiscrimination in employment in every location in which the company has facilities. This policy applies to all terms and conditions of employment, including recruiting, hiring, placement, promotion, termination, layoff, recall, transfer, leaves of absence, compensation and training.

      MERL expressly prohibits any form of workplace harassment based on race, color, religion, gender, sexual orientation, gender identity or expression, national origin, age, genetic information, disability, or veteran status. Improper interference with the ability of MERL’s employees to perform their job duties may result in discipline up to and including discharge.

      Working at MERL requires full authorization to work in the U.S and access to technology, software and other information that is subject to governmental access control restrictions, due to export controls. Employment is conditioned on continued full authorization to work in the U.S and the availability of government authorization for the release of these items, which might include without limitation, obtaining an export license or other documentation. MERL may delay commencement of employment, rescind an offer of employment, terminate employment, and/or modify job responsibilities, compensation, benefits, and/or access to MERL facilities and information systems, as MERL deems appropriate, to ensure practical compliance with applicable employment law and government access control restrictions.

    • Research Areas: Multi-Physical Modeling, Optimization, Control, Dynamical Systems, Applied Physics
    • Host: Vedang Deshpande
    • Apply Now
  • MS0110: Internship - Stochastic MPC for Grid-Interactive Buildings and HVAC

    • MERL is looking for a highly motivated and qualified candidate to work on stochastic control for grid-interactive net-zero energy buildings informed by deep generative models. The ideal candidate will have a strong understanding of optimization-based control with expertise demonstrated via, e.g., publications, in stochastic model predictive control.

      Additional understanding of energy systems and machine learning is a plus. Hands-on programming experience with numerical optimization solvers and Python fluency is required. The results of this 3-6 month internship are expected to be published in top-tier energy systems and/or control venues.

    • Research Areas: Control, Dynamical Systems, Optimization, Multi-Physical Modeling
    • Host: Ankush Chakrabarty
    • Apply Now
  • MS0092: Internship - Data-Driven Modeling and Control of Thermo-Fluid Systems

    • MERL is seeking a highly motivated and qualified individual to conduct research in data-driven modeling and control of vapor compression systems in the summer of 2025. The ideal candidate should have a solid background and demonstrated research experience in differential algebraic equations, optimal control and physics-informed machine learning. Knowledge of thermo-fluid systems is a plus. The intern is expected to collaborate with MERL researchers to build models, develop algorithms, and prepare manuscripts for scientific publications. Senior Ph.D. students in applied mathematics, chemical/mechanical engineering and other related areas are encouraged to apply. The expected duration of the internship is 3 months, and the start date is flexible.

    • Research Areas: Control, Machine Learning, Multi-Physical Modeling
    • Host: Hongtao Qiao
    • Apply Now
  • MS0098: Internship - Control and Estimation for Large=Scale Thermofluid Systems

    • MERL is seeking a motivated graduate student to research methods for state and parameter estimation and optimization of large-scale systems for process applications. Representative applications include large vapor-compression cycles and other multiphysical systems for energy conversion that couple thermodynamic, fluid, and electrical domains. The ideal candidate would have a solid background in control and estimation, numerical methods, and optimization; strong programming skills and experience with Julia/Python/Matlab are also expected. Knowledge of the fundamental physics of thermofluid flows (e.g., thermodynamics, heat transfer, and fluid mechanics), nonlinear dynamics, or equation-oriented languages (Modelica, gPROMS) is a plus. The expected duration of this internship is 3 months.

    • Research Areas: Optimization, Machine Learning, Control, Multi-Physical Modeling
    • Host: Chris Laughman
    • Apply Now