Control
If it moves, we control it.
Our expertise in this area covers multivariable, nonlinear, optimal and model-predictive control theory, nonlinear estimation, nonlinear dynamical systems, and mechanical design. We conduct both fundamental and applied research targeting a wide range of applications including autonomous driving, factory automation and HVAC systems.
Quick Links
-
Researchers
Stefano
Di Cairano
Yebin
Wang
Scott A.
Bortoff
Ankush
Chakrabarty
Avishai
Weiss
Christopher R.
Laughman
Daniel N.
Nikovski
Abraham P.
Vinod
Diego
Romeres
Devesh K.
Jha
Arvind
Raghunathan
Philip V.
Orlik
William S.
Yerazunis
Abraham
Goldsmith
Vedang M.
Deshpande
Jianlin
Guo
Hongtao
Qiao
Chungwei
Lin
Toshiaki
Koike-Akino
Matthew
Brand
Purnanand
Elango
Yanting
Ma
Pedro
Miraldo
Dehong
Liu
Hassan
Mansour
Ye
Wang
Gordon
Wichern
Jinyun
Zhang
Petros T.
Boufounos
Siddarth
Jain
Kieran
Parsons
James
Queeney
Alexander
Schperberg
Hongbo
Sun
Bingnan
Wang
Na
Li
-
Awards
-
AWARD Arvind Raghunathan receives Roberto Tempo Best CDC Paper Award at 2022 IEEE Conference on Decision & Control (CDC) Date: December 8, 2022
Awarded to: Arvind Raghunathan
MERL Contact: Arvind Raghunathan
Research Areas: Control, OptimizationBrief- Arvind Raghunathan, Senior Principal Research Scientist in the Data Analytics group, received the IEEE Control Systems Society Roberto Tempo Best CDC Paper Award. The award was presented at the 2022 IEEE Conference on Decision & Control (CDC).
The award is given annually in honor of Roberto Tempo, the 44th President of the IEEE Control Systems Society (CSS). The Tempo Award Committee selects the best paper from the previous year's CDC based on originality, potential impact on any aspect of control theory, technology, or implementation, and for the clarity of writing. This year's award committee was headed by Prof. Patrizio Colaneri, Politecnico di Milano. Arvind's paper was nominated for the award by Prof. Lorenz Biegler, Carnegie Mellon University, with supporting letters from Prof. Andreas Waechter, Northwestern University, and Prof. Victor Zavala, University of Wisconsin-Madison.
- Arvind Raghunathan, Senior Principal Research Scientist in the Data Analytics group, received the IEEE Control Systems Society Roberto Tempo Best CDC Paper Award. The award was presented at the 2022 IEEE Conference on Decision & Control (CDC).
-
AWARD MERL Researcher Devesh Jha Wins the Rudolf Kalman Best Paper Award 2019 Date: October 10, 2019
Awarded to: Devesh Jha, Nurali Virani, Zhenyuan Yuan, Ishana Shekhawat and Asok Ray
MERL Contact: Devesh K. Jha
Research Areas: Artificial Intelligence, Control, Data Analytics, Machine Learning, RoboticsBrief- MERL researcher Devesh Jha has won the Rudolf Kalman Best Paper Award 2019 for the paper entitled "Imitation of Demonstrations Using Bayesian Filtering With Nonparametric Data-Driven Models". This paper, published in a Special Commemorative Issue for Rudolf E. Kalman in the ASME JDSMC in March 2018, uses Bayesian filtering for imitation learning in Hidden Mode Hybrid Systems. This award is given annually by the Dynamic Systems and Control Division of ASME to the authors of the best paper published in the ASME Journal of Dynamic Systems Measurement and Control during the preceding year.
See All Awards for MERL -
-
News & Events
-
NEWS MERL Researchers to Present 2 Conference and 11 Workshop Papers at NeurIPS 2024 Date: December 10, 2024 - December 15, 2024
Where: Advances in Neural Processing Systems (NeurIPS)
MERL Contacts: Petros T. Boufounos; Matthew Brand; Ankush Chakrabarty; Anoop Cherian; François Germain; Toshiaki Koike-Akino; Christopher R. Laughman; Jonathan Le Roux; Jing Liu; Suhas Lohit; Tim K. Marks; Yoshiki Masuyama; Kieran Parsons; Kuan-Chuan Peng; Diego Romeres; Pu (Perry) Wang; Ye Wang; Gordon Wichern
Research Areas: Artificial Intelligence, Communications, Computational Sensing, Computer Vision, Control, Data Analytics, Dynamical Systems, Machine Learning, Multi-Physical Modeling, Optimization, Robotics, Signal Processing, Speech & Audio, Human-Computer Interaction, Information SecurityBrief- MERL researchers will attend and present the following papers at the 2024 Advances in Neural Processing Systems (NeurIPS) Conference and Workshops.
1. "RETR: Multi-View Radar Detection Transformer for Indoor Perception" by Ryoma Yataka (Mitsubishi Electric), Adriano Cardace (Bologna University), Perry Wang (Mitsubishi Electric Research Laboratories), Petros Boufounos (Mitsubishi Electric Research Laboratories), Ryuhei Takahashi (Mitsubishi Electric). Main Conference. https://neurips.cc/virtual/2024/poster/95530
2. "Evaluating Large Vision-and-Language Models on Children's Mathematical Olympiads" by Anoop Cherian (Mitsubishi Electric Research Laboratories), Kuan-Chuan Peng (Mitsubishi Electric Research Laboratories), Suhas Lohit (Mitsubishi Electric Research Laboratories), Joanna Matthiesen (Math Kangaroo USA), Kevin Smith (Massachusetts Institute of Technology), Josh Tenenbaum (Massachusetts Institute of Technology). Main Conference, Datasets and Benchmarks track. https://neurips.cc/virtual/2024/poster/97639
3. "Probabilistic Forecasting for Building Energy Systems: Are Time-Series Foundation Models The Answer?" by Young-Jin Park (Massachusetts Institute of Technology), Jing Liu (Mitsubishi Electric Research Laboratories), François G Germain (Mitsubishi Electric Research Laboratories), Ye Wang (Mitsubishi Electric Research Laboratories), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories), Gordon Wichern (Mitsubishi Electric Research Laboratories), Navid Azizan (Massachusetts Institute of Technology), Christopher R. Laughman (Mitsubishi Electric Research Laboratories), Ankush Chakrabarty (Mitsubishi Electric Research Laboratories). Time Series in the Age of Large Models Workshop.
4. "Forget to Flourish: Leveraging Model-Unlearning on Pretrained Language Models for Privacy Leakage" by Md Rafi Ur Rashid (Penn State University), Jing Liu (Mitsubishi Electric Research Laboratories), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories), Shagufta Mehnaz (Penn State University), Ye Wang (Mitsubishi Electric Research Laboratories). Workshop on Red Teaming GenAI: What Can We Learn from Adversaries?
5. "Spatially-Aware Losses for Enhanced Neural Acoustic Fields" by Christopher Ick (New York University), Gordon Wichern (Mitsubishi Electric Research Laboratories), Yoshiki Masuyama (Mitsubishi Electric Research Laboratories), François G Germain (Mitsubishi Electric Research Laboratories), Jonathan Le Roux (Mitsubishi Electric Research Laboratories). Audio Imagination Workshop.
6. "FV-NeRV: Neural Compression for Free Viewpoint Videos" by Sorachi Kato (Osaka University), Takuya Fujihashi (Osaka University), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories), Takashi Watanabe (Osaka University). Machine Learning and Compression Workshop.
7. "GPT Sonography: Hand Gesture Decoding from Forearm Ultrasound Images via VLM" by Keshav Bimbraw (Worcester Polytechnic Institute), Ye Wang (Mitsubishi Electric Research Laboratories), Jing Liu (Mitsubishi Electric Research Laboratories), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories). AIM-FM: Advancements In Medical Foundation Models: Explainability, Robustness, Security, and Beyond Workshop.
8. "Smoothed Embeddings for Robust Language Models" by Hase Ryo (Mitsubishi Electric), Md Rafi Ur Rashid (Penn State University), Ashley Lewis (Ohio State University), Jing Liu (Mitsubishi Electric Research Laboratories), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories), Kieran Parsons (Mitsubishi Electric Research Laboratories), Ye Wang (Mitsubishi Electric Research Laboratories). Safe Generative AI Workshop.
9. "Slaying the HyDRA: Parameter-Efficient Hyper Networks with Low-Displacement Rank Adaptation" by Xiangyu Chen (University of Kansas), Ye Wang (Mitsubishi Electric Research Laboratories), Matthew Brand (Mitsubishi Electric Research Laboratories), Pu Wang (Mitsubishi Electric Research Laboratories), Jing Liu (Mitsubishi Electric Research Laboratories), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories). Workshop on Adaptive Foundation Models.
10. "Preference-based Multi-Objective Bayesian Optimization with Gradients" by Joshua Hang Sai Ip (University of California Berkeley), Ankush Chakrabarty (Mitsubishi Electric Research Laboratories), Ali Mesbah (University of California Berkeley), Diego Romeres (Mitsubishi Electric Research Laboratories). Workshop on Bayesian Decision-Making and Uncertainty. Lightning talk spotlight.
11. "TR-BEACON: Shedding Light on Efficient Behavior Discovery in High-Dimensions with Trust-Region-based Bayesian Novelty Search" by Wei-Ting Tang (Ohio State University), Ankush Chakrabarty (Mitsubishi Electric Research Laboratories), Joel A. Paulson (Ohio State University). Workshop on Bayesian Decision-Making and Uncertainty.
12. "MEL-PETs Joint-Context Attack for the NeurIPS 2024 LLM Privacy Challenge Red Team Track" by Ye Wang (Mitsubishi Electric Research Laboratories), Tsunato Nakai (Mitsubishi Electric), Jing Liu (Mitsubishi Electric Research Laboratories), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories), Kento Oonishi (Mitsubishi Electric), Takuya Higashi (Mitsubishi Electric). LLM Privacy Challenge. Special Award for Practical Attack.
13. "MEL-PETs Defense for the NeurIPS 2024 LLM Privacy Challenge Blue Team Track" by Jing Liu (Mitsubishi Electric Research Laboratories), Ye Wang (Mitsubishi Electric Research Laboratories), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories), Tsunato Nakai (Mitsubishi Electric), Kento Oonishi (Mitsubishi Electric), Takuya Higashi (Mitsubishi Electric). LLM Privacy Challenge. Won 3rd Place Award.
MERL members also contributed to the organization of the Multimodal Algorithmic Reasoning (MAR) Workshop (https://marworkshop.github.io/neurips24/). Organizers: Anoop Cherian (Mitsubishi Electric Research Laboratories), Kuan-Chuan Peng (Mitsubishi Electric Research Laboratories), Suhas Lohit (Mitsubishi Electric Research Laboratories), Honglu Zhou (Salesforce Research), Kevin Smith (Massachusetts Institute of Technology), Tim K. Marks (Mitsubishi Electric Research Laboratories), Juan Carlos Niebles (Salesforce AI Research), Petar Veličković (Google DeepMind).
- MERL researchers will attend and present the following papers at the 2024 Advances in Neural Processing Systems (NeurIPS) Conference and Workshops.
-
TALK [MERL Seminar Series 2024] Zhaojian Li presents talk titled A Multi-Arm Robotic System for Robotic Apple Harvesting Date & Time: Wednesday, October 2, 2024; 1:00 PM
Speaker: Zhaojian Li, Mivchigan State University
MERL Host: Yebin Wang
Research Areas: Artificial Intelligence, Computer Vision, Control, RoboticsAbstract- Harvesting labor is the single largest cost in apple production in the U.S. Surging cost and growing shortage of labor has forced the apple industry to seek automated harvesting solutions. Despite considerable progress in recent years, the existing robotic harvesting systems still fall short of performance expectations, lacking robustness and proving inefficient or overly complex for practical commercial deployment. In this talk, I will present the development and evaluation of a new dual-arm robotic apple harvesting system. This work is a result of a continuous collaboration between Michigan State University and U.S. Department of Agriculture.
See All News & Events for Control -
-
Internships
-
MS0098: Internship - Control and Estimation for Large-Scale Thermofluid Systems
MERL is seeking a motivated graduate student to research methods for state and parameter estimation and optimization of large-scale systems for process applications. Representative applications include large vapor-compression cycles and other multiphysical systems for energy conversion that couple thermodynamic, fluid, and electrical domains. The ideal candidate would have a solid background in control and estimation, numerical methods, and optimization; strong programming skills and experience with Julia/Python/Matlab are also expected. Knowledge of the fundamental physics of thermofluid flows (e.g., thermodynamics, heat transfer, and fluid mechanics), nonlinear dynamics, or equation-oriented languages (Modelica, gPROMS) is a plus. The expected duration of this internship is 3 months.
-
EA0071: Internship - Modeling and Estimation of Electrical Machines
MERL is seeking a highly motivated and qualified individual to conduct research in differentiable modeling, estimation and control of electrical machines. The ideal candidate should have solid backgrounds in dynamical modeling of electrical machines, parameter estimation, and control theory. A proven record of publishing results in leading conferences/journals is necessary. Demonstrated knowledge of sensorless drive and experience of using dSPACE for real-time HIL experimentation is a plus. Senior Ph.D. students in electrical engineering, control, and related areas are encouraged to apply. Start date for this internship is flexible and the duration is about 3 months.
-
CA0095: Internship - Infrastructure monitoring using quadrotors
MERL seeks graduate students passionate about robotics to collaborate and develop a framework for infrastructure monitoring using quadrotors. The work will involve multi-domain research, including multi-agent planning and control, SLAM, and perception. The methods will be implemented and evaluated on an actual robotic platform (Crazyflies). The results of the internship are expected to be published in top-tier conferences and/or journals. The internship will take place during summer 2025 (exact dates are flexible) with an expected duration of 3-4 months.
Please use your cover letter to explain how you meet the following requirements, preferably with links to papers, code repositories, etc., indicating your proficiency.
Required Specific Experience
- Current enrollment in a PhD program in Mechanical, Electrical Engineering, Computer Science, or related programs, with a focus on Robotics and/or Control Systems
- Experience in some/all of these topics: multi-agent motion planning, constrained control, SLAM, computer vision
- Experience with ROS2 and validation of algorithms on robotic platforms, preferably quadrotors
- Strong programming skills in Python and/or C/C++
Desired Specific Experience
- Experience with Crazyflie quadrotors and the Crazyswarm library
- Experience with the SLAM toolbox in ROS2
- Experience in convex optimization and model predictive control
- Experience with computer vision
See All Internships for Control -
-
Openings
-
EA0042: Research Scientist - Control & Learning
-
CA0093: Research Scientist - Control for Autonomous Systems
See All Openings at MERL -
-
Recent Publications
- "Decentralized, Safe, Multi-agent Motion Planning for Drones Under Uncertainty via Filtered Reinforcement Learning", IEEE Transactions on Control Systems Technology, DOI: 10.1109/TCST.2024.3433229, Vol. 32, No. 6, pp. 2492-2499, January 2025.BibTeX TR2024-136 PDF
- @article{Vinod2025jan,
- author = {Vinod, Abraham P. and Safaoui, Sleiman and Summers, Tyler and Yoshikawa, Nobuyuki and Di Cairano, Stefano}},
- title = {Decentralized, Safe, Multi-agent Motion Planning for Drones Under Uncertainty via Filtered Reinforcement Learning},
- journal = {IEEE Transactions on Control Systems Technology},
- year = 2025,
- volume = 32,
- number = 6,
- pages = {2492--2499},
- month = jan,
- doi = {10.1109/TCST.2024.3433229},
- url = {https://www.merl.com/publications/TR2024-136}
- }
, - "Learning Time-Optimal Control of Gantry Cranes", International Conference on Machine Learning and Applications (ICMLA), December 2024.BibTeX TR2024-181 PDF
- @inproceedings{Zhong2024dec,
- author = {{Zhong, Junmin and Nikovski, Daniel N. and Yerazunis, William S. and Ando, Taishi}},
- title = {Learning Time-Optimal Control of Gantry Cranes},
- booktitle = {International Conference on Machine Learning and Applications (ICMLA)},
- year = 2024,
- month = dec,
- url = {https://www.merl.com/publications/TR2024-181}
- }
, - "Physics-Constrained Meta-Learning for Online Adaptation and Estimation in Positioning Applications", IEEE Annual Conference on Decision and Control (CDC), December 2024.BibTeX TR2024-180 PDF
- @inproceedings{Chakrabarty2024dec,
- author = {Chakrabarty, Ankush and Deshpande, Vedang M. and Wichern, Gordon and Berntorp, Karl}},
- title = {Physics-Constrained Meta-Learning for Online Adaptation and Estimation in Positioning Applications},
- booktitle = {IEEE Annual Conference on Decision and Control (CDC)},
- year = 2024,
- month = dec,
- url = {https://www.merl.com/publications/TR2024-180}
- }
, - "Bayesian Measurement Masks for GNSS Positioning", IEEE Conference on Decision and Control (CDC), December 2024.BibTeX TR2024-172 PDF
- @inproceedings{Greiff2024dec,
- author = {Greiff, Marcus and Di Cairano, Stefano and Berntorp, Karl}},
- title = {Bayesian Measurement Masks for GNSS Positioning},
- booktitle = {IEEE Conference on Decision and Control (CDC)},
- year = 2024,
- month = dec,
- url = {https://www.merl.com/publications/TR2024-172}
- }
, - "Inscribing and separating an ellipsoid and a constrained zonotope: Applications in stochastic control and centering", IEEE Annual Conference on Decision and Control (CDC), December 2024.BibTeX TR2024-173 PDF
- @inproceedings{Vinod2024dec,
- author = {Vinod, Abraham P. and Weiss, Avishai and Di Cairano, Stefano}},
- title = {Inscribing and separating an ellipsoid and a constrained zonotope: Applications in stochastic control and centering},
- booktitle = {IEEE Annual Conference on Decision and Control (CDC)},
- year = 2024,
- month = dec,
- url = {https://www.merl.com/publications/TR2024-173}
- }
, - "Asynchronous Variational-Bayes Kalman Filtering", IEEE Annual Conference on Decision and Control (CDC), December 2024.BibTeX TR2024-177 PDF
- @inproceedings{Greiff2024dec2,
- author = {Greiff, Marcus and Berntorp, Karl}},
- title = {Asynchronous Variational-Bayes Kalman Filtering},
- booktitle = {IEEE Annual Conference on Decision and Control (CDC)},
- year = 2024,
- month = dec,
- url = {https://www.merl.com/publications/TR2024-177}
- }
, - "Divert-feasible lunar landing under navigational uncertainty", 2024 Conference on Decision and Control, December 2024.BibTeX TR2024-174 PDF
- @inproceedings{Lishkova2024dec,
- author = {Lishkova, Yana and Vinod, Abraham P. and Di Cairano, Stefano and Weiss, Avishai}},
- title = {Divert-feasible lunar landing under navigational uncertainty},
- booktitle = {2024 Conference on Decision and Control},
- year = 2024,
- month = dec,
- url = {https://www.merl.com/publications/TR2024-174}
- }
, - "Chance-Constrained Information-Theoretic Stochastic Model Predictive Control with Safety Shielding", IEEE Annual Conference on Decision and Control (CDC), December 2024.BibTeX TR2024-179 PDF
- @inproceedings{Yin2024dec,
- author = {Yin, Ji and Tsiotras, Panagiotis and Berntorp, Karl}},
- title = {Chance-Constrained Information-Theoretic Stochastic Model Predictive Control with Safety Shielding},
- booktitle = {IEEE Annual Conference on Decision and Control (CDC)},
- year = 2024,
- month = dec,
- url = {https://www.merl.com/publications/TR2024-179}
- }
,
- "Decentralized, Safe, Multi-agent Motion Planning for Drones Under Uncertainty via Filtered Reinforcement Learning", IEEE Transactions on Control Systems Technology, DOI: 10.1109/TCST.2024.3433229, Vol. 32, No. 6, pp. 2492-2499, January 2025.
-
Videos
-
Software & Data Downloads