TR2025-031
O-EENC-SD: Efficient Online End-to-End Neural Clustering for Speaker Diarization
-
- "O-EENC-SD: Efficient Online End-to-End Neural Clustering for Speaker Diarization", IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), March 2025.BibTeX TR2025-031 PDF
- @inproceedings{Gruttadauria2025mar,
- author = {Gruttadauria, Elio and Fontaine, Mathieu and {Le Roux}, Jonathan and Essid, Slim},
- title = {{O-EENC-SD: Efficient Online End-to-End Neural Clustering for Speaker Diarization}},
- booktitle = {IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)},
- year = 2025,
- month = mar,
- url = {https://www.merl.com/publications/TR2025-031}
- }
,
- "O-EENC-SD: Efficient Online End-to-End Neural Clustering for Speaker Diarization", IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), March 2025.
-
MERL Contact:
-
Research Areas:
Abstract:
We introduce O-EENC-SD: an end-to-end online speaker diarization system based on EEND-EDA, featuring a novel RNN-based stitching mechanism for online prediction. In particular, we develop a novel centroid refinement decoder whose usefulness is assessed through a rigorous ablation study. Our system provides key advantages over existing methods: a hyperparameter-free solution compared to unsupervised clus- tering approaches, and a more efficient alternative to current online end- to-end methods, which are computationally costly. We demonstrate that O-EENC-SD is competitive with the state of the art in the two-speaker conversational telephone speech domain, as tested on the CallHome dataset. Our results show that O-EENC-SD provides a great trade-off between DER and complexity, even when working on independent chunks with no overlap, making the system extremely efficient.