TR2019-004
Class-Conditional Embeddings for Music Source Separation
-
- "Class-Conditional Embeddings for Music Source Separation", IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), DOI: 10.1109/ICASSP.2019.8683007, May 2019.BibTeX TR2019-004 PDF
- @inproceedings{Seetharaman2019may,
- author = {Seetharaman, Prem and Wichern, Gordon and Venkataramani, Shrikant and Le Roux, Jonathan},
- title = {Class-Conditional Embeddings for Music Source Separation},
- booktitle = {IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)},
- year = 2019,
- month = may,
- doi = {10.1109/ICASSP.2019.8683007},
- url = {https://www.merl.com/publications/TR2019-004}
- }
,
- "Class-Conditional Embeddings for Music Source Separation", IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), DOI: 10.1109/ICASSP.2019.8683007, May 2019.
-
MERL Contacts:
-
Research Areas:
Abstract:
Isolating individual instruments in a musical mixture has a myriad of potential applications, and seems imminently achievable given the levels of performance reached by recent deep learning methods. While most musical source separation techniques learn an independent model for each instrument, we propose using a common embedding space for the time-frequency bins of all instruments in a mixture inspired by deep clustering and deep attractor networks. Additionally, an auxiliary network is used to generate parameters of a Gaussian mixture model (GMM) where the posterior distribution over GMM components in the embedding space can be used to create a mask that separates individual sources from a mixture. In addition to outperforming a mask-inference baseline on the MUSDB-18 dataset, our embedding space is easily interpretable and can be used for query-based separation.
Related News & Events
-
NEWS MERL presenting 16 papers at ICASSP 2019 Date: May 12, 2019 - May 17, 2019
Where: Brighton, UK
MERL Contacts: Petros T. Boufounos; Anoop Cherian; Chiori Hori; Toshiaki Koike-Akino; Jonathan Le Roux; Dehong Liu; Hassan Mansour; Tim K. Marks; Philip V. Orlik; Anthony Vetro; Pu (Perry) Wang; Gordon Wichern
Research Areas: Computational Sensing, Computer Vision, Machine Learning, Signal Processing, Speech & AudioBrief- MERL researchers will be presenting 16 papers at the IEEE International Conference on Acoustics, Speech & Signal Processing (ICASSP), which is being held in Brighton, UK from May 12-17, 2019. Topics to be presented include recent advances in speech recognition, audio processing, scene understanding, computational sensing, and parameter estimation. MERL is also a sponsor of the conference and will be participating in the student career luncheon; please join us at the lunch to learn about our internship program and career opportunities.
ICASSP is the flagship conference of the IEEE Signal Processing Society, and the world's largest and most comprehensive technical conference focused on the research advances and latest technological development in signal and information processing. The event attracts more than 2000 participants each year.
- MERL researchers will be presenting 16 papers at the IEEE International Conference on Acoustics, Speech & Signal Processing (ICASSP), which is being held in Brighton, UK from May 12-17, 2019. Topics to be presented include recent advances in speech recognition, audio processing, scene understanding, computational sensing, and parameter estimation. MERL is also a sponsor of the conference and will be participating in the student career luncheon; please join us at the lunch to learn about our internship program and career opportunities.