- Date & Time: Tuesday, September 19, 2023; 1:00 PM
Speaker: Faruque Hasan, Texas A&M University
MERL Host: Scott A. Bortoff
Research Areas: Applied Physics, Machine Learning, Multi-Physical Modeling, Optimization
Abstract - Carbon capture, utilization, and storage (CCUS) is a promising pathway to decarbonize fossil-based power and industrial sectors and is a bridging technology for a sustainable transition to a net-zero emission energy future. This talk aims to provide an overview of design and optimization of CCUS systems. I will also attempt to give a brief perspective on emerging interests in process systems engineering research (e.g., systems integration, multiscale modeling, strategic planning, and optimization under uncertainty). The purpose is not to cover all aspects of PSE research for CCUS but rather to foster discussion by presenting some plausible future directions and ideas.
-
- Date: August 30, 2023
Awarded to: Bingnan Wang, Hiroshi Inoue, and Makoto Kanemaru
MERL Contact: Bingnan Wang
Research Areas: Applied Physics, Data Analytics, Multi-Physical Modeling
Brief - MERL and Mitsubishi Electric's paper titled “Motor Eccentricity Fault Detection: Physics-Based and Data-Driven Approaches” was awarded one of three best paper awards at the 14th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED 2023). MERL Senior Principal Research Scientist Bingnan Wang presented the paper and received the award at the symposium. Co-authors of the paper include Mitsubishi Electric researchers Hiroshi Inoue and Makoto Kanemaru.
SDEMPED was established as the only international symposium entirely devoted to the diagnostics of electrical machines, power electronics and drives. It is now a regular biennial event. The 14th version, SDEMPED 2023 was held in Chania, Greece from August 28th to 31st, 2023.
-
- Date: June 30, 2023 - June 2, 2023
Where: San Diego, CA
MERL Contact: Ankush Chakrabarty
Research Areas: Applied Physics, Artificial Intelligence, Control, Data Analytics, Dynamical Systems, Machine Learning, Multi-Physical Modeling, Optimization, Robotics
Brief - Ankush Chakrabarty (researcher, Multiphysical Systems Team) co-organized and spoke at 3 sessions at the 2023 American Control Conference in San Diego, CA. These include: (1) A tutorial session (w/ Stefano Di Cairano) on "Physics Informed Machine Learning for Modeling and Control": an effort with contributions from multiple academic institutes and US research labs; (2) An invited session on "Energy Efficiency in Smart Buildings and Cities" in which his paper (w/ Chris Laughman) on "Local Search Region Constrained Bayesian Optimization for Performance Optimization of Vapor Compression Systems" was nominated for Best Energy Systems Paper Award; and, (3) A special session on Diversity, Equity, and Inclusion to improve recruitment and retention of underrepresented groups in STEM research.
-
- Date: May 15, 2023 - May 18, 2023
Where: San Francisco, CA
MERL Contacts: Dehong Liu; Bingnan Wang
Research Areas: Applied Physics, Control, Electric Systems, Machine Learning, Optimization, Signal Processing
Brief - MERL researchers Yusuke Sakamoto, Anantaram Varatharajan, and
Bingnan Wang presented four papers at IEMDC 2023 held May 15-18 in San Francisco, CA. The topics of the four oral presentations range from electric machine design optimization, to fault detection and sensorless control. Bingnan Wang organized a special session at the conference entitled: Learning-based Electric Machine Design and Optimization. Bingnan Wang and Yusuke Sakamoto together chaired the special session, as well as a session on: Condition Monitoring, Fault Diagnosis and Prognosis.
The 14th IEEE International Electric Machines and Drives Conference: IEMDC 2023, is one of the major conferences in the area of electric machines and drives. The conference was established in 1997 and has taken place every two years thereafter.
-
- Date & Time: Wednesday, May 17, 2023; 1:00 PM
Speaker: Mark Ku, The University of Delaware
MERL Host: Chungwei Lin
Research Areas: Applied Physics, Computational Sensing
Abstract - Quantum technology holds potential for revolutionizing how information is processed, transmitted, and acquired. While quantum computation and quantum communication have been among the well-known examples of quantum technology, it is increasingly recognized that quantum sensing is the application with the most potential for immediate wide-spread practical utilization. In this talk, I will provide an overview of the field of quantum sensing with nitrogen vacancy (NV) centers in diamond as a specific example. I will introduce the physical system of NV and describe some basic quantum sensing protocols. Then, I will present some state-of-the-art and examples where quantum sensors such as NV can accomplish what traditional sensors cannot. Lastly, I will discuss potential future directions in the area of NV quantum sensing.
-
- Date & Time: Monday, December 12, 2022; 1:00pm-5:30pm ET
Location: Mitsubishi Electric Research Laboratories (MERL)/Virtual
Research Areas: Applied Physics, Artificial Intelligence, Communications, Computational Sensing, Computer Vision, Control, Data Analytics, Dynamical Systems, Electric Systems, Electronic and Photonic Devices, Machine Learning, Multi-Physical Modeling, Optimization, Robotics, Signal Processing, Speech & Audio, Digital Video
Brief - Join MERL's virtual open house on December 12th, 2022! Featuring a keynote, live sessions, research area booths, and opportunities to interact with our research team. Discover who we are and what we do, and learn about internship and employment opportunities.
-
- Date: October 28, 2022
MERL Contacts: Dehong Liu; Bingnan Wang; Jinyun Zhang
Research Areas: Applied Physics, Data Analytics, Multi-Physical Modeling
Brief - MERL researcher Bingnan Wang gave seminar talk at Wisconsin Electric Machines and Power Electronics Consortium (WEMPEC), which is recognized globally for its sustained contributions to electric machines and power electronics technology. He gave an overview of MERL research, especially on electric machines, and introduced our recent work on quantitative eccentricity fault diagnosis technologies for electric motors, including physical-model approach using improved winding function theory, and data-driven approach using topological data analysis to effectively differentiate signals from different fault conditions.
The seminar was given on Teams. MERL researchers Jin Zhang, Dehong Liu, Yusuke Sakamoto and Bingnan Wang held meetings with WEMPEC faculty members before the seminar to discuss various research topics, and met virtually with students after the talk.
-
- Date: September 21, 2022
MERL Contacts: Philip V. Orlik; Anthony Vetro
Research Areas: Applied Physics, Artificial Intelligence, Communications, Computational Sensing, Computer Vision, Control, Data Analytics, Dynamical Systems, Electric Systems, Electronic and Photonic Devices, Machine Learning, Multi-Physical Modeling, Optimization, Robotics, Signal Processing, Speech & Audio
Brief - Mitsubishi Electric Research Laboratories (MERL) invites qualified postdoctoral candidates to apply for the position of Postdoctoral Research Fellow. This position provides early career scientists the opportunity to work at a unique, academically-oriented industrial research laboratory. Successful candidates will be expected to define and pursue their own original research agenda, explore connections to established laboratory initiatives, and publish high impact articles in leading venues. Please refer to our web page for further details.
-
- Date: June 3, 2022
Where: IEEE Spectrum
MERL Contacts: Avishai Weiss; William S. Yerazunis
Research Areas: Applied Physics, Communications, Robotics
Brief - MERL's research on on-orbit manufacturing was recently featured in an IEEE Spectrum article. The article, titled How Satellites Will 3D Print Their Own Antennas in Space gives an overview of MERL's efforts towards developing a system that construct spacecraft parts in their natural environment-- that is, in space. The technology, called OOM for On-Orbit Manufacturing, provides a way to manufacture not just antenna dishes, but general freeform sturctures on orbit and in a vacuum, using an solar-hardened resin based approach. This technology includes both a special high performance liquid resin, as well as a 3D freeform printer capable of building objects far larger than the as-launched satellite.
An important aspect of the special resin is that all components have extremely low vapor pressures and do not boil away even in a vacuum. When exposed to solar ultraviolet, the resin hardens by polymerization crosslinking, forming a tough, rigid solid in a few seconds of exposure. No separate UV source is needed, making the entire process very energy efficient. Additionally, the crosslinking resin is heat resistant, and is unaffected to at least 400 degrees C. The 3D printer needed to print the resin is unlike common liquid-resin SLA printers- there is no vat of liquid resin, instead a shielded nozzle delivers the liquid resin directly to where the resin is needed. The result is the ability to construct large and very large structures, not just parabolic dishes, but also solar panel supports and structural trusswork, while in orbit. The system could even construct parts that were unanticipated during mission design and launch.
MERL's On-Orbit Manufacturing Technology had previously been featured in a Mitsubishi Electric Corporation Press Release and was recently on display at a recent press exhibition in Tokyo, Japan.
IEEE Spectrum is the flagship magazine and website of the IEEE, the world’s largest professional organization devoted to engineering and the applied sciences. IEEE Spectrum has a circulation of over 400,000 engineers worldwide, making it one of the leading science and engineering magazines.
-
- Date: May 17, 2022
Where: Tokyo, Japan
MERL Contacts: Avishai Weiss; William S. Yerazunis
Research Areas: Applied Physics, Communications
Brief - Mitsubishi Electric Corporation announced that the company has developed an on-orbit additive-manufacturing technology that uses photosensitive resin and solar ultraviolet light for the freeform printing of satellite antennas in the vacuum of outer space.
The novel technology makes use of a newly developed liquid resin that was custom formulated for stability in vacuum. The resin enables structures to be fabricated in space using a low-power process that utilizes the sun’s ultraviolet rays for photopolymerization. The technology specifically addresses the challenge of equipping small, inexpensive spacecraft buses with large structures, such as high-gain antenna reflectors, and enables on-orbit fabrication of structures that greatly exceed the dimensions of launch vehicle fairings. Resin-based on-orbit manufacturing is expected to enable spacecraft structures to be made thinner and lighter than conventional designs, which must survive the stresses of launch and orbital insertion, thereby reducing both total satellite weight and launch costs.
Mitsubishi Electric’s resin-based on-orbit manufacturing enables small satellites to have large satellite capability, which reduces launch costs and allows for satellite technology to be used more than ever in applications such as communication and Earth observation. The technology is based on recent research by MERL's Control for Autonomy and Data Analytics groups.
Links:
Mitsubishi Electric Corporation Press Release
SatMagazine: UV In The Sky With Resin: A novel, on-orbit manufacturing technique
-
- Date & Time: Tuesday, March 15, 2022; 1:00 PM EDT
Speaker: Arjuna Madanayake, Florida International University
Research Areas: Applied Physics, Electronic and Photonic Devices, Multi-Physical Modeling
Abstract - Analog computers are making a comeback. In fact, they are taking the world by storm. After decades of “analog computing winter” that followed the invention of the digital computing paradigm in the 1940s, classical physics-based analog computers are being reconsidered for improving the computational throughput of demanding applications. The research is driven by exponential growth in transistor densities and bandwidths in the integrated circuits world, which in turn, has led to new possibilities for the creative circuit designer. Fast analog chips not only furnish communication/radar front-ends, but can also be used to accelerate mathematical operations. Most analog computer today focus on AI and machine learning. E.g., analog in-memory computing plays an exciting role in AI acceleration because linear algebra operations can be mapped efficiently to compute in memory. However, many scientific computing tasks are built on linear and non-linear partial differential equations (PDEs) that require recursive numerical PDE solution across spatial and temporal dimensions. The adoption of analog parallel processors that are built around speed vs power efficiency vs precision trade-offs available from circuitry for PDE solution require new research in computer architecture. We report on recent progress on CMOS based analog computers for solving computational electromagnetics and non-linear pressure wave equations. Our first analog computing chip was measured to be more than 400x faster than a top-of-the-line NVIDIA GPU while consuming 1000x less power for elementary computational electromagnetics computations using finite-difference time-domain scheme.
-
- Date & Time: Tuesday, February 8, 2022; 1:00 PM EST
Speaker: Raphaël Pestourie, MIT
MERL Host: Matthew Brand
Research Areas: Applied Physics, Electronic and Photonic Devices, Optimization
Abstract - Thin large-area structures with aperiodic subwavelength patterns can unleash the full power of Maxwell’s equations for focusing light and a variety of other wave transformation or optical applications. Because of their irregularity and large scale, capturing the full scattering through these devices is one of the most challenging tasks for computational design: enter extreme optics! This talk will present ways to harness the full computational power of modern large-scale optimization in order to design optical devices with thousands or millions of free parameters. We exploit various methods of domain-decomposition approximations, supercomputer-scale topology optimization, laptop-scale “surrogate” models based on Chebyshev interpolation and/or new scientific machine learning models, and other techniques to attack challenging problems: achromatic lenses that simultaneously handle many wavelengths and angles, “deep” images, hyperspectral imaging, and more.
-
- Date & Time: Thursday, December 9, 2021; 1:00pm - 5:30pm EST
Location: Virtual Event
Speaker: Prof. Melanie Zeilinger, ETH
Research Areas: Applied Physics, Artificial Intelligence, Communications, Computational Sensing, Computer Vision, Control, Data Analytics, Dynamical Systems, Electric Systems, Electronic and Photonic Devices, Machine Learning, Multi-Physical Modeling, Optimization, Robotics, Signal Processing, Speech & Audio, Digital Video, Human-Computer Interaction, Information Security
Brief - MERL is excited to announce the second keynote speaker for our Virtual Open House 2021:
Prof. Melanie Zeilinger from ETH .
Our virtual open house will take place on December 9, 2021, 1:00pm - 5:30pm (EST).
Join us to learn more about who we are, what we do, and discuss our internship and employment opportunities. Prof. Zeilinger's talk is scheduled for 3:15pm - 3:45pm (EST).
Registration: https://mailchi.mp/merl/merlvoh2021
Keynote Title: Control Meets Learning - On Performance, Safety and User Interaction
Abstract: With increasing sensing and communication capabilities, physical systems today are becoming one of the largest generators of data, making learning a central component of autonomous control systems. While this paradigm shift offers tremendous opportunities to address new levels of system complexity, variability and user interaction, it also raises fundamental questions of learning in a closed-loop dynamical control system. In this talk, I will present some of our recent results showing how even safety-critical systems can leverage the potential of data. I will first briefly present concepts for using learning for automatic controller design and for a new safety framework that can equip any learning-based controller with safety guarantees. The second part will then discuss how expert and user information can be utilized to optimize system performance, where I will particularly highlight an approach developed together with MERL for personalizing the motion planning in autonomous driving to the individual driving style of a passenger.
-
- Date & Time: Thursday, December 9, 2021; 1:00pm - 5:30pm EST
Location: Virtual Event
Speaker: Prof. Ashok Veeraraghavan, Rice University
Research Areas: Applied Physics, Artificial Intelligence, Communications, Computational Sensing, Computer Vision, Control, Data Analytics, Dynamical Systems, Electric Systems, Electronic and Photonic Devices, Machine Learning, Multi-Physical Modeling, Optimization, Robotics, Signal Processing, Speech & Audio, Digital Video, Human-Computer Interaction, Information Security
Brief - MERL is excited to announce the first keynote speaker for our Virtual Open House 2021:
Prof. Ashok Veeraraghavan from Rice University.
Our virtual open house will take place on December 9, 2021, 1:00pm - 5:30pm (EST).
Join us to learn more about who we are, what we do, and discuss our internship and employment opportunities. Prof. Veeraraghavan's talk is scheduled for 1:15pm - 1:45pm (EST).
Registration: https://mailchi.mp/merl/merlvoh2021
Keynote Title: Computational Imaging: Beyond the limits imposed by lenses.
Abstract: The lens has long been a central element of cameras, since its early use in the mid-nineteenth century by Niepce, Talbot, and Daguerre. The role of the lens, from the Daguerrotype to modern digital cameras, is to refract light to achieve a one-to-one mapping between a point in the scene and a point on the sensor. This effect enables the sensor to compute a particular two-dimensional (2D) integral of the incident 4D light-field. We propose a radical departure from this practice and the many limitations it imposes. In the talk we focus on two inter-related research projects that attempt to go beyond lens-based imaging.
First, we discuss our lab’s recent efforts to build flat, extremely thin imaging devices by replacing the lens in a conventional camera with an amplitude mask and computational reconstruction algorithms. These lensless cameras, called FlatCams can be less than a millimeter in thickness and enable applications where size, weight, thickness or cost are the driving factors. Second, we discuss high-resolution, long-distance imaging using Fourier Ptychography, where the need for a large aperture aberration corrected lens is replaced by a camera array and associated phase retrieval algorithms resulting again in order of magnitude reductions in size, weight and cost. Finally, I will spend a few minutes discussing how the wholistic computational imaging approach can be used to create ultra-high-resolution wavefront sensors.
-
- Date & Time: Thursday, December 9, 2021; 100pm-5:30pm (EST)
Location: Virtual Event
Research Areas: Applied Physics, Artificial Intelligence, Communications, Computational Sensing, Computer Vision, Control, Data Analytics, Dynamical Systems, Electric Systems, Electronic and Photonic Devices, Machine Learning, Multi-Physical Modeling, Optimization, Robotics, Signal Processing, Speech & Audio, Digital Video, Human-Computer Interaction, Information Security
Brief - Mitsubishi Electric Research Laboratories cordially invites you to join our Virtual Open House, on December 9, 2021, 1:00pm - 5:30pm (EST).
The event will feature keynotes, live sessions, research area booths, and time for open interactions with our researchers. Join us to learn more about who we are, what we do, and discuss our internship and employment opportunities.
Registration: https://mailchi.mp/merl/merlvoh2021
-
- Date & Time: Wednesday, December 9, 2020; 1:00-5:00PM EST
Location: Virtual
MERL Contacts: Elizabeth Phillips; Anthony Vetro
Research Areas: Applied Physics, Artificial Intelligence, Communications, Computational Sensing, Computer Vision, Control, Data Analytics, Dynamical Systems, Electric Systems, Electronic and Photonic Devices, Machine Learning, Multi-Physical Modeling, Optimization, Robotics, Signal Processing, Speech & Audio
-
- Date & Time: Tuesday, August 25, 2020; 11:00 AM
Speaker: Prof. James Hwang, Cornell University
Research Areas: Applied Physics, Electronic and Photonic Devices
Abstract - Microwave is not just for cooking, smart cars, or mobile phones. We can take advantage of the wide electromagnetic spectrum to do wonderful things that are more vital to our lives. For example, microwave ablation of cancer tumor is already in wide use, and microwave remote monitoring of vital signs is becoming more important as the population ages. This talk will focus on a biomedical use of microwave at the single-cell level. At low power, microwave can readily penetrate a cell membrane to interrogate what is inside a cell, without cooking it or otherwise hurting it. It is currently the fastest, most compact, and least costly way to tell whether a cell is alive or dead. On the other hand, at higher power but lower frequency, the electromagnetic signal can interact strongly with the cell membrane to drill temporary holes of nanometer size. The nanopores allow drugs to diffuse into the cell and, based on the reaction of the cell, individualized medicine can be developed and drug development can be sped up in general. Conversely, the nanopores allow strands of DNA molecules to be pulled out of the cell without killing it, which can speed up genetic engineering. Lastly, by changing both the power and frequency of the signal, we can have either positive or negative dielectrophoresis effects, which we have used to coerce a live cell to the examination table of Dr. Microwave, then usher it out after examination. These interesting uses of microwave and the resulted fundamental knowledge about biological cells will be explored in the talk.
-
- Date: June 12, 2019
Where: Physical Chemistry Chemical Physics – Published 22 Feb 2019
MERL Contact: Chungwei Lin
Research Areas: Applied Physics, Multi-Physical Modeling
Brief - The journal "Physical Chemistry Chemical Physics (PCCP)" selects a few well-received articles highlighted as HOT by the handling editor or referees. The following paper "Band Alignment in Quantum Wells from Automatically Tuned DFT+U" with MERL authors Grigory Kolesov, Chungwei Lin, Andrew Knyazev, Keisuke Kojima, Joseph Katz has been selected as a 2019 HOT Physical Chemistry Chemical Physics article, and is made free to access until the end of July 2019. This paper provides a semi-empirical methodology to compute the lattice and electronic structures of systems composed of 400+ atoms. The efficiency of this method allows for realistic simulations of interfaces between semiconductors, which is nearly impossible using the existing methods due to the extremely large degrees of freedom involved. The formalism is tested against a few established band alignments and then applied to determine the band gaps of quantum wells; the agreement is within the experimental uncertainty.
-
- Date & Time: Thursday, November 29, 2018; 4-6pm
Location: 201 Broadway, 8th floor, Cambridge, MA
MERL Contacts: Elizabeth Phillips; Anthony Vetro
Research Areas: Applied Physics, Artificial Intelligence, Communications, Computational Sensing, Computer Vision, Control, Data Analytics, Dynamical Systems, Electric Systems, Electronic and Photonic Devices, Machine Learning, Multi-Physical Modeling, Optimization, Robotics, Signal Processing, Speech & Audio
Brief - Snacks, demos, science: On Thursday 11/29, Mitsubishi Electric Research Labs (MERL) will host an open house for graduate+ students interested in internships, post-docs, and research scientist positions. The event will be held from 4-6pm and will feature demos & short presentations in our main areas of research including artificial intelligence, robotics, computer vision, speech processing, optimization, machine learning, data analytics, signal processing, communications, sensing, control and dynamical systems, as well as multi-physyical modeling and electronic devices. MERL is a high impact publication-oriented research lab with very extensive internship and university collaboration programs. Most internships lead to publication; many of our interns and staff have gone on to notable careers at MERL and in academia. Come mix with our researchers, see our state of the art technologies, and learn about our research opportunities. Dress code: casual, with resumes.
Pre-registration for the event is strongly encouraged:
merlopenhouse.eventbrite.com
Current internship and employment openings:
www.merl.com/internship/openings
www.merl.com/employment/employment
Information about working at MERL:
www.merl.com/employment.
-
- Date & Time: Wednesday, August 17, 2016; 1 PM
Speaker: Gilles Zerah, Centre Francais en Calcul Atomique et Moleculaire-Ile-de-France (CFCAM-IdF)
Research Areas: Applied Physics, Electronic and Photonic Devices
Abstract - The first part of the talk is a high-level review of modern technologies for atomic-level modelling of materials. The second part discusses band gap calculations and MERL results for semi-conductors.
-
- Date: June 4, 2015
Research Areas: Applied Physics, Electronic and Photonic Devices
Brief - Li Zhu, Koon Hoo Teo and Qun Gao's paper, 'Dynamic On-resistance and Tunneling Based De-trapping in GaN HEMT,' was awarded the "Best Student Poster Award" at the IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC) 2015.
-
- Date: May 13, 2015 - May 15, 2015
MERL Contacts: Bingnan Wang; William S. Yerazunis
Research Areas: Applied Physics, Electric Systems
Brief - Description: Bingnan Wang presented a paper, 'Circularly Polarized Near Field for Resonant Wireless Power Transfer' at the recently held IEEE Wireless Power Transfer Conference in Boulder, Colorado from May 13-15, 2015.
-
- Date: July 21, 2013
Where: IEEE Power & Energy Society General Meeting
Research Areas: Electric Systems, Signal Processing
Brief - The paper "Fast Frequency and Phase Estimation in Three Phase Power Systems" by Chen, Z., Sahinoglu, Z. and Li, H. was presented at the IEEE Power & Energy Society General Meeting.
-
- Date: June 2, 2013
Where: IEEE International Microwave Symposium (IMS)
Research Areas: Communications, Electronic and Photonic Devices
Brief - The paper "A 40-dBm High Voltage Broadband GaN Class-J Power Amplifier for PoE Micro-Basestations" by Ma, R., Goswami, S., Yamanaka, K., Komatsuzaki, Y. and Ohta, A. was presented at the IEEE International Microwave Symposium (IMS).
-
- Date: May 26, 2013
Where: International Symposium on Power Semiconductor Devices and ICs (ISPSD)
Research Areas: Applied Physics, Electronic and Photonic Devices
Brief - The paper "Design of Enhancement Mode Single-gate and Double-gate Multi-channel GaN HEMT with Vertical Polarity Inversion Heterostructure" by Feng, P., Teo, K.H., Oishi, T., Yamanaka, K. and Ma, R. was presented at the International Symposium on Power Semiconductor Devices and ICs (ISPSD).
-